code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
A__ = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
230
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __a = False class A__ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : List[Any] = "A painting of a squirrel eating a burger " _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) _UpperCAmelCase : int = VersatileDiffusionTextToImagePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Tuple = generator.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Tuple = "A painting of a squirrel eating a burger " _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" ).images _UpperCAmelCase : List[Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Any = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
145
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = val _snake_case = None _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.val: if val < self.val: if self.left is None: _snake_case = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: _snake_case = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: _snake_case = val def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[Any]: # Recursive traversal if root: inorder(root.left , _UpperCamelCase ) res.append(root.val ) inorder(root.right , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: # Build BST if len(_UpperCamelCase ) == 0: return arr _snake_case = Node(arr[0] ) for i in range(1 , len(_UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. _snake_case = [] inorder(_UpperCamelCase , _UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
42
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __magic_name__: str = logging.get_logger("transformers.models.speecht5") __magic_name__: Optional[int] = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __magic_name__: Tuple = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __magic_name__: Optional[int] = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __magic_name__: List[str] = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __magic_name__: str = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __magic_name__: Any = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __magic_name__: int = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __magic_name__: str = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __magic_name__: List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __magic_name__: Dict = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __magic_name__: Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __magic_name__: str = [] __magic_name__: Optional[int] = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __magic_name__: List[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __magic_name__: int = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __magic_name__: str = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" for attribute in key.split(""".""" ): __magic_name__ : Optional[Any] = getattr(_UpperCamelCase, _UpperCamelCase ) if weight_type is not None: __magic_name__ : Optional[int] = getattr(_UpperCamelCase, _UpperCamelCase ).shape else: __magic_name__ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : List[Any] = value elif weight_type == "weight_g": __magic_name__ : Dict = value elif weight_type == "weight_v": __magic_name__ : str = value elif weight_type == "bias": __magic_name__ : Union[str, Any] = value elif weight_type == "running_mean": __magic_name__ : str = value elif weight_type == "running_var": __magic_name__ : List[Any] = value elif weight_type == "num_batches_tracked": __magic_name__ : Optional[int] = value else: __magic_name__ : List[Any] = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCamelCase ( _A, _A ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __magic_name__ ,__magic_name__ : Any = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : List[Any] = [] if task == "s2t": __magic_name__ : int = hf_model.speechta.encoder.prenet.feature_encoder __magic_name__ : Tuple = MAPPING_S2T __magic_name__ : Dict = IGNORE_KEYS_S2T elif task == "t2s": __magic_name__ : str = None __magic_name__ : Any = MAPPING_T2S __magic_name__ : Any = IGNORE_KEYS_T2S elif task == "s2s": __magic_name__ : Any = hf_model.speechta.encoder.prenet.feature_encoder __magic_name__ : Optional[Any] = MAPPING_S2S __magic_name__ : Optional[int] = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_UpperCamelCase, _UpperCamelCase ): logger.info(f'{name} was ignored' ) continue __magic_name__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, hf_model.config.feat_extract_norm == """group""", ) __magic_name__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __magic_name__ ,__magic_name__ : Dict = key.split(""".*.""" ) if prefix in name and suffix in name: __magic_name__ : Union[str, Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __magic_name__ : List[str] = True if "*" in mapped_key: __magic_name__ : str = name.split(_UpperCamelCase )[0].split(""".""" )[-2] __magic_name__ : Optional[Any] = mapped_key.replace("""*""", _UpperCamelCase ) if "weight_g" in name: __magic_name__ : Any = """weight_g""" elif "weight_v" in name: __magic_name__ : Tuple = """weight_v""" elif "bias" in name: __magic_name__ : List[str] = """bias""" elif "weight" in name: __magic_name__ : Optional[int] = """weight""" elif "running_mean" in name: __magic_name__ : List[Any] = """running_mean""" elif "running_var" in name: __magic_name__ : int = """running_var""" elif "num_batches_tracked" in name: __magic_name__ : Any = """num_batches_tracked""" else: __magic_name__ : Optional[int] = None set_recursively(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] __magic_name__ : Union[str, Any] = name.split(""".""" ) __magic_name__ : Optional[int] = int(items[0] ) __magic_name__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : List[str] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : Union[str, Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def UpperCamelCase ( _A, _A, _A, _A=None, _A=None, _A=None, ): """simple docstring""" if config_path is not None: __magic_name__ : Optional[Any] = SpeechTaConfig.from_pretrained(_UpperCamelCase ) else: __magic_name__ : Union[str, Any] = SpeechTaConfig() if task == "s2t": __magic_name__ : str = config.max_text_positions __magic_name__ : Tuple = SpeechTaForSpeechToText(_UpperCamelCase ) elif task == "t2s": __magic_name__ : Optional[int] = 1876 __magic_name__ : List[str] = 600 __magic_name__ : Optional[Any] = config.max_speech_positions __magic_name__ : Optional[int] = SpeechTaForTextToSpeech(_UpperCamelCase ) elif task == "s2s": __magic_name__ : Optional[Any] = 1876 __magic_name__ : List[Any] = config.max_speech_positions __magic_name__ : List[str] = SpeechTaForSpeechToSpeech(_UpperCamelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: __magic_name__ : Union[str, Any] = SpeechTaTokenizer(_UpperCamelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken("""<mask>""", lstrip=_UpperCamelCase, rstrip=_UpperCamelCase ) __magic_name__ : Optional[int] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) __magic_name__ : Optional[Any] = SpeechTaFeatureExtractor() __magic_name__ : Any = SpeechTaProcessor(tokenizer=_UpperCamelCase, feature_extractor=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) __magic_name__ : str = torch.load(_UpperCamelCase ) recursively_load_weights(fairseq_checkpoint["""model"""], _UpperCamelCase, _UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": __magic_name__: int = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __magic_name__: Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
342
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
0
'''simple docstring''' def snake_case_ (_a : int ): UpperCAmelCase = int(_UpperCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_UpperCamelCase ) UpperCAmelCase , UpperCAmelCase = divmod(_UpperCamelCase , 2 ) return binary_recursive(_UpperCamelCase ) + str(_UpperCamelCase ) def snake_case_ (_a : str ): UpperCAmelCase = str(_UpperCamelCase ).strip() if not number: raise ValueError('''No input value was provided''' ) UpperCAmelCase = '''-''' if number.startswith('''-''' ) else '''''' UpperCAmelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F"{negative}0b{binary_recursive(int(_UpperCamelCase ) )}" if __name__ == "__main__": from doctest import testmod testmod()
34
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params A : Optional[int] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" for pegasus_name, hf_name in PATTERNS: lowercase__ = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def UpperCamelCase ( __magic_name__ : dict , __magic_name__ : dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) lowercase__ = PegasusConfig(**_UpperCamelCase ) lowercase__ = PegasusForConditionalGeneration(_UpperCamelCase ) lowercase__ = torch_model.model.state_dict() lowercase__ = {} for k, v in tf_weights.items(): lowercase__ = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase__ = v.T lowercase__ = torch.tensor(_UpperCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase__ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase__ = mapping["""shared.weight"""] lowercase__ = mapping["""shared.weight"""] lowercase__ = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**_UpperCamelCase ) lowercase__ , lowercase__ = torch_model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) lowercase__ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __magic_name__ : str="./ckpt/aeslc/model.ckpt-32000" ) -> Any: """simple docstring""" lowercase__ = tf.train.list_variables(_UpperCamelCase ) lowercase__ = {} lowercase__ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(_UpperCamelCase , desc="""converting tf checkpoint to dict""" ): lowercase__ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase__ = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) lowercase__ = array return tf_weights def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" lowercase__ = Path(_UpperCamelCase ).parent.name lowercase__ = task_specific_params[f'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase__ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model lowercase__ = get_tf_weights_as_numpy(_UpperCamelCase ) lowercase__ = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": lowercase__ = task_specific_params lowercase__ = convert_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) lowercase__ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(_UpperCamelCase , Path(_UpperCamelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') A : Tuple = parser.parse_args() if args.save_dir is None: A : Any = Path(args.tf_ckpt_path).parent.name A : List[Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
305
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
0
import os SCREAMING_SNAKE_CASE__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Optional[int]: __lowercase = 0 __lowercase = 0 while index < len(_UpperCamelCase ) - 1: __lowercase = SYMBOLS[numerals[index]] __lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> str: __lowercase = '' __lowercase = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "/p089_roman.txt" ) -> Tuple: __lowercase = 0 with open(os.path.dirname(_UpperCamelCase ) + roman_numerals_filename ) as filea: __lowercase = filea.readlines() for line in lines: __lowercase = line.strip() __lowercase = parse_roman_numerals(_UpperCamelCase ) __lowercase = generate_roman_numerals(_UpperCamelCase ) savings += len(_UpperCamelCase ) - len(_UpperCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
325
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ): __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( _UpperCamelCase ,padding='''longest''' ,max_length=_UpperCamelCase ,pad_to_multiple_of=_UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,_UpperCamelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() ,lr=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = get_dataloaders(_UpperCamelCase ,_UpperCamelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(_UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = accelerator.prepare( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase ,references=_UpperCamelCase ,) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,_UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a: Union[str, Any] = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[int] = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __a: str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
198
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
import os def a ( snake_case__: str ): '''simple docstring''' lowercase_ = len(grid[0] ) lowercase_ = len(_UpperCamelCase ) lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_UpperCamelCase ): for j in range(n_rows - 3 ): lowercase_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase_ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase_ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase_ = max( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if max_product > largest: lowercase_ = max_product return largest def a ( ): '''simple docstring''' lowercase_ = [] with open(os.path.dirname(_UpperCamelCase ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) lowercase_ = [[int(_UpperCamelCase ) for i in grid[j]] for j in range(len(_UpperCamelCase ) )] return largest_product(_UpperCamelCase ) if __name__ == "__main__": print(solution())
30
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __lowerCamelCase ( a_ : List[str] , a_ : Optional[Any] , a_ : Optional[int] ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , _UpperCamelCase ) __SCREAMING_SNAKE_CASE :str = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __SCREAMING_SNAKE_CASE :str = dataset_size < in_memory_max_size else: __SCREAMING_SNAKE_CASE :Any = False __SCREAMING_SNAKE_CASE :Union[str, Any] = is_small_dataset(_UpperCamelCase ) assert result == expected
191
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
A__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] = set() # keep track of all the paths to be checked snake_case__ : Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue snake_case__ : Union[str, Any] = queue.pop(0 ) # get the last node from the path snake_case__ : List[str] = path[-1] if node not in explored: snake_case__ : int = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: snake_case__ : Dict = list(_UpperCamelCase ) new_path.append(_UpperCamelCase ) queue.append(_UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCamelCase ) # in case there's no path between the 2 nodes return [] def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 snake_case__ : int = [start] snake_case__ : Dict = set(_UpperCamelCase ) # Keep tab on distances from `start` node. snake_case__ : Tuple = {start: 0, target: -1} while queue: snake_case__ : Tuple = queue.pop(0 ) if node == target: snake_case__ : List[str] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCamelCase ) queue.append(_UpperCamelCase ) snake_case__ : Tuple = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = AudioLDMPipeline UpperCamelCase_ : Tuple = TEXT_TO_AUDIO_PARAMS UpperCamelCase_ : str = TEXT_TO_AUDIO_BATCH_PARAMS UpperCamelCase_ : List[str] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(3_2, 6_4) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=__UpperCAmelCase , ) _UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) _UpperCAmelCase : Optional[Any] = ClapTextModelWithProjection(__UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=7_7 ) _UpperCAmelCase : List[str] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__UpperCAmelCase , ) _UpperCAmelCase : Optional[Any] = SpeechTaHifiGan(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int=0 ) -> List[str]: """simple docstring""" if str(__UpperCAmelCase ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(__UpperCAmelCase ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _UpperCAmelCase : Tuple = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Dict = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : int = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 2_5_6 _UpperCAmelCase : List[str] = audio[:1_0] _UpperCAmelCase : List[Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Dict = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Tuple = audioldm_pipe.to(__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Tuple = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : Optional[Any] = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : List[str] = output.audios[0] _UpperCAmelCase : str = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Tuple = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : Any = audioldm_pipe.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) _UpperCAmelCase : List[Any] = text_inputs["input_ids"].to(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = audioldm_pipe.text_encoder( __UpperCAmelCase , ) _UpperCAmelCase : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCAmelCase : Optional[int] = F.normalize(__UpperCAmelCase , dim=-1 ) _UpperCAmelCase : Dict = prompt_embeds # forward _UpperCAmelCase : Optional[int] = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Tuple = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : List[Any] = audioldm_pipe.to(__UpperCAmelCase ) _UpperCAmelCase : Any = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : str = 3 * ["this is a negative prompt"] _UpperCAmelCase : Dict = negative_prompt _UpperCAmelCase : Optional[Any] = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : Tuple = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = output.audios[0] _UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : Tuple = [] for p in [prompt, negative_prompt]: _UpperCAmelCase : Any = audioldm_pipe.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) _UpperCAmelCase : Union[str, Any] = text_inputs["input_ids"].to(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = audioldm_pipe.text_encoder( __UpperCAmelCase , ) _UpperCAmelCase : Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCAmelCase : Optional[Any] = F.normalize(__UpperCAmelCase , dim=-1 ) embeds.append(__UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Dict = embeds # forward _UpperCAmelCase : Any = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Dict = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _UpperCAmelCase : Tuple = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : int = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Tuple = "egg cracking" _UpperCAmelCase : int = audioldm_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) _UpperCAmelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 2_5_6 _UpperCAmelCase : List[Any] = audio[:1_0] _UpperCAmelCase : str = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Dict = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _UpperCAmelCase : Any = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Tuple = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : List[Any] = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) _UpperCAmelCase : Dict = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts _UpperCAmelCase : Any = 2 _UpperCAmelCase : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : List[Any] = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Dict = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : int = self.get_dummy_components() _UpperCAmelCase : Tuple = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe.vocoder.config.sampling_rate _UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe(audio_length_in_s=0.016 , **__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.016 _UpperCAmelCase : Dict = audioldm_pipe(audio_length_in_s=0.032 , **__UpperCAmelCase ) _UpperCAmelCase : int = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.032 def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : List[Any] = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Tuple = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Tuple = ["hey"] _UpperCAmelCase : int = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 ) _UpperCAmelCase : List[str] = output.audios.shape assert audio_shape == (1, 2_5_6) _UpperCAmelCase : List[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _UpperCAmelCase : Dict = SpeechTaHifiGan(__UpperCAmelCase ).to(__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 ) _UpperCAmelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=__UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase ) @slow class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="cpu" , lowerCAmelCase__ : Union[str, Any]=torch.floataa , lowerCAmelCase__ : List[Any]=0 ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 8, 1_2_8, 1_6) ) _UpperCAmelCase : Optional[Any] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _UpperCAmelCase : int = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : List[str] = self.get_inputs(__UpperCAmelCase ) _UpperCAmelCase : List[str] = 2_5 _UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 8_1_9_2_0 _UpperCAmelCase : List[str] = audio[7_7_2_3_0:7_7_2_4_0] _UpperCAmelCase : Dict = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _UpperCAmelCase : int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Any = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _UpperCAmelCase : int = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = self.get_inputs(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 8_1_9_2_0 _UpperCAmelCase : str = audio[2_7_7_8_0:2_7_7_9_0] _UpperCAmelCase : Union[str, Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _UpperCAmelCase : str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
145
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Tuple = torch.device("cpu") def SCREAMING_SNAKE_CASE__ ( ) -> Dict: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def SCREAMING_SNAKE_CASE__ ( __A ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> List[Any]: _snake_case = dct.pop(_UpperCamelCase ) _snake_case = val def SCREAMING_SNAKE_CASE__ ( __A ) -> Union[str, Any]: _snake_case = [] for k in state_dict.keys(): _snake_case = k if ".pwconv" in k: _snake_case = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: _snake_case = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: _snake_case = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: _snake_case = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: _snake_case = k_new.split('.' ) if ls[2].isdigit(): _snake_case = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: _snake_case = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> List[str]: _snake_case = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _snake_case = 1_000 _snake_case = 'huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _snake_case = [3, 3, 6, 4] _snake_case = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _snake_case = [3, 3, 9, 6] _snake_case = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _snake_case = [4, 3, 10, 5] _snake_case = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _snake_case = [4, 4, 12, 6] _snake_case = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): _snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' , check_hash=_UpperCamelCase ) else: _snake_case = torch.load(_UpperCamelCase , map_location='cpu' ) _snake_case = checkpoint _snake_case = create_rename_keys(_UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model _snake_case = SwiftFormerForImageClassification(_UpperCamelCase ).eval() hf_model.load_state_dict(_UpperCamelCase ) # prepare test inputs _snake_case = prepare_img() _snake_case = ViTImageProcessor.from_pretrained('preprocessor_config' ) _snake_case = processor(images=_UpperCamelCase , return_tensors='pt' ) # compare outputs from both models _snake_case = get_expected_output(_UpperCamelCase ) _snake_case = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCamelCase , atol=1e-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") lowercase : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
42
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
__magic_name__: Dict = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
342
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A ={ # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names A ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A ='facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A ='allenai' def snake_case_ (_a : Union[str, Any] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase = dict((re.sub(R'''@@$''' , '''''' , _UpperCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _UpperCamelCase ), v) for k, v in d.items() ) UpperCAmelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] UpperCAmelCase = d[k] # restore return da def snake_case_ (_a : str , _a : List[str] ): # prep assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models UpperCAmelCase = basename(_UpperCamelCase ) UpperCAmelCase = dirname(_UpperCamelCase ) UpperCAmelCase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase = cls.hub_models() UpperCAmelCase = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} UpperCAmelCase = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"using checkpoint {checkpoint_file}" ) UpperCAmelCase = hub_utils.from_pretrained( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , archive_map=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase = vars(chkpt['''args''']['''model'''] ) UpperCAmelCase = args['''source_lang'''] UpperCAmelCase = args['''target_lang'''] UpperCAmelCase = dirname(_UpperCamelCase ) UpperCAmelCase = basename(_UpperCamelCase ) # dicts UpperCAmelCase = os.path.join(_UpperCamelCase , F"dict.{src_lang}.txt" ) UpperCAmelCase = os.path.join(_UpperCamelCase , F"dict.{tgt_lang}.txt" ) UpperCAmelCase = Dictionary.load(_UpperCamelCase ) UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase = len(_UpperCamelCase ) UpperCAmelCase = os.path.join(_UpperCamelCase , '''vocab-src.json''' ) print(F"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase = False break UpperCAmelCase = Dictionary.load(_UpperCamelCase ) UpperCAmelCase = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase = len(_UpperCamelCase ) UpperCAmelCase = os.path.join(_UpperCamelCase , '''vocab-tgt.json''' ) print(F"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # merges_file (bpecodes) UpperCAmelCase = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase , encoding='''utf-8''' ) as fin: UpperCAmelCase = fin.read() UpperCAmelCase = re.sub(R''' \d+$''' , '''''' , _UpperCamelCase , 0 , re.M ) # remove frequency number print(F"Generating {merges_file}" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as fout: fout.write(_UpperCamelCase ) # model config UpperCAmelCase = os.path.join(_UpperCamelCase , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", F"need to extend tokenizer to support bpe={args['tokenizer']}" UpperCAmelCase = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with UpperCAmelCase = 5 UpperCAmelCase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase = best_score_hparams[model_dir]['''length_penalty'''] else: UpperCAmelCase = 1.0 print(F"Generating {fsmt_model_config_file}" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # tokenizer config UpperCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1_0_2_4, '''do_lower_case''': do_lower_case, } print(F"Generating {fsmt_tokenizer_config_file}" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase , ensure_ascii=_UpperCamelCase , indent=_UpperCamelCase ) ) # model UpperCAmelCase = chkpt['''models'''][0] UpperCAmelCase = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = FSMTConfig.from_pretrained(_UpperCamelCase ) UpperCAmelCase = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) # save UpperCAmelCase = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(_UpperCamelCase , _UpperCamelCase ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(F"cd {data_root}" ) print(F"transformers-cli upload {model_dir}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
34
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> Optional[Any]: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) lowercase__ = np.array(_UpperCamelCase ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCamelCase ) ) , x.transpose() ) , _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> Tuple: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( _UpperCamelCase , exog=_UpperCamelCase , order=_UpperCamelCase , seasonal_order=_UpperCamelCase ) lowercase__ = model.fit(disp=_UpperCamelCase , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(_UpperCamelCase ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> Any: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCamelCase , _UpperCamelCase ) lowercase__ = regressor.predict(_UpperCamelCase ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> str: """simple docstring""" train_user.sort() lowercase__ = np.percentile(_UpperCamelCase , 25 ) lowercase__ = np.percentile(_UpperCamelCase , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> Any: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : int = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Optional[Any] = Normalizer().fit_transform(data_input_df.values) # split data A : int = normalize_df[:, 2].tolist() A : Dict = normalize_df[:, 0].tolist() A : Tuple = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : List[Any] = normalize_df[:, [1, 2]].tolist() A : int = x[: len(x) - 1] A : int = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : str = total_user[: len(total_user) - 1] A : List[Any] = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : str = total_user[len(total_user) - 1 :] A : Optional[int] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Tuple = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : List[str] = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_UpperCamelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _a : def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" pass def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple ) -> int: """simple docstring""" lowercase__ = np.abs((a - b) ).max() self.assertLessEqual(__UpperCAmelCase , __UpperCAmelCase , f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: List[str] , UpperCamelCase_: int=None , **UpperCamelCase_: Any ) -> Optional[int]: """simple docstring""" lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Any=None , **UpperCamelCase_: List[Any] ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowercase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase ) lowercase__ = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowercase__ = after_output[0] lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-3 ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: Dict=None , **UpperCamelCase_: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase ) lowercase__ = model( input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase ) lowercase__ = output.vision_model_output.attentions self.assertEqual(len(__UpperCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = to_atuple(vision_model.config.image_size ) lowercase__ = to_atuple(vision_model.config.patch_size ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ = output.text_model_output.attentions self.assertEqual(len(__UpperCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" pt_model.to(__UpperCAmelCase ) pt_model.eval() # prepare inputs lowercase__ = inputs_dict lowercase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase__ = pt_model(**__UpperCAmelCase ).to_tuple() lowercase__ = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) lowercase__ = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) pt_model_loaded.to(__UpperCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): lowercase__ = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__UpperCAmelCase , pt_output_loaded.numpy() , 4E-2 ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) lowercase__ = fx_state self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] ) -> Any: """simple docstring""" lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(__UpperCAmelCase ) lowercase__ = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCAmelCase ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCAmelCase ) def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_save_load(**__UpperCAmelCase ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCAmelCase ) @is_pt_flax_cross_test def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_inputs_dict.pop('''vision_config''' ) lowercase__ = config_inputs_dict.pop('''text_config''' ) lowercase__ = config_inputs_dict self.check_equivalence_pt_to_flax(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.check_equivalence_flax_to_pt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.get_pretrained_model_and_inputs() lowercase__ = model_a(**__UpperCAmelCase ) lowercase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase ) lowercase__ = model_a(**__UpperCAmelCase ) lowercase__ = after_outputs[0] lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-5 ) @require_flax class _a ( lowerCAmelCase__ , unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , ) lowercase__ = 13 lowercase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase__ = random_attention_mask([batch_size, 4] ) lowercase__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxViTModel(__UpperCAmelCase ) lowercase__ = FlaxBertModel(__UpperCAmelCase ) return vision_model, text_model def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = FlaxViTModelTester(self ) lowercase__ = FlaxBertModelTester(self ) lowercase__ = vit_model_tester.prepare_config_and_inputs() lowercase__ = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ = vision_config_and_inputs lowercase__ , lowercase__ , lowercase__ , lowercase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _a ( lowerCAmelCase__ , unittest.TestCase ): def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , ) lowercase__ = 13 lowercase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase__ = random_attention_mask([batch_size, 4] ) lowercase__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = FlaxCLIPVisionModel(__UpperCAmelCase ) lowercase__ = FlaxBertModel(__UpperCAmelCase ) return vision_model, text_model def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxCLIPVisionModelTester(self ) lowercase__ = FlaxBertModelTester(self ) lowercase__ = clip_model_tester.prepare_config_and_inputs() lowercase__ = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ = vision_config_and_inputs lowercase__ , lowercase__ , lowercase__ , lowercase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) lowercase__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''np''' ) lowercase__ = model(**__UpperCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase__ = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCAmelCase , atol=1E-3 ) )
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A__ : lowerCAmelCase__ : str = BlenderbotSmallConfig lowerCAmelCase__ : int = {} lowerCAmelCase__ : str = "gelu" def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=False , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[Any]=20 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Tuple=0 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def a__ ( self : str ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder() __lowercase = inputs_dict['input_ids'] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['attention_mask'][:1, :] __lowercase = inputs_dict['head_mask'] __lowercase = 1 # first forward pass __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : str=None , ) -> Dict: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCAmelCase__ : int = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ : Any = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Tuple = False def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = TFBlenderbotSmallModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : Dict = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] lowerCAmelCase__ : List[Any] = "facebook/blenderbot_small-90M" @cached_property def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.tokenizer(self.src_text , return_tensors='tf' ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) __lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Any = x lowercase__ : List[str] = y for step in range(_UpperCamelCase ): # noqa: B007 lowercase__ : Tuple = a * a - b * b + x lowercase__ : Dict = 2 * a * b + y lowercase__ : Tuple = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCamelCase ( UpperCAmelCase ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __UpperCamelCase ( UpperCAmelCase ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_UpperCamelCase , 1 , 1 ) ) def __UpperCamelCase ( UpperCAmelCase = 800 , UpperCAmelCase = 600 , UpperCAmelCase = -0.6 , UpperCAmelCase = 0 , UpperCAmelCase = 3.2 , UpperCAmelCase = 50 , UpperCAmelCase = True , ): lowercase__ : Any = Image.new('''RGB''' , (image_width, image_height) ) lowercase__ : str = img.load() # loop through the image-coordinates for image_x in range(_UpperCamelCase ): for image_y in range(_UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates lowercase__ : int = figure_width / image_width * image_height lowercase__ : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase__ : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase__ : Dict = get_distance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase__ : List[str] = get_color_coded_rgb(_UpperCamelCase ) else: lowercase__ : int = get_black_and_white_rgb(_UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __a: int = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
198
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) __a = 'bert-base-cased' __a = 'fp16' __a = 'bf16' __a = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase__( lowerCAmelCase__ ): """simple docstring""" def _lowercase ( self : Optional[int] ) -> Any: super().setUp() lowercase_ = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def _lowercase ( self : int ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__UpperCAmelCase ): lowercase_ = self.dist_env.copy() lowercase_ = f'''{i + 1}''' lowercase_ = strategy with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _lowercase ( self : Tuple ) -> Optional[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__UpperCAmelCase ): lowercase_ = self.dist_env.copy() lowercase_ = prefetch_policy with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _lowercase ( self : Union[str, Any] ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__UpperCAmelCase ): lowercase_ = self.dist_env.copy() lowercase_ = state_dict_type with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _lowercase ( self : List[str] ) -> Dict: lowercase_ = AutoModel.from_pretrained(__UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: lowercase_ = self.dist_env.copy() lowercase_ = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase_ = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": lowercase_ = '''2000''' with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowercase_ = self.dist_env.copy() lowercase_ = '''TRANSFORMER_BASED_WRAP''' lowercase_ = '''T5Layer''' with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() with self.assertRaises(__UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) lowercase_ = self.dist_env.copy() lowercase_ = '''SIZE_BASED_WRAP''' lowercase_ = '''0''' with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _lowercase ( self : Dict ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase_ = self.dist_env.copy() lowercase_ = mp_dtype with mockenv_context(**__UpperCAmelCase ): lowercase_ = Accelerator() if mp_dtype == "fp16": lowercase_ = torch.floataa elif mp_dtype == "bf16": lowercase_ = torch.bfloataa lowercase_ = MixedPrecision(param_dtype=__UpperCAmelCase , reduce_dtype=__UpperCAmelCase , buffer_dtype=__UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__UpperCAmelCase ) def _lowercase ( self : Optional[Any] ) -> Any: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase_ = self.dist_env.copy() lowercase_ = str(__UpperCAmelCase ).lower() with mockenv_context(**__UpperCAmelCase ): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class lowercase__( lowerCAmelCase__ ): """simple docstring""" def _lowercase ( self : Tuple ) -> Optional[int]: super().setUp() lowercase_ = 0.82 lowercase_ = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] lowercase_ = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase_ = 1_6_0 lowercase_ = 1_6_0 lowercase_ = inspect.getfile(accelerate.test_utils ) lowercase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def _lowercase ( self : str ) -> Optional[int]: lowercase_ = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) lowercase_ = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: lowercase_ = cmd.copy() for i, strategy in enumerate(__UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) def _lowercase ( self : List[str] ) -> str: lowercase_ = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) lowercase_ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__UpperCAmelCase ): lowercase_ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue lowercase_ = len(__UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase_ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) lowercase_ = cmd_config[:-1] lowercase_ = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) lowercase_ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
30
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def __lowerCamelCase ( a_ : Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE :str = {} __SCREAMING_SNAKE_CASE :int = os.path.join(_UpperCamelCase , '''all_results.json''' ) if os.path.exists(_UpperCamelCase ): with open(_UpperCamelCase , '''r''' ) as f: __SCREAMING_SNAKE_CASE :List[Any] = json.load(_UpperCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results lowerCamelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _SCREAMING_SNAKE_CASE( lowerCAmelCase__ ): def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" import xla_spawn __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE :Optional[Any] = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__UpperCAmelCase ,'''argv''' ,__UpperCAmelCase ): __SCREAMING_SNAKE_CASE :Tuple = time() xla_spawn.main() __SCREAMING_SNAKE_CASE :Union[str, Any] = time() __SCREAMING_SNAKE_CASE :int = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,5_00 ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" import xla_spawn __SCREAMING_SNAKE_CASE :Any = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(__UpperCAmelCase ,'''argv''' ,__UpperCAmelCase ): xla_spawn.main()
191
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
230
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
'''simple docstring''' def __UpperCAmelCase ( a_: int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase : str = 1 _UpperCAmelCase : Optional[Any] = 1 while repunit: _UpperCAmelCase : str = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __UpperCAmelCase ( a_: int = 1_000_000 ): _UpperCAmelCase : str = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
145
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : List[str] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=8 ) -> str: _snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCAmelCase ( lowerCAmelCase__ ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , movq=__UpperCAmelCase , ) _snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if latents is None: _snake_case = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _snake_case = latents.to(__UpperCAmelCase ) _snake_case = latents * scheduler.init_noise_sigma return latents def lowerCamelCase ( self , lowerCAmelCase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _snake_case = torch.device(F'cuda:{gpu_id}' ) _snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self , lowerCAmelCase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _snake_case = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case = cpu_offload_with_hook(__UpperCAmelCase , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. _snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 5_12 , lowerCAmelCase_ = 5_12 , lowerCAmelCase_ = 1_00 , lowerCAmelCase_ = 4.0 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , ): """simple docstring""" _snake_case = self._execution_device _snake_case = guidance_scale > 1.0 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _snake_case = torch.cat(__UpperCAmelCase , dim=0 ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _snake_case = torch.cat(__UpperCAmelCase , dim=0 ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _snake_case = torch.cat(__UpperCAmelCase , dim=0 ) _snake_case = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _snake_case = image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) _snake_case = negative_image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) _snake_case = hint.repeat_interleave(__UpperCAmelCase , dim=0 ) _snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCAmelCase ) _snake_case = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase , device=__UpperCAmelCase ) _snake_case = self.scheduler.timesteps _snake_case = self.movq.config.latent_channels _snake_case , _snake_case = downscale_height_and_width(__UpperCAmelCase , __UpperCAmelCase , self.movq_scale_factor ) # create initial latent _snake_case = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = {'image_embeds': image_embeds, 'hint': hint} _snake_case = self.unet( sample=__UpperCAmelCase , timestep=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , added_cond_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] if do_classifier_free_guidance: _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case , _snake_case = variance_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase , )[0] # post-processing _snake_case = self.movq.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _snake_case = image * 0.5 + 0.5 _snake_case = image.clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
42
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
0
import re def UpperCamelCase ( _A ): """simple docstring""" if len(re.findall("""[ATCG]""", _UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""", """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
342
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A =get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class _a ( lowerCAmelCase__ , unittest.TestCase ): __a : Optional[int] = SpeechTaTokenizer __a : Optional[Any] = False __a : Tuple = True def A ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = SpeechTaTokenizer(__UpperCAmelCase ) UpperCAmelCase = AddedToken('''<mask>''' , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Any , lowercase : Any ): '''simple docstring''' UpperCAmelCase = '''this is a test''' UpperCAmelCase = '''this is a test''' return input_text, output_text def A ( self : Dict , lowercase : Dict , lowercase : Union[str, Any]=False , lowercase : str=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.get_input_output_texts(__UpperCAmelCase ) UpperCAmelCase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def A ( self : Any ): '''simple docstring''' UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__UpperCAmelCase ) , 81 ) def A ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] UpperCAmelCase = tokenizer.add_tokens(__UpperCAmelCase ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase , 0 ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , len(__UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , all_size + len(__UpperCAmelCase ) ) UpperCAmelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__UpperCAmelCase ) self.assertGreaterEqual(len(__UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} UpperCAmelCase = tokenizer.add_special_tokens(__UpperCAmelCase ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(__UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase , 0 ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , len(__UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , all_size_a + len(__UpperCAmelCase ) ) UpperCAmelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__UpperCAmelCase ) self.assertGreaterEqual(len(__UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def A ( self : Tuple ): '''simple docstring''' pass def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__UpperCAmelCase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) # fmt: off self.assertListEqual(__UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on UpperCAmelCase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off UpperCAmelCase = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__UpperCAmelCase , )
34
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) A : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A : int = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" lowercase__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, \"{attribute}\"''' in modeling_source or f'''getattr(self.config, \"{attribute}\"''' in modeling_source ): lowercase__ = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"''' , _UpperCamelCase , ) is not None ): lowercase__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase__ = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] lowercase__ = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed lowercase__ = True if not attribute_used: lowercase__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase__ = True elif attribute.endswith("""_token_id""" ): lowercase__ = True # configuration class specific cases if not case_allowed: lowercase__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" lowercase__ = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase__ = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] lowercase__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase__ = {} if len(config_class.attribute_map ) > 0: lowercase__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase__ = inspect.getsourcefile(_UpperCamelCase ) lowercase__ = os.path.dirname(_UpperCamelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase__ = [os.path.join(_UpperCamelCase , _UpperCamelCase ) for fn in os.listdir(_UpperCamelCase ) if fn.startswith("""modeling_""" )] # Get the source code strings lowercase__ = [] for path in modeling_paths: if os.path.isfile(_UpperCamelCase ): with open(_UpperCamelCase ) as fp: modeling_sources.append(fp.read() ) lowercase__ = [] for config_param, default_value in zip(_UpperCamelCase , _UpperCamelCase ): # `attributes` here is all the variant names for `config_param` lowercase__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCamelCase ) def UpperCamelCase ( ) -> Dict: """simple docstring""" lowercase__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __magic_name__ : inspect.isclass(_UpperCamelCase ) and issubclass(_UpperCamelCase , _UpperCamelCase ) and inspect.getmodule(_UpperCamelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase__ = check_config_attributes_being_used(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowercase__ = unused_attributes if len(_UpperCamelCase ) > 0: lowercase__ = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_UpperCamelCase ) if __name__ == "__main__": check_config_attributes()
305
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class _a ( lowerCAmelCase__ ): _lowercase : str = ['''pixel_values'''] def __init__( self: List[Any] , UpperCamelCase_: Optional[Any] = True , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: List[str] = PILImageResampling.BILINEAR , UpperCamelCase_: List[str] = True , UpperCamelCase_: List[Any] = None , UpperCamelCase_: Dict = True , UpperCamelCase_: Tuple = 1 / 255 , UpperCamelCase_: Union[str, Any] = True , UpperCamelCase_: str = None , UpperCamelCase_: str = None , **UpperCamelCase_: int , ) -> Dict: """simple docstring""" super().__init__(**__UpperCAmelCase ) lowercase__ = size if size is not None else {'''shortest_edge''': 256} lowercase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowercase__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ = get_size_dict(__UpperCAmelCase ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str] = PILImageResampling.BICUBIC , UpperCamelCase_: Any = None , **UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase__ = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] = None , **UpperCamelCase_: Tuple , ) -> str: """simple docstring""" lowercase__ = get_size_dict(__UpperCAmelCase ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any = None , **UpperCamelCase_: str ) -> Any: """simple docstring""" return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: int = None , **UpperCamelCase_: Dict , ) -> Any: """simple docstring""" return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple = None , UpperCamelCase_: Optional[Any] = None , UpperCamelCase_: List[str] = None , UpperCamelCase_: Dict = None , UpperCamelCase_: str = None , UpperCamelCase_: List[Any] = None , UpperCamelCase_: Union[str, Any] = None , UpperCamelCase_: List[Any] = None , UpperCamelCase_: Tuple = None , UpperCamelCase_: Union[str, Any] = None , UpperCamelCase_: str = None , UpperCamelCase_: str = ChannelDimension.FIRST , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(__UpperCAmelCase ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
110
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: __lowercase = [] for part_id in partition_order: __lowercase = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(_UpperCamelCase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase = spark.range(100 ).repartition(1 ) __lowercase = Spark(_UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __lowercase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase = spark.range(10 ).repartition(2 ) __lowercase = [1, 0] __lowercase = _generate_iterable_examples(_UpperCamelCase , _UpperCamelCase ) # Reverse the partitions. __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , _UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowercase , __lowercase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __SCREAMING_SNAKE_CASE ( ) -> int: __lowercase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase = spark.range(10 ).repartition(1 ) __lowercase = SparkExamplesIterable(_UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: __lowercase = lambda SCREAMING_SNAKE_CASE : x.reverse() __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [2, 1, 0] ) __lowercase = SparkExamplesIterable(_UpperCamelCase ).shuffle_data_sources(_UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): __lowercase , __lowercase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowercase = SparkExamplesIterable(_UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): __lowercase , __lowercase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowercase = SparkExamplesIterable(_UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): __lowercase , __lowercase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __SCREAMING_SNAKE_CASE ( ) -> int: __lowercase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase = spark.range(100 ).repartition(1 ) __lowercase = Spark(_UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
325
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ): __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( _UpperCamelCase ,padding='''longest''' ,max_length=_UpperCamelCase ,pad_to_multiple_of=_UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,_UpperCamelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() ,lr=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = get_dataloaders(_UpperCamelCase ,_UpperCamelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(_UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = accelerator.prepare( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase ,references=_UpperCamelCase ,) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,_UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __a: Optional[int] = _symbol_database.Default() __a: Any = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) __a: Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __a: Tuple = None __a: Optional[Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __a: List[Any] = 45 __a: Optional[Any] = 15_81 __a: Union[str, Any] = 15_17 __a: Any = 15_70 __a: str = 15_84 __a: List[str] = 17_93 __a: Optional[int] = 17_95 __a: Dict = 19_16 __a: Dict = 18_64 __a: int = 19_05 __a: str = 19_19 __a: List[Any] = 24_29 __a: Optional[Any] = 22_08 __a: str = 24_18 __a: Any = 23_23 __a: List[Any] = 24_07 # @@protoc_insertion_point(module_scope)
198
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
__a = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 1_0: 'a', 1_1: 'b', 1_2: 'c', 1_3: 'd', 1_4: 'e', 1_5: 'f', } def a ( snake_case__: float ): '''simple docstring''' assert type(_UpperCamelCase ) in (int, float) and decimal == int(_UpperCamelCase ) lowercase_ = int(_UpperCamelCase ) lowercase_ = '''''' lowercase_ = False if decimal < 0: lowercase_ = True decimal *= -1 while decimal > 0: lowercase_ , lowercase_ = divmod(_UpperCamelCase , 16 ) lowercase_ = values[remainder] + hexadecimal lowercase_ = '''0x''' + hexadecimal if negative: lowercase_ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
30
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
"""simple docstring""" import os from collections.abc import Iterator def __lowerCamelCase ( a_ : str = "." ) -> List[str]: for dir_path, dir_names, filenames in os.walk(_UpperCamelCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCamelCase , _UpperCamelCase ).lstrip('''./''' ) def __lowerCamelCase ( a_ : Tuple ) -> Dict: return f'''{i * " "}*''' if i else "\n##" def __lowerCamelCase ( a_ : str , a_ : str ) -> List[str]: __SCREAMING_SNAKE_CASE :List[str] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCamelCase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_UpperCamelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCamelCase ( a_ : str = "." ) -> List[Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = '''''' for filepath in sorted(good_file_paths(_UpperCamelCase ) ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = os.path.split(_UpperCamelCase ) if filepath != old_path: __SCREAMING_SNAKE_CASE :List[Any] = print_path(_UpperCamelCase , _UpperCamelCase ) __SCREAMING_SNAKE_CASE :str = (filepath.count(os.sep ) + 1) if filepath else 0 __SCREAMING_SNAKE_CASE :str = f'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) __SCREAMING_SNAKE_CASE :Optional[int] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'''{md_prefix(_UpperCamelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
191
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
class a : def __init__( self :Any ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :str ): snake_case__ : Union[str, Any] = None snake_case__ : int = None snake_case__ : Optional[int] = graph self._normalize_graph(__UpperCAmelCase ,__UpperCAmelCase ) snake_case__ : int = len(__UpperCAmelCase ) snake_case__ : List[str] = None def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Tuple ): if sources is int: snake_case__ : Dict = [sources] if sinks is int: snake_case__ : List[Any] = [sinks] if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: return snake_case__ : Dict = sources[0] snake_case__ : List[str] = sinks[0] # make fake vertex if there are more # than one source or sink if len(__UpperCAmelCase ) > 1 or len(__UpperCAmelCase ) > 1: snake_case__ : Optional[int] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) snake_case__ : Tuple = len(self.graph ) + 1 for room in self.graph: room.insert(0 ,0 ) self.graph.insert(0 ,[0] * size ) for i in sources: snake_case__ : Tuple = max_input_flow snake_case__ : Tuple = 0 snake_case__ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: snake_case__ : List[Any] = max_input_flow snake_case__ : int = size - 1 def __lowerCamelCase ( self :int ): if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __lowerCamelCase ( self :Optional[int] ,__lowercase :Optional[int] ): snake_case__ : Dict = algorithm(self ) class a : def __init__( self :List[str] ,__lowercase :Any ): snake_case__ : Tuple = flow_network snake_case__ : str = flow_network.verticesCount snake_case__ : Tuple = flow_network.sourceIndex snake_case__ : int = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that snake_case__ : List[str] = flow_network.graph snake_case__ : int = False def __lowerCamelCase ( self :Optional[Any] ): if not self.executed: self._algorithm() snake_case__ : Any = True def __lowerCamelCase ( self :List[Any] ): pass class a ( lowerCAmelCase__ ): def __init__( self :List[Any] ,__lowercase :List[str] ): super().__init__(__UpperCAmelCase ) # use this to save your result snake_case__ : Dict = -1 def __lowerCamelCase ( self :Union[str, Any] ): if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class a ( lowerCAmelCase__ ): def __init__( self :List[str] ,__lowercase :Optional[int] ): super().__init__(__UpperCAmelCase ) snake_case__ : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )] snake_case__ : Dict = [0] * self.verticies_count snake_case__ : int = [0] * self.verticies_count def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule snake_case__ : Dict = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list snake_case__ : Tuple = 0 while i < len(__UpperCAmelCase ): snake_case__ : List[Any] = vertices_list[i] snake_case__ : Dict = self.heights[vertex_index] self.process_vertex(__UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 ,vertices_list.pop(__UpperCAmelCase ) ) snake_case__ : Tuple = 0 else: i += 1 snake_case__ : List[str] = sum(self.preflow[self.source_index] ) def __lowerCamelCase ( self :str ,__lowercase :List[str] ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__UpperCAmelCase ,__UpperCAmelCase ) self.relabel(__UpperCAmelCase ) def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[int] ,__lowercase :int ): snake_case__ : Any = min( self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __lowerCamelCase ( self :List[str] ,__lowercase :List[Any] ): snake_case__ : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): snake_case__ : Tuple = self.heights[to_index] if min_height is not None: snake_case__ : Optional[Any] = min_height + 1 if __name__ == "__main__": A__ = [0] A__ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A__ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A__ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A__ = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __a = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str = None , lowerCAmelCase__ : List[Any] = None ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCAmelCase : Union[str, Any] = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ) else: _UpperCAmelCase : Dict = None _UpperCAmelCase : Any = torch.nn.Parameter(__UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : List[Any] = 42 UpperCamelCase_ : Any = 42 UpperCamelCase_ : List[Any] = 42 UpperCamelCase_ : Union[str, Any] = 42 UpperCamelCase_ : Optional[int] = 42 UpperCamelCase_ : Optional[Any] = 42 def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : int = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings _UpperCAmelCase : List[str] = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _UpperCAmelCase : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _UpperCAmelCase : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCAmelCase : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Union[str, Any] = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCAmelCase : List[Any] = self.learned_classifier_free_sampling_embeddings.embeddings _UpperCAmelCase : Optional[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 ) else: _UpperCAmelCase : Tuple = [""] * batch_size _UpperCAmelCase : List[str] = text_input_ids.shape[-1] _UpperCAmelCase : str = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) _UpperCAmelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _UpperCAmelCase : Optional[Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase : Union[str, Any] = negative_prompt_embeds.shape[1] _UpperCAmelCase : Dict = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 ) _UpperCAmelCase : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : Optional[Any] = 5.0 , lowerCAmelCase__ : List[str] = 1.0 , lowerCAmelCase__ : List[str] = 1 , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : Any = "pil" , lowerCAmelCase__ : Union[str, Any] = True , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : List[Any] = 1 , ) -> Optional[Any]: """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : List[str] = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : str = len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) _UpperCAmelCase : Optional[int] = batch_size * num_images_per_prompt _UpperCAmelCase : List[str] = guidance_scale > 1.0 _UpperCAmelCase : Tuple = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__UpperCAmelCase )}.""" ) # get the initial completely masked latents unless the user supplied it _UpperCAmelCase : str = (batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCAmelCase : Dict = self.transformer.num_vector_embeds - 1 _UpperCAmelCase : int = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _UpperCAmelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) _UpperCAmelCase : Optional[Any] = self.scheduler.timesteps.to(self.device ) _UpperCAmelCase : str = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance _UpperCAmelCase : List[str] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCAmelCase : str = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : List[str] = model_output.chunk(2 ) _UpperCAmelCase : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase ) _UpperCAmelCase : Tuple = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) _UpperCAmelCase : int = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Tuple = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = self.vqvae.config.vq_embed_dim _UpperCAmelCase : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCAmelCase : Dict = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase ) _UpperCAmelCase : List[str] = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample _UpperCAmelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = torch.exp(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCAmelCase : str = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase ) _UpperCAmelCase : Dict = torch.cat((all_true, keep_mask) , dim=1 ) _UpperCAmelCase : List[Any] = keep_mask[:, :-1, :] _UpperCAmelCase : str = keep_mask.gather(1 , indices.argsort(1 ) ) _UpperCAmelCase : List[str] = log_p_x_0.clone() _UpperCAmelCase : Optional[int] = -torch.inf # -inf = log(0) return rv
145
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : Union[str, Any] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
from __future__ import annotations def UpperCamelCase ( _A ): """simple docstring""" if not nums: return 0 __magic_name__ : Dict = nums[0] __magic_name__ : Union[str, Any] = 0 for num in nums[1:]: __magic_name__ ,__magic_name__ : Tuple = ( max_excluding + num, max(_UpperCamelCase, _UpperCamelCase ), ) return max(_UpperCamelCase, _UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
342
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _a ( lowerCAmelCase__ ): __a : List[str] = 42 __a : Dict = 42 __a : Union[str, Any] = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
34
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCAmelCase :str = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : int , *_A : Tuple , **_A : Optional[int] ) -> List[str]: super().__init__(*_A , **_A ) requires_backends(self , 'decord' ) self.check_model_type(_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : Optional[int]=None ) -> int: __magic_name__ : int = {} if frame_sampling_rate is not None: __magic_name__ : Union[str, Any] = frame_sampling_rate if num_frames is not None: __magic_name__ : Optional[int] = num_frames __magic_name__ : int = {} if top_k is not None: __magic_name__ : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , _A : Union[str, List[str]] , **_A : int ) -> Optional[int]: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any]=None , _A : Union[str, Any]=1 ) -> Union[str, Any]: if num_frames is None: __magic_name__ : List[str] = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): __magic_name__ : Dict = BytesIO(requests.get(_A ).content ) __magic_name__ : List[Any] = VideoReader(_A ) videoreader.seek(0 ) __magic_name__ : Any = 0 __magic_name__ : int = num_frames * frame_sampling_rate - 1 __magic_name__ : Optional[Any] = np.linspace(_A , _A , num=_A , dtype=np.intaa ) __magic_name__ : List[Any] = videoreader.get_batch(_A ).asnumpy() __magic_name__ : List[str] = list(_A ) __magic_name__ : Union[str, Any] = self.image_processor(_A , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Dict ) -> List[str]: __magic_name__ : Union[str, Any] = self.model(**_A ) return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] , _A : Optional[Any]=5 ) -> Tuple: if top_k > self.model.config.num_labels: __magic_name__ : int = self.model.config.num_labels if self.framework == "pt": __magic_name__ : List[str] = model_outputs.logits.softmax(-1 )[0] __magic_name__ , __magic_name__ : Tuple = probs.topk(_A ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Tuple = scores.tolist() __magic_name__ : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_A , _A )]
331
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
1
'''simple docstring''' import os import sys import unittest lowerCAmelCase :Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase :List[Any] = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase :Dict = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : Optional[int] = get_test_to_tester_mapping(_A ) __magic_name__ : List[Any] = get_test_to_tester_mapping(_A ) __magic_name__ : Union[str, Any] = {'BertModelTest': 'BertModelTester'} __magic_name__ : Dict = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def __lowerCAmelCase ( self : Tuple ) -> Dict: __magic_name__ : Dict = get_model_to_test_mapping(_A ) __magic_name__ : List[str] = get_model_to_test_mapping(_A ) __magic_name__ : Optional[Any] = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __magic_name__ : str = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def __lowerCAmelCase ( self : Dict ) -> Dict: __magic_name__ : Optional[Any] = get_model_to_tester_mapping(_A ) __magic_name__ : Optional[Any] = get_model_to_tester_mapping(_A ) __magic_name__ : Optional[Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __magic_name__ : List[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A )
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase :List[Any] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = ["""input_features"""] def __init__( self : str , _A : List[Any]=80 , _A : int=16000 , _A : List[Any]=160 , _A : Tuple=30 , _A : Tuple=400 , _A : Union[str, Any]=0.0 , _A : List[Any]=False , **_A : Optional[Any] , ) -> Optional[Any]: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) __magic_name__ : Dict = n_fft __magic_name__ : Optional[int] = hop_length __magic_name__ : Tuple = chunk_length __magic_name__ : int = chunk_length * sampling_rate __magic_name__ : Dict = self.n_samples // hop_length __magic_name__ : int = sampling_rate __magic_name__ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_A , norm='slaney' , mel_scale='slaney' , ) def __lowerCAmelCase ( self : Optional[int] , _A : np.array ) -> np.ndarray: __magic_name__ : int = spectrogram( _A , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) __magic_name__ : Optional[Any] = log_spec[:, :-1] __magic_name__ : List[str] = np.maximum(_A , log_spec.max() - 8.0 ) __magic_name__ : Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowerCAmelCase ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __magic_name__ : Tuple = np.array(_A , np.intaa ) __magic_name__ : Optional[int] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): __magic_name__ : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __magic_name__ : Optional[int] = padding_value normed_input_values.append(_A ) else: __magic_name__ : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : str , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __magic_name__ : Any = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __magic_name__ : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ : str = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): __magic_name__ : Union[str, Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __magic_name__ : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ : Optional[Any] = [np.asarray([raw_speech] ).T] __magic_name__ : Optional[Any] = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding __magic_name__ : int = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __magic_name__ : str = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) __magic_name__ : List[str] = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format __magic_name__ : Union[str, Any] = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) __magic_name__ : int = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): __magic_name__ : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: __magic_name__ : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __magic_name__ : Tuple = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: __magic_name__ : Dict = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __lowerCAmelCase ( self : List[Any] ) -> Dict[str, Any]: __magic_name__ : Tuple = copy.deepcopy(self.__dict__ ) __magic_name__ : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
331
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , _A : List[Any] , _A : Optional[int]=13 , _A : int=7 , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : Tuple=True , _A : int=99 , _A : Tuple=32 , _A : Optional[int]=5 , _A : Union[str, Any]=4 , _A : str=37 , _A : Tuple="gelu" , _A : List[Any]=0.1 , _A : str=0.1 , _A : List[str]=512 , _A : List[str]=16 , _A : Optional[Any]=2 , _A : int=0.02 , _A : List[Any]=3 , _A : Optional[Any]=4 , _A : str=None , ) -> List[Any]: __magic_name__ : str = parent __magic_name__ : Dict = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : Dict = is_training __magic_name__ : str = use_token_type_ids __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Any = vocab_size __magic_name__ : Optional[Any] = hidden_size __magic_name__ : Tuple = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Optional[int] = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Dict = attention_probs_dropout_prob __magic_name__ : str = max_position_embeddings __magic_name__ : List[Any] = type_vocab_size __magic_name__ : Optional[int] = type_sequence_label_size __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = num_labels __magic_name__ : Any = num_choices __magic_name__ : str = scope __magic_name__ : Optional[int] = self.vocab_size - 1 def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Union[str, Any] = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : int = None __magic_name__ : Dict = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Tuple = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self : List[Any] , _A : List[Any] , _A : str , _A : Any , _A : Union[str, Any] , *_A : Tuple ) -> int: __magic_name__ : Tuple = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Dict = model(_A , token_type_ids=_A , head_mask=_A ) __magic_name__ : str = model(_A , token_type_ids=_A ) __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : Any , _A : Dict , _A : Optional[Any] , *_A : Dict ) -> Union[str, Any]: __magic_name__ : Optional[int] = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] , _A : Tuple , _A : int , _A : Dict , _A : List[str] , *_A : Dict ) -> str: __magic_name__ : Tuple = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() __magic_name__ : Dict = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : Optional[Any] , *_A : Dict ) -> Optional[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Optional[Any] = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : List[str] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int ) -> Dict: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Union[str, Any] = config_and_inputs __magic_name__ : List[str] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A_ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A_ : Optional[Any] = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self : int , _A : Optional[int] , _A : Tuple , _A : int , _A : int , _A : Union[str, Any] ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : List[str] , _A : Optional[int]=False ) -> List[str]: __magic_name__ : List[Any] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) __magic_name__ : List[str] = inputs_dict['labels'] __magic_name__ : Optional[Any] = inputs_dict['labels'] __magic_name__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) __magic_name__ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: __magic_name__ : Optional[int] = OpenAIGPTModelTester(self ) __magic_name__ : Dict = ConfigTester(self , config_class=_A , n_embd=37 ) def __lowerCAmelCase ( self : Any ) -> str: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def __lowerCAmelCase ( self : Dict ) -> str: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Dict = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_A ) __magic_name__ : Dict = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_A ) # the president is __magic_name__ : Any = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
331
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : bool = True , lowerCAmelCase : float = math.inf , lowerCAmelCase : float = -math.inf , lowerCAmelCase : float = math.inf , lowerCAmelCase : float = -math.inf , lowerCAmelCase : bool = False , lowerCAmelCase : float = 100 , lowerCAmelCase : float = 0.01 , lowerCAmelCase : float = 1 , ): """simple docstring""" __magic_name__ : List[str] = False __magic_name__ : Tuple = search_prob __magic_name__ : str = start_temperate __magic_name__ : Tuple = [] __magic_name__ : Optional[int] = 0 __magic_name__ : Dict = None while not search_end: __magic_name__ : Union[str, Any] = current_state.score() if best_state is None or current_score > best_state.score(): __magic_name__ : Any = current_state scores.append(lowerCAmelCase ) iterations += 1 __magic_name__ : Any = None __magic_name__ : List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __magic_name__ : Tuple = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor __magic_name__ : int = neighbors.pop(lowerCAmelCase ) __magic_name__ : List[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __magic_name__ : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution __magic_name__ : List[Any] = picked_neighbor else: __magic_name__ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __magic_name__ : Any = picked_neighbor __magic_name__ : Optional[int] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __magic_name__ : List[Any] = True else: __magic_name__ : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : int ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase :int = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowerCAmelCase :List[str] = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase :Union[str, Any] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowerCAmelCase :List[Any] = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase :Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase :Tuple = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) lowerCAmelCase :str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase :Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase :Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): '''simple docstring''' A_ : int = 1_00_00 A_ : Optional[List[str]] = None A_ : Optional[datasets.Features] = None class _lowerCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' A_ : Dict = ParquetConfig def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] ) -> Optional[int]: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) __magic_name__ : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): __magic_name__ : str = data_files if isinstance(_A , _A ): __magic_name__ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : List[str] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __magic_name__ : Dict = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): __magic_name__ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : Dict = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , 'rb' ) as f: __magic_name__ : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files} ) ) return splits def __lowerCAmelCase ( self : Union[str, Any] , _A : pa.Table ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __magic_name__ : str = table_cast(_A , self.info.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self : Any , _A : str ) -> int: __magic_name__ : List[str] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , 'rb' ) as f: __magic_name__ : Optional[int] = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __magic_name__ : Optional[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(_A ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(_A )}: {e}' ) raise
331
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : "DiagonalGaussianDistribution" class _lowerCamelCase ( lowercase__ , lowercase__ ): '''simple docstring''' A_ : Any = True @register_to_config def __init__( self : Dict , _A : int = 3 , _A : int = 3 , _A : Tuple[str] = ("DownEncoderBlock2D",) , _A : Tuple[str] = ("UpDecoderBlock2D",) , _A : Tuple[int] = (64,) , _A : int = 1 , _A : str = "silu" , _A : int = 4 , _A : int = 32 , _A : int = 32 , _A : float = 0.1_8215 , ) -> Dict: super().__init__() # pass init params to Encoder __magic_name__ : str = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) # pass init params to Decoder __magic_name__ : Union[str, Any] = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , norm_num_groups=_A , act_fn=_A , ) __magic_name__ : List[str] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __magic_name__ : int = nn.Convad(_A , _A , 1 ) __magic_name__ : List[str] = False __magic_name__ : Tuple = False # only relevant if vae tiling is enabled __magic_name__ : Optional[int] = self.config.sample_size __magic_name__ : List[str] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __magic_name__ : Optional[Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __magic_name__ : Optional[int] = 0.25 def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple , _A : List[Any]=False ) -> Any: if isinstance(_A , (Encoder, Decoder) ): __magic_name__ : Union[str, Any] = value def __lowerCAmelCase ( self : Union[str, Any] , _A : bool = True ) -> List[Any]: __magic_name__ : int = use_tiling def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self.enable_tiling(_A ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : Optional[Any] = True def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : List[str] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCAmelCase ( self : List[str] ) -> Dict[str, AttentionProcessor]: __magic_name__ : int = {} def fn_recursive_add_processors(_A : str , _A : torch.nn.Module , _A : Dict[str, AttentionProcessor] ): if hasattr(_A , 'set_processor' ): __magic_name__ : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def __lowerCAmelCase ( self : Dict , _A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: __magic_name__ : Dict = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(_A )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(_A : str , _A : torch.nn.Module , _A : List[Any] ): if hasattr(_A , 'set_processor' ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __lowerCAmelCase ( self : List[str] , _A : torch.FloatTensor , _A : bool = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_A , return_dict=_A ) if self.use_slicing and x.shape[0] > 1: __magic_name__ : Union[str, Any] = [self.encoder(_A ) for x_slice in x.split(1 )] __magic_name__ : Union[str, Any] = torch.cat(_A ) else: __magic_name__ : List[str] = self.encoder(_A ) __magic_name__ : Tuple = self.quant_conv(_A ) __magic_name__ : Any = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : torch.FloatTensor , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_A , return_dict=_A ) __magic_name__ : Any = self.post_quant_conv(_A ) __magic_name__ : str = self.decoder(_A ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) @apply_forward_hook def __lowerCAmelCase ( self : List[Any] , _A : torch.FloatTensor , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: __magic_name__ : List[Any] = [self._decode(_A ).sample for z_slice in z.split(1 )] __magic_name__ : str = torch.cat(_A ) else: __magic_name__ : List[str] = self._decode(_A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_A ) def __lowerCAmelCase ( self : List[Any] , _A : str , _A : int , _A : Optional[Any] ) -> List[Any]: __magic_name__ : Optional[Any] = min(a.shape[2] , b.shape[2] , _A ) for y in range(_A ): __magic_name__ : int = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : str ) -> Dict: __magic_name__ : Optional[Any] = min(a.shape[3] , b.shape[3] , _A ) for x in range(_A ): __magic_name__ : Optional[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __lowerCAmelCase ( self : Optional[Any] , _A : torch.FloatTensor , _A : bool = True ) -> AutoencoderKLOutput: __magic_name__ : int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ : Dict = int(self.tile_latent_min_size * self.tile_overlap_factor ) __magic_name__ : Tuple = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __magic_name__ : List[Any] = [] for i in range(0 , x.shape[2] , _A ): __magic_name__ : int = [] for j in range(0 , x.shape[3] , _A ): __magic_name__ : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __magic_name__ : List[Any] = self.encoder(_A ) __magic_name__ : Union[str, Any] = self.quant_conv(_A ) row.append(_A ) rows.append(_A ) __magic_name__ : Union[str, Any] = [] for i, row in enumerate(_A ): __magic_name__ : List[Any] = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ : Dict = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __magic_name__ : int = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __magic_name__ : Optional[int] = torch.cat(_A , dim=2 ) __magic_name__ : List[str] = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def __lowerCAmelCase ( self : Tuple , _A : torch.FloatTensor , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ : List[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ : Any = int(self.tile_sample_min_size * self.tile_overlap_factor ) __magic_name__ : List[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __magic_name__ : Tuple = [] for i in range(0 , z.shape[2] , _A ): __magic_name__ : List[Any] = [] for j in range(0 , z.shape[3] , _A ): __magic_name__ : Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __magic_name__ : Optional[int] = self.post_quant_conv(_A ) __magic_name__ : List[str] = self.decoder(_A ) row.append(_A ) rows.append(_A ) __magic_name__ : Dict = [] for i, row in enumerate(_A ): __magic_name__ : List[Any] = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ : str = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __magic_name__ : Tuple = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __magic_name__ : Optional[Any] = torch.cat(_A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def __lowerCAmelCase ( self : List[Any] , _A : torch.FloatTensor , _A : bool = False , _A : bool = True , _A : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ : Union[str, Any] = sample __magic_name__ : Tuple = self.encode(_A ).latent_dist if sample_posterior: __magic_name__ : Optional[Any] = posterior.sample(generator=_A ) else: __magic_name__ : Optional[Any] = posterior.mode() __magic_name__ : List[str] = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase :str = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase :List[str] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] lowerCAmelCase :List[Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Optional[Any] = torch.load(lowerCAmelCase , map_location='cpu' ) return sd def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Tuple=rename_keys_prefix ): """simple docstring""" __magic_name__ : int = OrderedDict() __magic_name__ : Optional[int] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __magic_name__ : Optional[int] = key for name_pair in rename_keys_prefix: __magic_name__ : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) __magic_name__ : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __magic_name__ : Union[str, Any] = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[Any] ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: __magic_name__ : List[str] = 'pretraining' if "vcr" in checkpoint_path: __magic_name__ : List[str] = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: __magic_name__ : int = {'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: __magic_name__ : Union[str, Any] = {'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: __magic_name__ : Any = {'visual_embedding_dim': 1024} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: __magic_name__ : Tuple = {'visual_embedding_dim': 512} __magic_name__ : Tuple = 'multichoice' elif "vqa_advanced" in checkpoint_path: __magic_name__ : Any = {'visual_embedding_dim': 2048} __magic_name__ : Optional[Any] = 'vqa_advanced' elif "vqa" in checkpoint_path: __magic_name__ : Union[str, Any] = {'visual_embedding_dim': 2048, 'num_labels': 3129} __magic_name__ : Tuple = 'vqa' elif "nlvr" in checkpoint_path: __magic_name__ : Optional[Any] = { 'visual_embedding_dim': 1024, 'num_labels': 2, } __magic_name__ : List[Any] = 'nlvr' __magic_name__ : Optional[int] = VisualBertConfig(**lowerCAmelCase ) # Load State Dict __magic_name__ : Tuple = load_state_dict(lowerCAmelCase ) __magic_name__ : Tuple = get_new_dict(lowerCAmelCase , lowerCAmelCase ) if model_type == "pretraining": __magic_name__ : Any = VisualBertForPreTraining(lowerCAmelCase ) elif model_type == "vqa": __magic_name__ : Optional[Any] = VisualBertForQuestionAnswering(lowerCAmelCase ) elif model_type == "nlvr": __magic_name__ : Optional[int] = VisualBertForVisualReasoning(lowerCAmelCase ) elif model_type == "multichoice": __magic_name__ : Optional[Any] = VisualBertForMultipleChoice(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) # Save Checkpoints Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase :Any = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = AltDiffusionPipeline A_ : Any = TEXT_TO_IMAGE_PARAMS A_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS A_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS A_ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __magic_name__ : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __magic_name__ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __magic_name__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) __magic_name__ : Tuple = CLIPTextModel(_A ) __magic_name__ : Tuple = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __magic_name__ : int = 77 __magic_name__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : str=0 ) -> Union[str, Any]: if str(_A ).startswith('mps' ): __magic_name__ : List[Any] = torch.manual_seed(_A ) else: __magic_name__ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self : int ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self : str ) -> Optional[int]: __magic_name__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ : List[str] = self.get_dummy_components() torch.manual_seed(0 ) __magic_name__ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __magic_name__ : Optional[Any] = RobertaSeriesModelWithTransformation(_A ) __magic_name__ : Optional[Any] = text_encoder __magic_name__ : Union[str, Any] = AltDiffusionPipeline(**_A ) __magic_name__ : Optional[int] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[Any] = self.get_dummy_inputs(_A ) __magic_name__ : Dict = 'A photo of an astronaut' __magic_name__ : Dict = alt_pipe(**_A ) __magic_name__ : Optional[Any] = output.images __magic_name__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : Any = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ : str = self.get_dummy_components() __magic_name__ : List[str] = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) __magic_name__ : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __magic_name__ : List[str] = RobertaSeriesModelWithTransformation(_A ) __magic_name__ : List[Any] = text_encoder __magic_name__ : Any = AltDiffusionPipeline(**_A ) __magic_name__ : Optional[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[int] = self.get_dummy_inputs(_A ) __magic_name__ : Dict = alt_pipe(**_A ) __magic_name__ : int = output.images __magic_name__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[int] = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Any ) -> List[str]: # make sure here that pndm scheduler skips prk __magic_name__ : Tuple = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_A ) __magic_name__ : Any = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : List[str] = 'A painting of a squirrel eating a burger' __magic_name__ : Optional[Any] = torch.manual_seed(0 ) __magic_name__ : str = alt_pipe([prompt] , generator=_A , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) __magic_name__ : List[Any] = output.images __magic_name__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __magic_name__ : Dict = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : int = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) __magic_name__ : Dict = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_A , safety_checker=_A ) __magic_name__ : List[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[Any] = 'A painting of a squirrel eating a burger' __magic_name__ : int = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = alt_pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='numpy' ) __magic_name__ : List[str] = output.images __magic_name__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __magic_name__ : List[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" for char in word: __magic_name__ : List[str] = ord(lowerCAmelCase ) if not _is_chinese_char(lowerCAmelCase ): return 0 return 1 def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : Dict = set() for token in tokens: __magic_name__ : int = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase ) if chinese_word: word_set.add(lowerCAmelCase ) __magic_name__ : Union[str, Any] = list(lowerCAmelCase ) return word_list def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ : Any = max([len(lowerCAmelCase ) for w in chinese_word_set] ) __magic_name__ : int = bert_tokens __magic_name__ , __magic_name__ : int = 0, len(lowerCAmelCase ) while start < end: __magic_name__ : Union[str, Any] = True if is_chinese(bert_word[start] ): __magic_name__ : List[str] = min(end - start , lowerCAmelCase ) for i in range(lowerCAmelCase , 1 , -1 ): __magic_name__ : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __magic_name__ : Union[str, Any] = '##' + bert_word[j] __magic_name__ : Any = start + i __magic_name__ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : LTP , lowerCAmelCase : BertTokenizer ): """simple docstring""" __magic_name__ : int = [] for i in range(0 , len(lowerCAmelCase ) , 100 ): __magic_name__ : str = ltp_tokenizer.seg(lines[i : i + 100] )[0] __magic_name__ : int = [get_chinese_word(lowerCAmelCase ) for r in res] ltp_res.extend(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) __magic_name__ : Optional[Any] = [] for i in range(0 , len(lowerCAmelCase ) , 100 ): __magic_name__ : Optional[int] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) __magic_name__ : List[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Union[str, Any] = [] for id in input_ids: __magic_name__ : Union[str, Any] = bert_tokenizer._convert_id_to_token(lowerCAmelCase ) input_tokens.append(lowerCAmelCase ) __magic_name__ : Union[str, Any] = add_sub_symbol(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase ): if token[:2] == "##": __magic_name__ : Optional[int] = token[2:] # save chinese tokens' pos if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ): ref_id.append(lowerCAmelCase ) ref_ids.append(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) return ref_ids def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: __magic_name__ : Optional[Any] = f.readlines() __magic_name__ : int = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ : int = LTP(args.ltp ) # faster in GPU device __magic_name__ : int = BertTokenizer.from_pretrained(args.bert ) __magic_name__ : Union[str, Any] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __magic_name__ : Optional[int] = [json.dumps(lowerCAmelCase ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') lowerCAmelCase :str = parser.parse_args() main(args)
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int = 1000 ): """simple docstring""" __magic_name__ : List[Any] = -1 __magic_name__ : List[str] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __magic_name__ : str = (n * n - 2 * a * n) // (2 * n - 2 * a) __magic_name__ : Optional[Any] = n - a - b if c * c == (a * a + b * b): __magic_name__ : Any = a * b * c if candidate >= product: __magic_name__ : List[Any] = candidate return product if __name__ == "__main__": print(F'{solution() = }')
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase :List[Any] = logging.getLogger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : str , _A : Dict , _A : List[Any] , _A : Optional[int] , _A : int=None ) -> int: super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __magic_name__ : List[Any] = None def __lowerCAmelCase ( self : Optional[int] , _A : int ) -> List[str]: logger.info('initializing retrieval' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized' ) # needs to be set manually __magic_name__ : Dict = self._infer_socket_ifname() # avoid clash with the NCCL port __magic_name__ : int = str(distributed_port + 1 ) __magic_name__ : str = dist.new_group(ranks=_A , backend='gloo' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: return dist.get_rank(group=self.process_group ) == 0 def __lowerCAmelCase ( self : List[str] , _A : Any , _A : Union[str, Any] , _A : str=torch.floataa ) -> str: __magic_name__ : str = torch.empty(_A , dtype=_A ) dist.scatter(_A , src=0 , scatter_list=_A , group=self.process_group ) return target_tensor def __lowerCAmelCase ( self : Tuple ) -> Any: __magic_name__ : Any = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __magic_name__ : List[Any] = next((addr for addr in addrs if addr.startswith('e' )) , _A ) return ifname def __lowerCAmelCase ( self : Any , _A : np.ndarray , _A : int ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): __magic_name__ , __magic_name__ : Optional[int] = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) # distributed training __magic_name__ : Dict = dist.get_world_size(group=self.process_group ) # gather logic __magic_name__ : str = None if self._is_main(): __magic_name__ : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_A )] dist.gather(torch.tensor(_A ) , dst=0 , gather_list=_A , group=self.process_group ) # scatter logic __magic_name__ : Dict = question_hidden_states.shape[0] __magic_name__ : int = [] __magic_name__ : Dict = [] if self._is_main(): assert len(_A ) == world_size __magic_name__ , __magic_name__ : Any = self._main_retrieve(torch.cat(_A ).numpy() , _A ) __magic_name__ , __magic_name__ : Any = torch.tensor(_A ), torch.tensor(_A ) __magic_name__ : int = self._chunk_tensor(_A , _A ) __magic_name__ : Any = self._chunk_tensor(_A , _A ) __magic_name__ : Tuple = self._scattered(_A , [n_queries, n_docs] , target_type=torch.intaa ) __magic_name__ : Tuple = self._scattered(_A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_A )
331
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = (DDIMParallelScheduler,) A_ : Optional[int] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def __lowerCAmelCase ( self : Optional[int] , **_A : List[str] ) -> Optional[Any]: __magic_name__ : Dict = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : Union[str, Any] , **_A : Tuple ) -> Union[str, Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : Optional[Any] = self.get_scheduler_config(**_A ) __magic_name__ : Optional[int] = scheduler_class(**_A ) __magic_name__ , __magic_name__ : List[str] = 10, 0.0 __magic_name__ : Optional[Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(_A ) for t in scheduler.timesteps: __magic_name__ : List[Any] = model(_A , _A ) __magic_name__ : Optional[int] = scheduler.step(_A , _A , _A , _A ).prev_sample return sample def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : List[Any] = self.get_scheduler_config(steps_offset=1 ) __magic_name__ : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __lowerCAmelCase ( self : int ) -> str: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : str ) -> int: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_A ) def __lowerCAmelCase ( self : Dict ) -> Dict: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_A ) def __lowerCAmelCase ( self : Any ) -> Dict: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Dict ) -> Any: for t in [1, 10, 49]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_A , num_inference_steps=_A ) def __lowerCAmelCase ( self : str ) -> Tuple: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_A , eta=_A ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> Any: __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : int = scheduler_class(**_A ) __magic_name__ , __magic_name__ : Optional[int] = 10, 0.0 scheduler.set_timesteps(_A ) __magic_name__ : Optional[Any] = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : List[str] = self.dummy_sample_deter + 0.1 __magic_name__ : Tuple = self.dummy_sample_deter - 0.1 __magic_name__ : Tuple = samplea.shape[0] __magic_name__ : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) __magic_name__ : Optional[Any] = torch.arange(_A )[0:3, None].repeat(1 , _A ) __magic_name__ : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __magic_name__ : Any = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _A ) __magic_name__ : Optional[Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> Dict: __magic_name__ : List[str] = self.full_loop() __magic_name__ : Any = torch.sum(torch.abs(_A ) ) __magic_name__ : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : List[Any] = self.full_loop(prediction_type='v_prediction' ) __magic_name__ : List[str] = torch.sum(torch.abs(_A ) ) __magic_name__ : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> str: # We specify different beta, so that the first alpha is 0.99 __magic_name__ : Optional[Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) __magic_name__ : Any = torch.sum(torch.abs(_A ) ) __magic_name__ : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 __magic_name__ : Optional[Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) __magic_name__ : Any = torch.sum(torch.abs(_A ) ) __magic_name__ : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : '''simple docstring''' def __init__( self : str , _A : List[str] , _A : Optional[Any]=13 , _A : List[Any]=32 , _A : Union[str, Any]=3 , _A : int=4 , _A : Optional[Any]=[10, 20, 30, 40] , _A : Optional[Any]=[2, 2, 3, 2] , _A : int=True , _A : Optional[int]=True , _A : Union[str, Any]=37 , _A : Optional[int]="gelu" , _A : Any=10 , _A : List[str]=0.02 , _A : List[Any]=["stage2", "stage3", "stage4"] , _A : List[Any]=3 , _A : str=None , ) -> Union[str, Any]: __magic_name__ : Dict = parent __magic_name__ : Union[str, Any] = batch_size __magic_name__ : Tuple = image_size __magic_name__ : Optional[int] = num_channels __magic_name__ : int = num_stages __magic_name__ : Tuple = hidden_sizes __magic_name__ : List[Any] = depths __magic_name__ : List[Any] = is_training __magic_name__ : List[str] = use_labels __magic_name__ : Dict = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Union[str, Any] = out_features __magic_name__ : List[Any] = num_labels __magic_name__ : Any = scope __magic_name__ : Any = num_stages def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[int] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Dict ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_A , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self : Optional[int] , _A : int , _A : Any , _A : List[str] ) -> List[str]: __magic_name__ : Tuple = UperNetForSemanticSegmentation(config=_A ) model.to(_A ) model.eval() __magic_name__ : str = model(_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Dict = config_and_inputs __magic_name__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else () A_ : Optional[Any] = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} A_ : List[Any] = False A_ : List[Any] = False A_ : int = False A_ : Optional[Any] = False A_ : Optional[int] = False A_ : str = False def __lowerCAmelCase ( self : Any ) -> List[str]: __magic_name__ : List[str] = UperNetModelTester(self ) __magic_name__ : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : List[Any] ) -> Tuple: return def __lowerCAmelCase ( self : Any ) -> Dict: __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = model_class(_A ) __magic_name__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def __lowerCAmelCase ( self : Any ) -> str: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: pass @unittest.skip(reason='UperNet does not have a base model' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> str: pass @unittest.skip(reason='UperNet does not have a base model' ) def __lowerCAmelCase ( self : Dict ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowerCAmelCase ( self : Any ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: pass def __lowerCAmelCase ( self : str ) -> Optional[int]: def check_hidden_states_output(_A : int , _A : Union[str, Any] , _A : int ): __magic_name__ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __magic_name__ : Dict = model(**self._prepare_for_class(_A , _A ) ) __magic_name__ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ : str = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : List[Any] = True check_hidden_states_output(_A , _A , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Any = _config_zero_init(_A ) __magic_name__ : str = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = model_class(config=_A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def __lowerCAmelCase ( self : int ) -> List[str]: pass @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[Any] = UperNetForSemanticSegmentation.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) __magic_name__ : List[str] = Image.open(lowerCAmelCase ).convert('RGB' ) return image @require_torch @require_vision @slow class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: __magic_name__ : Optional[int] = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __magic_name__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(_A ) __magic_name__ : Union[str, Any] = prepare_img() __magic_name__ : List[Any] = processor(images=_A , return_tensors='pt' ).to(_A ) with torch.no_grad(): __magic_name__ : List[str] = model(**_A ) __magic_name__ : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _A ) __magic_name__ : Optional[int] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __magic_name__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(_A ) __magic_name__ : Optional[int] = prepare_img() __magic_name__ : List[str] = processor(images=_A , return_tensors='pt' ).to(_A ) with torch.no_grad(): __magic_name__ : Any = model(**_A ) __magic_name__ : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _A ) __magic_name__ : int = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) )
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , _A : Dict , _A : int=13 , _A : Any=30 , _A : List[str]=2 , _A : Any=3 , _A : List[Any]=True , _A : Tuple=True , _A : Union[str, Any]=32 , _A : Tuple=2 , _A : str=4 , _A : Optional[int]=37 , _A : Optional[int]="gelu" , _A : Dict=0.1 , _A : Union[str, Any]=0.1 , _A : str=10 , _A : Dict=0.02 , _A : Optional[int]=3 , _A : Any=None , ) -> Tuple: __magic_name__ : List[str] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = image_size __magic_name__ : List[Any] = patch_size __magic_name__ : Optional[Any] = num_channels __magic_name__ : List[Any] = is_training __magic_name__ : Tuple = use_labels __magic_name__ : Tuple = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : int = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : Dict = type_sequence_label_size __magic_name__ : str = initializer_range __magic_name__ : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : Optional[int] = (image_size // patch_size) ** 2 __magic_name__ : Any = num_patches + 1 def __lowerCAmelCase ( self : Tuple ) -> Any: __magic_name__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[int] = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Any ) -> Dict: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Optional[Any] , _A : Union[str, Any] , _A : Dict , _A : List[str] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = TFViTModel(config=_A ) __magic_name__ : Optional[Any] = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __magic_name__ : str = self.image_size // 2 __magic_name__ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] __magic_name__ : Optional[Any] = model(_A , interpolate_pos_encoding=_A , training=_A ) __magic_name__ : Tuple = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : List[str] , _A : int ) -> int: __magic_name__ : Optional[Any] = self.type_sequence_label_size __magic_name__ : Tuple = TFViTForImageClassification(_A ) __magic_name__ : Dict = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __magic_name__ : List[Any] = self.image_size // 2 __magic_name__ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] __magic_name__ : Tuple = model(_A , interpolate_pos_encoding=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : List[Any] = 1 __magic_name__ : Any = TFViTForImageClassification(_A ) __magic_name__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: __magic_name__ : List[Any] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ : Tuple = config_and_inputs __magic_name__ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () A_ : Any = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) A_ : Union[str, Any] = False A_ : Optional[Any] = False A_ : str = False def __lowerCAmelCase ( self : Optional[Any] ) -> int: __magic_name__ : Optional[Any] = TFViTModelTester(self ) __magic_name__ : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def __lowerCAmelCase ( self : List[str] ) -> Any: pass def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ , __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[str] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self : Dict ) -> int: __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(_A ) __magic_name__ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : List[Any] = [*signature.parameters.keys()] __magic_name__ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : List[str] = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : int ) -> Dict: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: __magic_name__ : List[str] = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) __magic_name__ : str = self.default_image_processor __magic_name__ : Optional[Any] = prepare_img() __magic_name__ : str = image_processor(images=_A , return_tensors='tf' ) # forward pass __magic_name__ : Dict = model(**_A ) # verify the logits __magic_name__ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) __magic_name__ : Optional[int] = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1E-4 )
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _lowerCamelCase : '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[Any] , _A : Union[str, Any] , _A : str ) -> Any: return None class _lowerCamelCase : '''simple docstring''' def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : Tuple , _A : Optional[Any] , _A : List[Any] ) -> Dict: return None class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_A , 'tf' , 12 , **_A ) @require_torch @slow def __lowerCAmelCase ( self : Any ) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_A , 'pt' , 12 , **_A ) @require_torch @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: from transformers import BertModel __magic_name__ : Tuple = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_A ) ) vocab_file.flush() __magic_name__ : int = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __magic_name__ : Tuple = BertModel(BertConfig(vocab_size=len(_A ) ) ) model.save_pretrained(_A ) self._test_export(_A , 'pt' , 12 , _A ) @require_tf @slow def __lowerCAmelCase ( self : Optional[int] ) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __magic_name__ : Tuple = self._test_export(_A , 'tf' , 12 , **_A ) __magic_name__ : Union[str, Any] = quantize(Path(_A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_A ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __lowerCAmelCase ( self : List[str] ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __magic_name__ : Union[str, Any] = self._test_export(_A , 'pt' , 12 , **_A ) __magic_name__ : List[Any] = quantize(_A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_A ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : str , _A : Tuple , _A : str=None , **_A : Optional[int] ) -> Union[str, Any]: try: # Compute path with TemporaryDirectory() as tempdir: __magic_name__ : int = Path(_A ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_A , _A , _A , _A , _A , **_A ) return path except Exception as e: self.fail(_A ) @require_torch @require_tokenizers @slow def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: from transformers import BertModel __magic_name__ : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __magic_name__ : int = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_A , _A , 'pt' ) @require_tf @require_tokenizers @slow def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from transformers import TFBertModel __magic_name__ : int = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __magic_name__ : Optional[Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_A , _A , 'tf' ) def __lowerCAmelCase ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : List[Any] = FeatureExtractionPipeline(_A , _A ) __magic_name__ : str = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[str] = infer_shapes(_A , _A ) # Assert all variables are present self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _A ) self.assertSequenceEqual(variable_names[3:] , _A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __lowerCAmelCase ( self : str ) -> int: __magic_name__ : Union[str, Any] = ['input_ids', 'attention_mask', 'token_type_ids'] __magic_name__ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __magic_name__ , __magic_name__ : Optional[Any] = ensure_valid_input(FuncContiguousArgs() , _A , _A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_A ) , set(_A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_A , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __magic_name__ , __magic_name__ : Any = ensure_valid_input(FuncNonContiguousArgs() , _A , _A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_A ) , 1 ) self.assertEqual(len(_A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : List[str] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
331
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Optional[int] = word.split() def justify(lowerCAmelCase : list , lowerCAmelCase : int , lowerCAmelCase : int ) -> str: __magic_name__ : Optional[Any] = max_width - width __magic_name__ : List[str] = len(lowerCAmelCase ) if len(lowerCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __magic_name__ : Optional[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __magic_name__ : Any = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __magic_name__ : Union[str, Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCAmelCase ): num_spaces_between_words_list[i] += 1 __magic_name__ : str = [] for i in range(lowerCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCAmelCase ) __magic_name__ : Any = [] __magic_name__ : list[str] = [] __magic_name__ : Any = 0 for word in words: if width + len(lowerCAmelCase ) + len(lowerCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCAmelCase ) width += len(lowerCAmelCase ) else: # justify the line and add it to result answer.append(justify(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ) # reset new line and new width __magic_name__ , __magic_name__ : List[str] = [word], len(lowerCAmelCase ) __magic_name__ : List[str] = max_width - width - len(lowerCAmelCase ) answer.append(' '.join(lowerCAmelCase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : list ): """simple docstring""" _enforce_args(lowerCAmelCase , lowerCAmelCase ) if n == 0: return 0 __magic_name__ : List[str] = float('-inf' ) for i in range(1 , n + 1 ): __magic_name__ : List[str] = max( lowerCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowerCAmelCase ) ) return max_revue def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : list ): """simple docstring""" _enforce_args(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[Any] = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : list , lowerCAmelCase : list ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __magic_name__ : List[str] = float('-inf' ) for i in range(1 , n + 1 ): __magic_name__ : Any = max( lowerCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowerCAmelCase , lowerCAmelCase ) , ) __magic_name__ : Optional[Any] = max_revenue return max_rev[n] def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : list ): """simple docstring""" _enforce_args(lowerCAmelCase , lowerCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __magic_name__ : List[Any] = [float('-inf' ) for _ in range(n + 1 )] __magic_name__ : Optional[Any] = 0 for i in range(1 , n + 1 ): __magic_name__ : int = max_rev[i] for j in range(1 , i + 1 ): __magic_name__ : int = max(lowerCAmelCase , prices[j - 1] + max_rev[i - j] ) __magic_name__ : Optional[Any] = max_revenue_i return max_rev[n] def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : list ): """simple docstring""" if n < 0: __magic_name__ : List[str] = f'n must be greater than or equal to 0. Got n = {n}' raise ValueError(lowerCAmelCase ) if n > len(lowerCAmelCase ): __magic_name__ : Dict = ( 'Each integral piece of rod must have a corresponding price. ' f'Got n = {n} but length of prices = {len(lowerCAmelCase )}' ) raise ValueError(lowerCAmelCase ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = [6, 10, 12, 15, 20, 23] __magic_name__ : Union[str, Any] = len(lowerCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __magic_name__ : List[Any] = 36 __magic_name__ : Optional[int] = top_down_cut_rod(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = bottom_up_cut_rod(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = naive_cut_rod_recursive(lowerCAmelCase , lowerCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
331
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return str(lowerCAmelCase ) == str(lowerCAmelCase )[::-1] def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return int(lowerCAmelCase ) + int(str(lowerCAmelCase )[::-1] ) def lowerCamelCase ( lowerCAmelCase : int = 1_0000 ): """simple docstring""" __magic_name__ : str = [] for num in range(1 , lowerCAmelCase ): __magic_name__ : Optional[int] = 0 __magic_name__ : Dict = num while iterations < 50: __magic_name__ : Union[str, Any] = sum_reverse(lowerCAmelCase ) iterations += 1 if is_palindrome(lowerCAmelCase ): break else: lychrel_nums.append(lowerCAmelCase ) return len(lowerCAmelCase ) if __name__ == "__main__": print(F'{solution() = }')
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
1
'''simple docstring''' lowerCAmelCase :Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
331
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
1
'''simple docstring''' lowerCAmelCase :Tuple = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def lowerCamelCase ( lowerCAmelCase : bytes ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Dict = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(lowerCAmelCase ) __magic_name__ : Any = ''.join(bin(lowerCAmelCase )[2:].zfill(8 ) for byte in data ) __magic_name__ : Optional[Any] = len(lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __magic_name__ : Union[str, Any] = b'=' * ((6 - len(lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase ) % 6) else: __magic_name__ : Optional[int] = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ) and not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = ( 'argument should be a bytes-like object or ASCII string, ' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase , lowerCAmelCase ): try: __magic_name__ : Dict = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __magic_name__ : Union[str, Any] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __magic_name__ : str = encoded_data[:-padding] __magic_name__ : Optional[Any] = ''.join( bin(B64_CHARSET.index(lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __magic_name__ : Any = ''.join( bin(B64_CHARSET.index(lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) __magic_name__ : Dict = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase ) , 8 ) ] return bytes(lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Any = """microsoft/speecht5_tts""" A_ : Union[str, Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) A_ : List[str] = """text_reader""" A_ : List[str] = SpeechTaProcessor A_ : List[str] = SpeechTaForTextToSpeech A_ : str = SpeechTaHifiGan A_ : List[str] = ["""text"""] A_ : Tuple = ["""audio"""] def __lowerCAmelCase ( self : str ) -> Union[str, Any]: if self.post_processor is None: __magic_name__ : Optional[int] = 'microsoft/speecht5_hifigan' super().setup() def __lowerCAmelCase ( self : Optional[Any] , _A : List[str] , _A : int=None ) -> List[str]: __magic_name__ : str = self.pre_processor(text=_A , return_tensors='pt' , truncation=_A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) __magic_name__ : List[Any] = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) __magic_name__ : Optional[int] = torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[Any]: with torch.no_grad(): return self.model.generate_speech(**_A ) def __lowerCAmelCase ( self : Tuple , _A : Any ) -> Any: with torch.no_grad(): return self.post_processor(_A ).cpu().detach()
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : torch.FloatTensor class _lowerCamelCase ( lowercase__ , lowercase__ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , _A : int = 3 , _A : int = 3 , _A : Tuple[str] = ("DownEncoderBlock2D",) , _A : Tuple[str] = ("UpDecoderBlock2D",) , _A : Tuple[int] = (64,) , _A : int = 1 , _A : str = "silu" , _A : int = 3 , _A : int = 32 , _A : int = 256 , _A : int = 32 , _A : Optional[int] = None , _A : float = 0.1_8215 , _A : str = "group" , ) -> Optional[int]: super().__init__() # pass init params to Encoder __magic_name__ : int = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) __magic_name__ : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels __magic_name__ : int = nn.Convad(_A , _A , 1 ) __magic_name__ : str = VectorQuantizer(_A , _A , beta=0.25 , remap=_A , sane_index_shape=_A ) __magic_name__ : Optional[Any] = nn.Convad(_A , _A , 1 ) # pass init params to Decoder __magic_name__ : int = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , norm_type=_A , ) @apply_forward_hook def __lowerCAmelCase ( self : Optional[int] , _A : torch.FloatTensor , _A : bool = True ) -> VQEncoderOutput: __magic_name__ : Union[str, Any] = self.encoder(_A ) __magic_name__ : Any = self.quant_conv(_A ) if not return_dict: return (h,) return VQEncoderOutput(latents=_A ) @apply_forward_hook def __lowerCAmelCase ( self : Optional[int] , _A : torch.FloatTensor , _A : bool = False , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: __magic_name__ , __magic_name__ , __magic_name__ : Any = self.quantize(_A ) else: __magic_name__ : Dict = h __magic_name__ : List[str] = self.post_quant_conv(_A ) __magic_name__ : int = self.decoder(_A , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def __lowerCAmelCase ( self : Optional[int] , _A : torch.FloatTensor , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __magic_name__ : Dict = sample __magic_name__ : str = self.encode(_A ).latents __magic_name__ : Any = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
'''simple docstring''' lowerCAmelCase :List[str] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
331
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" if isinstance(lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase : '''simple docstring''' def __lowerCAmelCase ( self : Any , _A : str , _A : List[Any] ) -> Optional[int]: pass def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: pass def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: pass def __lowerCAmelCase ( self : Optional[int] , _A : np.ndarray , _A : np.ndarray , _A : float ) -> Optional[Any]: __magic_name__ : str = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , F'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowerCAmelCase ( self : str , _A : Optional[Any] , _A : Union[str, Any] , _A : List[Any] , _A : Dict , _A : Optional[int]=None , **_A : List[Any] ) -> List[Any]: __magic_name__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) __magic_name__ : List[Any] = FlaxVisionTextDualEncoderModel(_A ) __magic_name__ : Any = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase ( self : List[Any] , _A : Dict , _A : List[Any] , _A : Optional[int] , _A : int , _A : Union[str, Any]=None , **_A : Any ) -> List[str]: __magic_name__ , __magic_name__ : Union[str, Any] = self.get_vision_text_model(_A , _A ) __magic_name__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} __magic_name__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) __magic_name__ : Union[str, Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : str , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] , _A : Any=None , **_A : List[Any] ) -> Any: __magic_name__ , __magic_name__ : Optional[int] = self.get_vision_text_model(_A , _A ) __magic_name__ : Dict = {'vision_model': vision_model, 'text_model': text_model} __magic_name__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) __magic_name__ : List[Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __magic_name__ : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __magic_name__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_A ) __magic_name__ : Any = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __magic_name__ : int = after_output[0] __magic_name__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-3 ) def __lowerCAmelCase ( self : Union[str, Any] , _A : int , _A : str , _A : str , _A : Tuple , _A : int=None , **_A : Optional[int] ) -> Union[str, Any]: __magic_name__ , __magic_name__ : Optional[Any] = self.get_vision_text_model(_A , _A ) __magic_name__ : int = {'vision_model': vision_model, 'text_model': text_model} __magic_name__ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) __magic_name__ : Dict = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __magic_name__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : List[Any] = to_atuple(vision_model.config.image_size ) __magic_name__ : Any = to_atuple(vision_model.config.patch_size ) __magic_name__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ : Optional[int] = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple , _A : List[Any] , _A : List[Any] ) -> List[str]: pt_model.to(_A ) pt_model.eval() # prepare inputs __magic_name__ : int = inputs_dict __magic_name__ : Dict = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __magic_name__ : Optional[Any] = pt_model(**_A ).to_tuple() __magic_name__ : Optional[int] = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_A , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) __magic_name__ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(_A , from_pt=_A ) __magic_name__ : Union[str, Any] = fx_model_loaded(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_A , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) __magic_name__ : str = VisionTextDualEncoderModel.from_pretrained(_A , from_flax=_A ) pt_model_loaded.to(_A ) pt_model_loaded.eval() with torch.no_grad(): __magic_name__ : List[Any] = pt_model_loaded(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_A , pt_output_loaded.numpy() , 4E-2 ) def __lowerCAmelCase ( self : Optional[Any] , _A : List[str] , _A : Optional[Any] , _A : Tuple ) -> Union[str, Any]: __magic_name__ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) __magic_name__ : str = VisionTextDualEncoderModel(_A ) __magic_name__ : Tuple = FlaxVisionTextDualEncoderModel(_A ) __magic_name__ : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A ) __magic_name__ : List[Any] = fx_state self.check_pt_flax_equivalence(_A , _A , _A ) def __lowerCAmelCase ( self : str , _A : str , _A : Any , _A : Optional[Any] ) -> List[str]: __magic_name__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) __magic_name__ : Any = VisionTextDualEncoderModel(_A ) __magic_name__ : Optional[Any] = FlaxVisionTextDualEncoderModel(_A ) __magic_name__ : str = load_flax_weights_in_pytorch_model(_A , fx_model.params ) self.check_pt_flax_equivalence(_A , _A , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[int]: __magic_name__ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : List[str] = self.prepare_config_and_inputs() self.check_save_load(**_A ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: __magic_name__ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @is_pt_flax_cross_test def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.prepare_config_and_inputs() __magic_name__ : Optional[int] = config_inputs_dict.pop('vision_config' ) __magic_name__ : Tuple = config_inputs_dict.pop('text_config' ) __magic_name__ : Tuple = config_inputs_dict self.check_equivalence_pt_to_flax(_A , _A , _A ) self.check_equivalence_flax_to_pt(_A , _A , _A ) @slow def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ , __magic_name__ : Union[str, Any] = self.get_pretrained_model_and_inputs() __magic_name__ : Dict = model_a(**_A ) __magic_name__ : Dict = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) __magic_name__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(_A ) __magic_name__ : Dict = model_a(**_A ) __magic_name__ : Optional[int] = after_outputs[0] __magic_name__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) @require_flax class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_A , text_from_pt=_A , ) __magic_name__ : Optional[int] = 13 __magic_name__ : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __magic_name__ : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __magic_name__ : str = random_attention_mask([batch_size, 4] ) __magic_name__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : str , _A : Any , _A : List[str] ) -> List[str]: __magic_name__ : Any = FlaxViTModel(_A ) __magic_name__ : Tuple = FlaxBertModel(_A ) return vision_model, text_model def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Dict = FlaxViTModelTester(self ) __magic_name__ : List[str] = FlaxBertModelTester(self ) __magic_name__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() __magic_name__ : str = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ : Any = vision_config_and_inputs __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __magic_name__ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_A , text_from_pt=_A , ) __magic_name__ : Dict = 13 __magic_name__ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __magic_name__ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __magic_name__ : str = random_attention_mask([batch_size, 4] ) __magic_name__ : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : List[Any] , _A : str , _A : Any ) -> Any: __magic_name__ : Union[str, Any] = FlaxCLIPVisionModel(_A ) __magic_name__ : str = FlaxBertModel(_A ) return vision_model, text_model def __lowerCAmelCase ( self : str ) -> Dict: __magic_name__ : Dict = FlaxCLIPVisionModelTester(self ) __magic_name__ : List[str] = FlaxBertModelTester(self ) __magic_name__ : Dict = clip_model_tester.prepare_config_and_inputs() __magic_name__ : Tuple = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ : Dict = vision_config_and_inputs __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) __magic_name__ : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) __magic_name__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __magic_name__ : Dict = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_A , padding=_A , return_tensors='np' ) __magic_name__ : Optional[int] = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __magic_name__ : str = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _A , atol=1E-3 ) )
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase :Tuple = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = """markuplm""" def __init__( self : str , _A : Any=30522 , _A : Optional[Any]=768 , _A : List[Any]=12 , _A : str=12 , _A : str=3072 , _A : Tuple="gelu" , _A : int=0.1 , _A : int=0.1 , _A : Tuple=512 , _A : str=2 , _A : Dict=0.02 , _A : int=1E-12 , _A : int=0 , _A : int=0 , _A : Optional[int]=2 , _A : Dict=256 , _A : Dict=1024 , _A : Any=216 , _A : List[str]=1001 , _A : Dict=32 , _A : Optional[Any]=50 , _A : Optional[int]="absolute" , _A : Dict=True , _A : Tuple=None , **_A : Tuple , ) -> Any: super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) __magic_name__ : int = vocab_size __magic_name__ : str = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : Dict = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : List[Any] = initializer_range __magic_name__ : Dict = layer_norm_eps __magic_name__ : str = position_embedding_type __magic_name__ : Union[str, Any] = use_cache __magic_name__ : int = classifier_dropout # additional properties __magic_name__ : Dict = max_depth __magic_name__ : List[str] = max_xpath_tag_unit_embeddings __magic_name__ : Tuple = max_xpath_subs_unit_embeddings __magic_name__ : Optional[Any] = tag_pad_id __magic_name__ : List[Any] = subs_pad_id __magic_name__ : int = xpath_unit_hidden_size
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _lowerCamelCase : '''simple docstring''' def __init__( self : Dict , _A : Any , _A : int=99 , _A : Dict=13 , _A : Tuple=16 , _A : Union[str, Any]=7 , _A : List[Any]=True , _A : List[Any]=True , _A : str=True , _A : int=False , _A : Optional[Any]=True , _A : Any=2 , _A : Optional[int]=32 , _A : Dict=4 , _A : Any=4 , _A : Tuple=30 , _A : int=0 , _A : Any=1 , _A : Dict=2 , _A : Optional[Any]=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : str = decoder_seq_length # For common tests __magic_name__ : Union[str, Any] = self.decoder_seq_length __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[int] = use_attention_mask __magic_name__ : Dict = use_labels __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Any = d_model __magic_name__ : List[str] = d_model __magic_name__ : Dict = decoder_layers __magic_name__ : Optional[int] = decoder_layers __magic_name__ : int = decoder_ffn_dim __magic_name__ : Optional[Any] = decoder_attention_heads __magic_name__ : Union[str, Any] = decoder_attention_heads __magic_name__ : Any = eos_token_id __magic_name__ : Optional[Any] = bos_token_id __magic_name__ : Any = pad_token_id __magic_name__ : Tuple = decoder_start_token_id __magic_name__ : Tuple = use_cache __magic_name__ : List[str] = max_position_embeddings __magic_name__ : List[str] = None __magic_name__ : Any = decoder_seq_length __magic_name__ : str = 2 __magic_name__ : Any = 1 def __lowerCAmelCase ( self : Tuple ) -> Tuple: __magic_name__ : str = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : int = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __magic_name__ : Dict = None if self.use_labels: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __magic_name__ : Dict = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __lowerCAmelCase ( self : str , _A : Tuple , _A : Optional[Any] , _A : Any , _A : Optional[Any] , ) -> Optional[int]: __magic_name__ : Optional[int] = True __magic_name__ : List[str] = TrOCRDecoder(config=_A ).to(_A ).eval() __magic_name__ : Union[str, Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __magic_name__ : str = model(_A , use_cache=_A ) __magic_name__ : Dict = model(_A ) __magic_name__ : Optional[int] = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) __magic_name__ : Tuple = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids __magic_name__ : Union[str, Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __magic_name__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ : Union[str, Any] = model(_A )['last_hidden_state'] __magic_name__ : int = model(_A , past_key_values=_A )['last_hidden_state'] # select random slice __magic_name__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __magic_name__ : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def __lowerCAmelCase ( self : Dict ) -> str: __magic_name__ : Tuple = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = config_and_inputs __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A_ : Dict = (TrOCRForCausalLM,) if is_torch_available() else () A_ : Optional[int] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} A_ : List[str] = True A_ : List[str] = False def __lowerCAmelCase ( self : str ) -> int: __magic_name__ : Dict = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: pass def __lowerCAmelCase ( self : Tuple ) -> List[str]: pass def __lowerCAmelCase ( self : Any ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> Any: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: pass
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCAmelCase :Union[str, Any] = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class _lowerCamelCase : '''simple docstring''' A_ : str A_ : Optional[str] = None A_ : Optional[Union[str, int]] = None A_ : Optional[Union[str, int]] = None A_ : Optional[Union[str, int]] = None def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ , __magic_name__ , __magic_name__ : Dict = _str_to_version_tuple(self.version_str ) def __repr__( self : List[str] ) -> Optional[int]: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def __lowerCAmelCase ( self : Tuple ) -> int: return self.major, self.minor, self.patch def __lowerCAmelCase ( self : List[Any] , _A : Tuple ) -> List[Any]: if isinstance(_A , _A ): return Version(_A ) elif isinstance(_A , _A ): return other raise TypeError(F'{other} (type {type(_A )}) cannot be compared to version.' ) def __eq__( self : List[Any] , _A : Any ) -> Optional[int]: try: __magic_name__ : Tuple = self._validate_operand(_A ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] , _A : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : List[Any] = self._validate_operand(_A ) return self.tuple < other.tuple def __hash__( self : int ) -> Optional[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , _A : List[Any] ) -> Union[str, Any]: __magic_name__ : int = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __lowerCAmelCase ( self : Optional[int] ) -> str: return self.version_str def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = _VERSION_REG.match(lowerCAmelCase ) if not res: raise ValueError(f'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(lowerCAmelCase ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" return ".".join(str(lowerCAmelCase ) for v in version_tuple )
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase :Tuple = logging.get_logger(__name__) lowerCAmelCase :Optional[int] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase :Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __magic_name__ : List[Any] = model_type_to_module_name(lowerCAmelCase ) __magic_name__ : Optional[int] = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(lowerCAmelCase , lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase , '__name__' , lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __magic_name__ : Any = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase , lowerCAmelCase ): return getattr(lowerCAmelCase , lowerCAmelCase ) return None def lowerCamelCase ( lowerCAmelCase : Union[str, os.PathLike] , lowerCAmelCase : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[Dict[str, str]] = None , lowerCAmelCase : Optional[Union[bool, str]] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = False , **lowerCAmelCase : Tuple , ): """simple docstring""" __magic_name__ : Union[str, Any] = get_file_from_repo( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase , encoding='utf-8' ) as reader: return json.load(lowerCAmelCase ) class _lowerCamelCase : '''simple docstring''' def __init__( self : int ) -> Any: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_A ) def __lowerCAmelCase ( cls : Optional[int] , _A : Optional[Any] , **_A : Dict ) -> List[str]: __magic_name__ : int = kwargs.pop('config' , _A ) __magic_name__ : int = kwargs.pop('trust_remote_code' , _A ) __magic_name__ : Any = True __magic_name__ , __magic_name__ : List[Any] = ImageProcessingMixin.get_image_processor_dict(_A , **_A ) __magic_name__ : Union[str, Any] = config_dict.get('image_processor_type' , _A ) __magic_name__ : int = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): __magic_name__ : Dict = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __magic_name__ : str = config_dict.pop('feature_extractor_type' , _A ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) __magic_name__ : Dict = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __magic_name__ : str = config_dict['auto_map']['AutoFeatureExtractor'] __magic_name__ : Optional[Any] = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_A , _A ): __magic_name__ : Tuple = AutoConfig.from_pretrained(_A , **_A ) # It could be in `config.image_processor_type`` __magic_name__ : Any = getattr(_A , 'image_processor_type' , _A ) if hasattr(_A , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: __magic_name__ : Optional[Any] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: __magic_name__ : Any = image_processor_class_from_name(_A ) __magic_name__ : Optional[int] = image_processor_auto_map is not None __magic_name__ : int = image_processor_class is not None or type(_A ) in IMAGE_PROCESSOR_MAPPING __magic_name__ : Optional[int] = resolve_trust_remote_code( _A , _A , _A , _A ) if has_remote_code and trust_remote_code: __magic_name__ : Dict = get_class_from_dynamic_module( _A , _A , **_A ) __magic_name__ : Tuple = kwargs.pop('code_revision' , _A ) if os.path.isdir(_A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_A , **_A ) elif image_processor_class is not None: return image_processor_class.from_dict(_A , **_A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_A ) in IMAGE_PROCESSOR_MAPPING: __magic_name__ : Optional[Any] = IMAGE_PROCESSOR_MAPPING[type(_A )] return image_processor_class.from_dict(_A , **_A ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def __lowerCAmelCase ( _A : str , _A : Any ) -> Union[str, Any]: IMAGE_PROCESSOR_MAPPING.register(_A , _A )
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :Any = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase :Optional[int] = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None ): """simple docstring""" if "." in tensor_name: __magic_name__ : List[str] = tensor_name.split('.' ) for split in splits[:-1]: __magic_name__ : Optional[int] = getattr(lowerCAmelCase , lowerCAmelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) __magic_name__ : Dict = new_module __magic_name__ : Optional[int] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) __magic_name__ : int = tensor_name in module._buffers __magic_name__ : Dict = getattr(lowerCAmelCase , lowerCAmelCase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) __magic_name__ : Optional[int] = False __magic_name__ : Optional[Any] = False if is_buffer or not is_bitsandbytes_available(): __magic_name__ : Optional[Any] = False __magic_name__ : List[Any] = False else: __magic_name__ : Dict = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __magic_name__ : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __magic_name__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __magic_name__ : List[str] = old_value.to(lowerCAmelCase ) elif isinstance(lowerCAmelCase , torch.Tensor ): __magic_name__ : List[str] = value.to('cpu' ) if value.dtype == torch.inta: __magic_name__ : List[str] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: __magic_name__ : Optional[int] = torch.tensor(lowerCAmelCase , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowerCAmelCase ) and fpaa_statistics is None: __magic_name__ : Union[str, Any] = new_value.T __magic_name__ : Dict = old_value.__dict__ if is_abit: __magic_name__ : Dict = bnb.nn.IntaParams(lowerCAmelCase , requires_grad=lowerCAmelCase , **lowerCAmelCase ).to(lowerCAmelCase ) elif is_abit: __magic_name__ : Optional[Any] = bnb.nn.Paramsabit(lowerCAmelCase , requires_grad=lowerCAmelCase , **lowerCAmelCase ).to(lowerCAmelCase ) __magic_name__ : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(lowerCAmelCase ) ) else: if value is None: __magic_name__ : Any = old_value.to(lowerCAmelCase ) elif isinstance(lowerCAmelCase , torch.Tensor ): __magic_name__ : Optional[int] = value.to(lowerCAmelCase ) else: __magic_name__ : List[str] = torch.tensor(lowerCAmelCase , device=lowerCAmelCase ) if is_buffer: __magic_name__ : Optional[int] = new_value else: __magic_name__ : List[Any] = nn.Parameter(lowerCAmelCase , requires_grad=old_value.requires_grad ) __magic_name__ : Union[str, Any] = new_value def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str=None , lowerCAmelCase : Any=None , lowerCAmelCase : Dict=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: __magic_name__ : Any = [] current_key_name.append(lowerCAmelCase ) if (isinstance(lowerCAmelCase , nn.Linear ) or isinstance(lowerCAmelCase , lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ , __magic_name__ : Union[str, Any] = module.weight.shape else: __magic_name__ : Dict = module.in_features __magic_name__ : Optional[Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": __magic_name__ : List[Any] = bnb.nn.LinearabitLt( lowerCAmelCase , lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __magic_name__ : Union[str, Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __magic_name__ : Optional[Any] = bnb.nn.Linearabit( lowerCAmelCase , lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __magic_name__ : str = True # Store the module class in case we need to transpose the weight later __magic_name__ : int = type(lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCAmelCase ) if len(list(module.children() ) ) > 0: __magic_name__ , __magic_name__ : List[str] = _replace_with_bnb_linear( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_been_replaced=lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int=None , lowerCAmelCase : Dict=None ): """simple docstring""" __magic_name__ : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert __magic_name__ , __magic_name__ : Dict = _replace_with_bnb_linear( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCamelCase ( *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int] ): """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowerCAmelCase , ) return replace_with_bnb_linear(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase ( *lowerCAmelCase : Dict , **lowerCAmelCase : str ): """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Dict = deepcopy(lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __magic_name__ : Dict = find_tied_parameters(lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __magic_name__ : Dict = sum(lowerCAmelCase , [] ) __magic_name__ : Any = len(lowerCAmelCase ) > 0 # Check if it is a base model __magic_name__ : Optional[Any] = not hasattr(lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __magic_name__ : str = list(model.named_children() ) __magic_name__ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights __magic_name__ : List[str] = set(lowerCAmelCase ) - set(lowerCAmelCase ) __magic_name__ : Dict = list(set(lowerCAmelCase ) ) + list(lowerCAmelCase ) # remove ".weight" from the keys __magic_name__ : Optional[int] = ['.weight', '.bias'] __magic_name__ : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __magic_name__ : int = name.replace(lowerCAmelCase , '' ) filtered_module_names.append(lowerCAmelCase ) return filtered_module_names
331
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : List[str] = 'huggingface/label-files' __magic_name__ : List[str] = 'imagenet-1k-id2label.json' __magic_name__ : int = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __magic_name__ : Dict = {int(lowerCAmelCase ): v for k, v in idalabel.items()} __magic_name__ : int = {v: k for k, v in idalabel.items()} __magic_name__ : Optional[int] = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __magic_name__ : str = BitConfig( conv_layer=lowerCAmelCase , num_labels=1000 , idalabel=lowerCAmelCase , labelaid=lowerCAmelCase , ) return config def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" if "stem.conv" in name: __magic_name__ : Any = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __magic_name__ : Any = name.replace('blocks' , 'layers' ) if "head.fc" in name: __magic_name__ : Dict = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): __magic_name__ : List[Any] = 'bit.' + name if "bit" not in name and "classifier" not in name: __magic_name__ : str = 'bit.encoder.' + name return name def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' __magic_name__ : Optional[Any] = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=False ): """simple docstring""" __magic_name__ : int = get_config(lowerCAmelCase ) # load original model from timm __magic_name__ : Any = create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model __magic_name__ : Dict = timm_model.state_dict() for key in state_dict.copy().keys(): __magic_name__ : Optional[Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : int = val.squeeze() if 'head' in key else val # load HuggingFace model __magic_name__ : int = BitForImageClassification(lowerCAmelCase ) model.eval() model.load_state_dict(lowerCAmelCase ) # create image processor __magic_name__ : int = create_transform(**resolve_data_config({} , model=lowerCAmelCase ) ) __magic_name__ : int = transform.transforms __magic_name__ : List[Any] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __magic_name__ : str = BitImageProcessor( do_resize=lowerCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __magic_name__ : int = prepare_img() __magic_name__ : int = transform(lowerCAmelCase ).unsqueeze(0 ) __magic_name__ : Any = processor(lowerCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase , lowerCAmelCase ) # verify logits with torch.no_grad(): __magic_name__ : Optional[Any] = model(lowerCAmelCase ) __magic_name__ : Tuple = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) __magic_name__ : str = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": lowerCAmelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) lowerCAmelCase :int = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
331
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : Optional[int] = torch.nn.Linear(10 , 10 ) __magic_name__ : Any = torch.optim.SGD(model.parameters() , 0.1 ) __magic_name__ : Dict = Accelerator() __magic_name__ : int = accelerator.prepare(_A ) try: pickle.loads(pickle.dumps(_A ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowerCAmelCase :Dict = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase :Dict = BASE_URL + '''/user''' # https://github.com/settings/tokens lowerCAmelCase :List[str] = os.environ.get('''USER_TOKEN''', '''''') def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Optional[Any] = { 'Authorization': f'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCAmelCase , headers=lowerCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return x + 2 class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Optional[int] = 'x = 3' __magic_name__ : str = {} __magic_name__ : List[Any] = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {'x': 3} ) __magic_name__ : str = 'x = y' __magic_name__ : int = {'y': 5} __magic_name__ : Any = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {'x': 5, 'y': 5} ) def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : Union[str, Any] = 'y = add_two(x)' __magic_name__ : Union[str, Any] = {'x': 3} __magic_name__ : Tuple = evaluate(_A , {'add_two': add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: __magic_name__ : Tuple = evaluate(_A , {} , state=_A ) assert result is None assert "tried to execute add_two" in out.out def __lowerCAmelCase ( self : List[str] ) -> Tuple: __magic_name__ : List[Any] = 'x = 3' __magic_name__ : Dict = {} __magic_name__ : Optional[int] = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {'x': 3} ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Dict = 'test_dict = {\'x\': x, \'y\': add_two(x)}' __magic_name__ : Optional[Any] = {'x': 3} __magic_name__ : List[Any] = evaluate(_A , {'add_two': add_two} , state=_A ) self.assertDictEqual(_A , {'x': 3, 'y': 5} ) self.assertDictEqual(_A , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : Union[str, Any] = 'x = 3\ny = 5' __magic_name__ : int = {} __magic_name__ : int = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {'x': 3, 'y': 5} ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = 'text = f\'This is x: {x}.\'' __magic_name__ : Any = {'x': 3} __magic_name__ : str = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_A , {'x': 3, 'text': 'This is x: 3.'} ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: __magic_name__ : int = 'if x <= 3:\n y = 2\nelse:\n y = 5' __magic_name__ : Any = {'x': 3} __magic_name__ : Tuple = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_A , {'x': 3, 'y': 2} ) __magic_name__ : Any = {'x': 8} __magic_name__ : Tuple = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {'x': 8, 'y': 5} ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: __magic_name__ : Union[str, Any] = 'test_list = [x, add_two(x)]' __magic_name__ : Optional[int] = {'x': 3} __magic_name__ : int = evaluate(_A , {'add_two': add_two} , state=_A ) self.assertListEqual(_A , [3, 5] ) self.assertDictEqual(_A , {'x': 3, 'test_list': [3, 5]} ) def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: __magic_name__ : str = 'y = x' __magic_name__ : Optional[Any] = {'x': 3} __magic_name__ : int = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {'x': 3, 'y': 3} ) def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : List[str] = 'test_list = [x, add_two(x)]\ntest_list[1]' __magic_name__ : int = {'x': 3} __magic_name__ : List[Any] = evaluate(_A , {'add_two': add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {'x': 3, 'test_list': [3, 5]} ) __magic_name__ : Any = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' __magic_name__ : Optional[Any] = {'x': 3} __magic_name__ : Dict = evaluate(_A , {'add_two': add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Optional[Any] = 'x = 0\nfor i in range(3):\n x = i' __magic_name__ : List[str] = {} __magic_name__ : Optional[Any] = evaluate(_A , {'range': range} , state=_A ) assert result == 2 self.assertDictEqual(_A , {'x': 2, 'i': 2} )
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : Optional[int]=2 , _A : Union[str, Any]=3 , _A : Tuple=4 , _A : int=2 , _A : Optional[Any]=7 , _A : Dict=True , _A : Optional[int]=True , _A : Tuple=True , _A : Union[str, Any]=True , _A : Optional[int]=99 , _A : Union[str, Any]=36 , _A : List[Any]=2 , _A : str=4 , _A : int=37 , _A : Optional[Any]="gelu" , _A : Any=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=512 , _A : Any=16 , _A : List[str]=2 , _A : Tuple=0.02 , _A : List[str]=6 , _A : int=6 , _A : Tuple=3 , _A : Any=4 , _A : List[str]=None , _A : Dict=1000 , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : str = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Union[str, Any] = patch_size __magic_name__ : Optional[Any] = is_training __magic_name__ : int = use_input_mask __magic_name__ : Tuple = use_token_type_ids __magic_name__ : Any = use_labels __magic_name__ : List[str] = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : List[str] = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : List[str] = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : int = attention_probs_dropout_prob __magic_name__ : Dict = max_position_embeddings __magic_name__ : Optional[Any] = type_vocab_size __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : List[Any] = coordinate_size __magic_name__ : Optional[int] = shape_size __magic_name__ : int = num_labels __magic_name__ : int = num_choices __magic_name__ : Optional[int] = scope __magic_name__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __magic_name__ : int = text_seq_length __magic_name__ : Optional[int] = (image_size // patch_size) ** 2 + 1 __magic_name__ : str = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __magic_name__ : int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __magic_name__ : Optional[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __magic_name__ : str = bbox[i, j, 3] __magic_name__ : Dict = bbox[i, j, 1] __magic_name__ : List[str] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __magic_name__ : Union[str, Any] = bbox[i, j, 2] __magic_name__ : Optional[int] = bbox[i, j, 0] __magic_name__ : Optional[int] = tmp_coordinate __magic_name__ : Dict = tf.constant(_A ) __magic_name__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_input_mask: __magic_name__ : Tuple = random_attention_mask([self.batch_size, self.text_seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __magic_name__ : Optional[Any] = None __magic_name__ : Optional[int] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __magic_name__ : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : Union[str, Any] , _A : Any , _A : Any , _A : List[Any] , _A : Union[str, Any] ) -> str: __magic_name__ : Dict = TFLayoutLMvaModel(config=_A ) # text + image __magic_name__ : Union[str, Any] = model(_A , pixel_values=_A , training=_A ) __magic_name__ : Any = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , training=_A , ) __magic_name__ : Dict = model(_A , bbox=_A , pixel_values=_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __magic_name__ : Union[str, Any] = model(_A , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __magic_name__ : Optional[Any] = model({'pixel_values': pixel_values} , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : Optional[Any] , _A : Dict , _A : str , _A : str , _A : Any , _A : Union[str, Any] , _A : Tuple ) -> List[str]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Tuple = TFLayoutLMvaForSequenceClassification(config=_A ) __magic_name__ : List[str] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Union[str, Any] , _A : Optional[Any] , _A : Optional[int] , _A : int , _A : Dict , _A : Tuple ) -> str: __magic_name__ : List[Any] = self.num_labels __magic_name__ : List[Any] = TFLayoutLMvaForTokenClassification(config=_A ) __magic_name__ : Union[str, Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : str , _A : Optional[Any] , _A : Optional[int] , _A : Dict , _A : Optional[Any] , _A : Tuple ) -> Union[str, Any]: __magic_name__ : List[Any] = 2 __magic_name__ : Optional[int] = TFLayoutLMvaForQuestionAnswering(config=_A ) __magic_name__ : Union[str, Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , training=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: __magic_name__ : Any = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__)) : List[str] = config_and_inputs __magic_name__ : List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A_ : str = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) A_ : Tuple = False A_ : Dict = False A_ : List[str] = False def __lowerCAmelCase ( self : Any , _A : Dict , _A : str , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ) -> Union[str, Any]: return True def __lowerCAmelCase ( self : str , _A : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ) -> dict: __magic_name__ : List[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): __magic_name__ : Tuple = { k: tf.tile(tf.expand_dims(_A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): __magic_name__ : List[str] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): __magic_name__ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __magic_name__ : List[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): __magic_name__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): __magic_name__ : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: __magic_name__ : Union[str, Any] = TFLayoutLMvaModelTester(self ) __magic_name__ : Union[str, Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ , __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(_A ) if getattr(_A , 'hf_compute_loss' , _A ): # The number of elements in the loss should be the same as the number of elements in the label __magic_name__ : int = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) __magic_name__ : Dict = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_A )[0] ] __magic_name__ : Optional[int] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __magic_name__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) __magic_name__ : List[Any] = prepared_for_class.pop('input_ids' ) __magic_name__ : Tuple = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __magic_name__ : List[str] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) __magic_name__ : List[str] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __magic_name__ : Optional[Any] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __magic_name__ : str = -100 __magic_name__ : List[str] = tf.convert_to_tensor(_A ) __magic_name__ : Tuple = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __magic_name__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) __magic_name__ : str = model(_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __magic_name__ : List[Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) # Get keys that were added with the _prepare_for_class function __magic_name__ : Optional[Any] = prepared_for_class.keys() - inputs_dict.keys() __magic_name__ : Optional[Any] = inspect.signature(model.call ).parameters __magic_name__ : Any = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __magic_name__ : Optional[int] = {0: 'input_ids'} for label_key in label_keys: __magic_name__ : Any = signature_names.index(_A ) __magic_name__ : List[str] = label_key __magic_name__ : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __magic_name__ : Optional[int] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __magic_name__ : List[str] = prepared_for_class[value] __magic_name__ : int = tuple(_A ) # Send to model __magic_name__ : str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def __lowerCAmelCase ( self : Dict ) -> List[str]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ : str = type self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _A , _A , _A , _A , _A , _A , _A ) def __lowerCAmelCase ( self : Dict ) -> List[str]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _A , _A , _A , _A , _A , _A , _A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _A , _A , _A , _A , _A , _A , _A ) @slow def __lowerCAmelCase ( self : int ) -> List[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TFLayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : List[Any] ) -> List[str]: return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = prepare_img() __magic_name__ : List[str] = image_processor(images=_A , return_tensors='tf' ).pixel_values __magic_name__ : int = tf.constant([[1, 2]] ) __magic_name__ : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __magic_name__ : Optional[int] = model(input_ids=_A , bbox=_A , pixel_values=_A , training=_A ) # verify the logits __magic_name__ : List[str] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _A ) __magic_name__ : Dict = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1E-4 ) )
331
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _lowerCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = StableDiffusionControlNetImgaImgPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) A_ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __magic_name__ : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __magic_name__ : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __magic_name__ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __magic_name__ : Any = CLIPTextModel(_A ) __magic_name__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __magic_name__ : List[str] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> Tuple: if str(_A ).startswith('mps' ): __magic_name__ : int = torch.manual_seed(_A ) else: __magic_name__ : Optional[int] = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[Any] = 2 __magic_name__ : int = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_A , device=torch.device(_A ) , ) __magic_name__ : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(_A ) ).to(_A ) __magic_name__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : int = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((64, 64) ) __magic_name__ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __lowerCAmelCase ( self : List[Any] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self : Union[str, Any] ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = StableDiffusionControlNetImgaImgPipeline A_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self : Optional[int] ) -> Dict: torch.manual_seed(0 ) __magic_name__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_A : Tuple ): if isinstance(_A , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __magic_name__ : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_A ) torch.manual_seed(0 ) __magic_name__ : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_A ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __magic_name__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __magic_name__ : int = CLIPTextModel(_A ) __magic_name__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __magic_name__ : int = MultiControlNetModel([controlneta, controlneta] ) __magic_name__ : str = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self : int , _A : Optional[int] , _A : List[Any]=0 ) -> str: if str(_A ).startswith('mps' ): __magic_name__ : List[Any] = torch.manual_seed(_A ) else: __magic_name__ : Dict = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : int = 2 __magic_name__ : List[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_A , device=torch.device(_A ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_A , device=torch.device(_A ) , ), ] __magic_name__ : int = floats_tensor(control_image[0].shape , rng=random.Random(_A ) ).to(_A ) __magic_name__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : Tuple = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((64, 64) ) __magic_name__ : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[Any] = self.get_dummy_components() __magic_name__ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) __magic_name__ : Dict = 10.0 __magic_name__ : int = 4 __magic_name__ : Dict = self.get_dummy_inputs(_A ) __magic_name__ : Optional[Any] = steps __magic_name__ : Dict = scale __magic_name__ : Union[str, Any] = pipe(**_A )[0] __magic_name__ : Optional[Any] = self.get_dummy_inputs(_A ) __magic_name__ : Tuple = steps __magic_name__ : int = scale __magic_name__ : Any = pipe(**_A , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __magic_name__ : Dict = self.get_dummy_inputs(_A ) __magic_name__ : Dict = steps __magic_name__ : List[Any] = scale __magic_name__ : Optional[int] = pipe(**_A , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __magic_name__ : List[str] = self.get_dummy_inputs(_A ) __magic_name__ : List[str] = steps __magic_name__ : Tuple = scale __magic_name__ : str = pipe(**_A , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self : Optional[int] ) -> Dict: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_A ) except NotImplementedError: pass @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: __magic_name__ : Any = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) __magic_name__ : Optional[Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_A , controlnet=_A ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) __magic_name__ : Dict = 'evil space-punk bird' __magic_name__ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) __magic_name__ : List[Any] = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) __magic_name__ : Union[str, Any] = pipe( _A , _A , control_image=_A , generator=_A , output_type='np' , num_inference_steps=50 , strength=0.6 , ) __magic_name__ : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) __magic_name__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
1
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase ( ): """simple docstring""" __magic_name__ : int = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowerCAmelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowerCAmelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowerCAmelCase ) return parser.parse_args() def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[Any] = parse_args() # Import training_script as a module. __magic_name__ : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __magic_name__ : str = script_fpath.stem __magic_name__ : Optional[int] = importlib.import_module(lowerCAmelCase ) # Patch sys.argv __magic_name__ : str = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
331
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
1
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = u for i in range(1 , lowerCAmelCase ): __magic_name__ : str = temp * (u - i) return temp def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = int(input('enter the numbers of values: ' ) ) __magic_name__ : list[list[float]] = [] for _ in range(lowerCAmelCase ): y.append([] ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): y[i].append(lowerCAmelCase ) __magic_name__ : Optional[int] = 0 print('enter the values of parameters in a list: ' ) __magic_name__ : Tuple = list(map(lowerCAmelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(lowerCAmelCase ): __magic_name__ : Dict = float(input() ) __magic_name__ : Tuple = int(input('enter the value to interpolate: ' ) ) __magic_name__ : str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase ): for j in range(n - i ): __magic_name__ : List[Any] = y[j + 1][i - 1] - y[j][i - 1] __magic_name__ : List[str] = y[0][0] for i in range(1 , lowerCAmelCase ): summ += (ucal(lowerCAmelCase , lowerCAmelCase ) * y[0][i]) / math.factorial(lowerCAmelCase ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : '''simple docstring''' def __init__( self : Any , _A : Tuple , _A : Union[str, Any]=3 , _A : Tuple=32 , _A : Any=3 , _A : Optional[int]=10 , _A : Dict=[10, 20, 30, 40] , _A : Optional[Any]=[1, 1, 2, 1] , _A : List[Any]=True , _A : str=True , _A : Any="relu" , _A : Optional[Any]=3 , _A : Dict=None , ) -> List[str]: __magic_name__ : str = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Dict = image_size __magic_name__ : int = num_channels __magic_name__ : Tuple = embeddings_size __magic_name__ : int = hidden_sizes __magic_name__ : Optional[Any] = depths __magic_name__ : Dict = is_training __magic_name__ : Tuple = use_labels __magic_name__ : Optional[int] = hidden_act __magic_name__ : Any = num_labels __magic_name__ : Union[str, Any] = scope __magic_name__ : Union[str, Any] = len(_A ) def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : List[Any] = None if self.use_labels: __magic_name__ : Any = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : str = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) -> List[Any]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowerCAmelCase ( self : Optional[int] , _A : int , _A : Tuple , _A : Tuple ) -> Tuple: __magic_name__ : Any = TFResNetModel(config=_A ) __magic_name__ : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self : Dict , _A : Any , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Any = self.num_labels __magic_name__ : int = TFResNetForImageClassification(_A ) __magic_name__ : Optional[int] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ : Tuple = config_and_inputs __magic_name__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A_ : int = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) A_ : List[str] = False A_ : str = False A_ : List[Any] = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : Any ) -> Optional[Any]: __magic_name__ : Union[str, Any] = TFResNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : Any ) -> Tuple: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCAmelCase ( self : int ) -> Optional[int]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> Tuple: __magic_name__ , __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = model_class(_A ) __magic_name__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Any = [*signature.parameters.keys()] __magic_name__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: def check_hidden_states_output(_A : List[Any] , _A : Any , _A : Dict ): __magic_name__ : Any = model_class(_A ) __magic_name__ : Optional[int] = model(**self._prepare_for_class(_A , _A ) ) __magic_name__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Union[str, Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ : List[str] = layer_type __magic_name__ : Dict = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True check_hidden_states_output(_A , _A , _A ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Any: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ : Tuple = self.default_image_processor __magic_name__ : Tuple = prepare_img() __magic_name__ : Any = image_processor(images=_A , return_tensors='tf' ) # forward pass __magic_name__ : Union[str, Any] = model(**_A ) # verify the logits __magic_name__ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) __magic_name__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _A , atol=1E-4 ) )
331
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCAmelCase :Any = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] , _A : str , _A : bool , _A : str = None , _A : list = None ) -> Dict: __magic_name__ : List[str] = None __magic_name__ : Tuple = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) __magic_name__ : List[str] = os.path.abspath('examples' ) for item in os.listdir(_A ): if item not in EXCLUDE_EXAMPLES: __magic_name__ : Any = os.path.join(_A , _A ) if os.path.isfile(_A ) and ".py" in item_path: with self.subTest( tested_script=_A , feature_script=_A , tested_section='main()' if parser_only else 'training_function()' , ): __magic_name__ : Optional[Any] = compare_against_test( os.path.join(_A , _A ) , _A , _A , _A ) __magic_name__ : str = '\n'.join(_A ) if special_strings is not None: for string in special_strings: __magic_name__ : Any = diff.replace(_A , '' ) self.assertEqual(_A , '' ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: self.one_complete_example('complete_nlp_example.py' , _A ) self.one_complete_example('complete_nlp_example.py' , _A ) def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : List[Any] = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) __magic_name__ : str = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , _A , _A , _A ) self.one_complete_example('complete_cv_example.py' , _A , _A , _A ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = False @classmethod def __lowerCAmelCase ( cls : Optional[int] ) -> List[str]: super().setUpClass() __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : List[Any] = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __magic_name__ : Tuple = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def __lowerCAmelCase ( cls : int ) -> str: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowerCAmelCase ( self : Dict ) -> int: __magic_name__ : int = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: __magic_name__ : Any = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __magic_name__ : str = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def __lowerCAmelCase ( self : str ) -> Tuple: __magic_name__ : Union[str, Any] = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __magic_name__ : List[Any] = run_command(self._launch_args + testargs , return_stdout=_A ) self.assertNotIn('epoch 0:' , _A ) self.assertIn('epoch 1:' , _A ) def __lowerCAmelCase ( self : Dict ) -> Dict: __magic_name__ : List[str] = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __magic_name__ : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=_A ) if torch.cuda.is_available(): __magic_name__ : Optional[int] = torch.cuda.device_count() else: __magic_name__ : Any = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , _A ) self.assertIn('epoch 1:' , _A ) else: self.assertIn('epoch 0:' , _A ) self.assertIn('epoch 1:' , _A ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> str: __magic_name__ : str = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): __magic_name__ : List[str] = run_command(self._launch_args + testargs , return_stdout=_A ) __magic_name__ : List[str] = re.findall('({.+})' , _A ) __magic_name__ : Union[str, Any] = [r for r in results if 'accuracy' in r][-1] __magic_name__ : List[str] = ast.literal_eval(_A ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: __magic_name__ : Optional[int] = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __lowerCAmelCase ( self : Optional[int] ) -> str: with tempfile.TemporaryDirectory() as tmpdir: __magic_name__ : Dict = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_A , 'tracking' ) ) ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : int = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def __lowerCAmelCase ( self : Dict ) -> Dict: __magic_name__ : List[Any] = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase :Optional[int] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase :Optional[int] = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase :Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Any = len([g for position, g in enumerate(lowerCAmelCase ) if g == main_target[position]] ) return (item, float(lowerCAmelCase )) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Union[str, Any] = random.randint(0 , len(lowerCAmelCase ) - 1 ) __magic_name__ : List[Any] = parent_a[:random_slice] + parent_a[random_slice:] __magic_name__ : List[str] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : list[str] ): """simple docstring""" __magic_name__ : Optional[int] = list(lowerCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __magic_name__ : Dict = random.choice(lowerCAmelCase ) return "".join(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : tuple[str, float] , lowerCAmelCase : list[tuple[str, float]] , lowerCAmelCase : list[str] , ): """simple docstring""" __magic_name__ : int = [] # Generate more children proportionally to the fitness score. __magic_name__ : List[str] = int(parent_a[1] * 100 ) + 1 __magic_name__ : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase ): __magic_name__ : Optional[Any] = population_score[random.randint(0 , lowerCAmelCase )][0] __magic_name__ , __magic_name__ : Any = crossover(parent_a[0] , lowerCAmelCase ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase , lowerCAmelCase ) ) pop.append(mutate(lowerCAmelCase , lowerCAmelCase ) ) return pop def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : list[str] , lowerCAmelCase : bool = True ): """simple docstring""" if N_POPULATION < N_SELECTED: __magic_name__ : List[str] = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __magic_name__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __magic_name__ : Union[str, Any] = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase ) # Generate random starting population. __magic_name__ : Any = [] for _ in range(lowerCAmelCase ): population.append(''.join([random.choice(lowerCAmelCase ) for i in range(len(lowerCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __magic_name__ , __magic_name__ : Dict = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __magic_name__ : int = [evaluate(lowerCAmelCase , lowerCAmelCase ) for item in population] # Check if there is a matching evolution. __magic_name__ : int = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] , reverse=lowerCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __magic_name__ : Any = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase ) # Normalize population score to be between 0 and 1. __magic_name__ : List[Any] = [ (item, score / len(lowerCAmelCase )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase ): population.extend(select(population_score[int(lowerCAmelCase )] , lowerCAmelCase , lowerCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase :int = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCAmelCase :str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :int = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase :Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : tuple , lowerCAmelCase : Path , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[str]=False , ): """simple docstring""" output_path.parent.mkdir(parents=lowerCAmelCase , exist_ok=lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase , lowerCAmelCase , f=output_path.as_posix() , input_names=lowerCAmelCase , output_names=lowerCAmelCase , dynamic_axes=lowerCAmelCase , do_constant_folding=lowerCAmelCase , use_external_data_format=lowerCAmelCase , enable_onnx_checker=lowerCAmelCase , opset_version=lowerCAmelCase , ) else: export( lowerCAmelCase , lowerCAmelCase , f=output_path.as_posix() , input_names=lowerCAmelCase , output_names=lowerCAmelCase , dynamic_axes=lowerCAmelCase , do_constant_folding=lowerCAmelCase , opset_version=lowerCAmelCase , ) @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : bool = False ): """simple docstring""" __magic_name__ : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __magic_name__ : List[str] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __magic_name__ : Dict = 'cpu' __magic_name__ : int = Path(lowerCAmelCase ) # VAE DECODER __magic_name__ : int = AutoencoderKL.from_pretrained(model_path + '/vae' ) __magic_name__ : str = vae_decoder.config.latent_channels # forward only through the decoder part __magic_name__ : Dict = vae_decoder.decode onnx_export( lowerCAmelCase , model_args=( torch.randn(1 , lowerCAmelCase , 25 , 25 ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase :Union[str, Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase :Any = logging.get_logger(__name__) lowerCAmelCase :Tuple = '''▁''' lowerCAmelCase :str = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} lowerCAmelCase :Tuple = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } lowerCAmelCase :Optional[Any] = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } lowerCAmelCase :List[Any] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } lowerCAmelCase :Dict = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = ["input_ids"] A_ : Any = VOCAB_FILES_NAMES A_ : str = PRETRAINED_INIT_CONFIGURATION A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , _A : str , _A : Any=None , _A : int=False , _A : Union[str, Any]="utf8" , _A : Optional[int]="[UNK]" , _A : List[Any]="[SEP]" , _A : List[str]="[PAD]" , _A : Dict="[CLS]" , _A : Optional[int]="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __magic_name__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __magic_name__ : int = do_lower_case __magic_name__ : Dict = sentencepiece_model_ckpt __magic_name__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __magic_name__ : Optional[int] = self.load_vocab(filepath=_A ) else: __magic_name__ : List[Any] = {self.sp_model.id_to_piece(_A ): id for id in range(self.sp_model.get_piece_size() )} __magic_name__ : int = {v: k for k, v in self.vocab.items()} def __lowerCAmelCase ( self : List[Any] , _A : Optional[int] ) -> Dict: if text is None: return None __magic_name__ : Union[str, Any] = self.tokenize(_A ) __magic_name__ , __magic_name__ : Any = '', [] for i, ch in enumerate(_A ): if ch in self.SP_CHAR_MAPPING: __magic_name__ : int = self.SP_CHAR_MAPPING.get(_A ) else: __magic_name__ : Dict = unicodedata.normalize('NFKC' , _A ) if self.is_whitespace(_A ): continue normalized_text += ch char_mapping.extend([i] * len(_A ) ) __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: __magic_name__ : Dict = text.lower() for token in split_tokens: if token[:1] == "▁": __magic_name__ : int = token[1:] __magic_name__ : List[Any] = text[offset:].index(_A ) + offset __magic_name__ : Tuple = start + len(_A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __magic_name__ : Dict = end return token_mapping @property def __lowerCAmelCase ( self : List[str] ) -> Tuple: return len(self.vocab ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Tuple ) -> Dict: __magic_name__ : Tuple = self.__dict__.copy() __magic_name__ : Optional[Any] = None return state def __setstate__( self : Optional[Any] , _A : Any ) -> List[str]: __magic_name__ : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __magic_name__ : Dict = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __lowerCAmelCase ( self : Optional[Any] , _A : List[Any] ) -> List[Any]: return "".join((self.SP_CHAR_MAPPING.get(_A , _A ) for c in text) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[int] , _A : List[Any]=False , _A : Optional[int]=64 , _A : Tuple=0.1 ) -> Dict: if self.sp_model_kwargs.get('enable_sampling' ) is True: __magic_name__ : int = True if self.sp_model_kwargs.get('alpha' ) is not None: __magic_name__ : Union[str, Any] = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: __magic_name__ : List[str] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: __magic_name__ : List[Any] = self.sp_model.EncodeAsPieces(_A ) else: __magic_name__ : Any = self.sp_model.SampleEncodeAsPieces(_A , _A , _A ) __magic_name__ : Tuple = [] for pi, piece in enumerate(_A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A ) and pi != 0: new_pieces.append(_A ) continue else: continue __magic_name__ : str = 0 for i, chunk in enumerate(_A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A ) or self.is_punct(_A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_A ) __magic_name__ : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __magic_name__ : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __magic_name__ : List[Any] = i if len(_A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __lowerCAmelCase ( self : List[Any] , _A : List[str] ) -> Any: __magic_name__ : Any = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def __lowerCAmelCase ( self : int , _A : List[str] ) -> Tuple: __magic_name__ : Optional[Any] = self.convert_ids_to_tokens(_A ) __magic_name__ : List[str] = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def __lowerCAmelCase ( self : str , _A : Union[str, Any] ) -> Dict: return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : str , _A : str ) -> Optional[Any]: return self.reverse_vocab.get(_A , self.unk_token ) def __lowerCAmelCase ( self : Tuple , _A : Optional[int] , _A : List[str]=None ) -> List[str]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] __magic_name__ : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __lowerCAmelCase ( self : Optional[int] , _A : int , _A : str=None ) -> int: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __lowerCAmelCase ( self : List[Any] , _A : Dict , _A : Union[str, Any]=None , _A : int=False ) -> Dict: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def __lowerCAmelCase ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A ) + 1) + [1] * (len(_A ) + 3) def __lowerCAmelCase ( self : str , _A : Tuple ) -> List[Any]: if "\u4e00" <= char <= "\u9fff": return True return False def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> List[str]: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __lowerCAmelCase ( self : Dict , _A : str ) -> Union[str, Any]: if char in ",;:.?!~,;:。?!《》【】": return True return False def __lowerCAmelCase ( self : Any , _A : Any ) -> Tuple: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A ) == 1: __magic_name__ : List[str] = unicodedata.category(_A ) if cat == "Zs": return True return False def __lowerCAmelCase ( self : int , _A : int ) -> List[str]: __magic_name__ : Dict = {} with io.open(_A , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_A ): __magic_name__ : List[str] = line.rstrip('\n' ) __magic_name__ : Dict = int(_A ) return token_to_idx def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: __magic_name__ : Optional[Any] = 0 if os.path.isdir(_A ): __magic_name__ : Optional[int] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __magic_name__ : Union[str, Any] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_A , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __magic_name__ : Optional[Any] = token_index writer.write(token + '\n' ) index += 1 __magic_name__ : Dict = os.path.join(_A , 'sentencepiece.bpe.model' ) with open(_A , 'wb' ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(_A ) return (vocab_file,)
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=lowerCAmelCase , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=lowerCAmelCase , default=5 ) parser.add_argument('--batch_size' , type=lowerCAmelCase , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=lowerCAmelCase , default=1 ) parser.add_argument('--freeze' , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument('--learning_rate' , type=lowerCAmelCase , default=5e-4 ) parser.add_argument('--seed' , type=lowerCAmelCase , default=0 ) parser.add_argument('--lr_scheduler_type' , type=lowerCAmelCase , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=lowerCAmelCase , default=10 ) parser.add_argument('--weight_decay' , type=lowerCAmelCase , default=0.01 ) parser.add_argument('--output_dir' , type=lowerCAmelCase , default='./results' ) return parser.parse_args() lowerCAmelCase :str = load('''accuracy''') def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ , __magic_name__ : List[Any] = eval_pred __magic_name__ : List[Any] = np.argmax(lowerCAmelCase , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=lowerCAmelCase ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Tuple , _A : Tuple ) -> None: super().__init__() __magic_name__ : List[Any] = trainer def __lowerCAmelCase ( self : Optional[Any] , _A : Union[str, Any] , _A : Dict , _A : Any , **_A : List[Any] ) -> int: if control.should_evaluate: __magic_name__ : Optional[int] = deepcopy(_A ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def lowerCamelCase ( ): """simple docstring""" __magic_name__ : str = get_args() set_seed(args.seed ) __magic_name__ : str = load_dataset('codeparrot/codecomplex' , split='train' ) __magic_name__ : Tuple = dataset.train_test_split(test_size=0.2 ) __magic_name__ : str = train_test['test'].train_test_split(test_size=0.5 ) __magic_name__ : List[str] = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) __magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) __magic_name__ : Dict = tokenizer.eos_token __magic_name__ : int = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __magic_name__ : List[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __magic_name__ : Any = False __magic_name__ : Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(lowerCAmelCase : Dict ): __magic_name__ : Union[str, Any] = tokenizer(example['src'] , truncation=lowerCAmelCase , max_length=1024 ) __magic_name__ : Optional[Any] = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __magic_name__ : Optional[Any] = train_test_validation.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=train_test_validation['train'].column_names , ) __magic_name__ : Optional[Any] = DataCollatorWithPadding(tokenizer=lowerCAmelCase ) __magic_name__ : int = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) __magic_name__ : Union[str, Any] = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , compute_metrics=lowerCAmelCase , ) print('Training...' ) trainer.add_callback(CustomCallback(lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
331
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
1
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Any = [False] * len(lowerCAmelCase ) __magic_name__ : int = [-1] * len(lowerCAmelCase ) def dfs(lowerCAmelCase : Tuple , lowerCAmelCase : Any ): __magic_name__ : List[str] = True __magic_name__ : List[str] = c for u in graph[v]: if not visited[u]: dfs(lowerCAmelCase , 1 - c ) for i in range(len(lowerCAmelCase ) ): if not visited[i]: dfs(lowerCAmelCase , 0 ) for i in range(len(lowerCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase :List[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: __magic_name__ : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) __magic_name__ : Tuple = AutoTokenizer.from_pretrained('google/mt5-small' ) __magic_name__ : int = tokenizer('Hello there' , return_tensors='np' ).input_ids __magic_name__ : List[Any] = tokenizer('Hi I am' , return_tensors='np' ).input_ids __magic_name__ : Any = shift_tokens_right(_A , model.config.pad_token_id , model.config.decoder_start_token_id ) __magic_name__ : Optional[Any] = model(_A , decoder_input_ids=_A ).logits __magic_name__ : Dict = optax.softmax_cross_entropy(_A , onehot(_A , logits.shape[-1] ) ).mean() __magic_name__ : Dict = -(labels.shape[-1] * loss.item()) __magic_name__ : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCAmelCase : list , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[Any] = [] __magic_name__ , __magic_name__ : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __magic_name__ : Optional[int] = result + left + right return input_list def lowerCamelCase ( lowerCAmelCase : list ): """simple docstring""" if len(lowerCAmelCase ) <= 1: return input_list __magic_name__ : List[str] = list(lowerCAmelCase ) # iteration for two-way merging __magic_name__ : Union[str, Any] = 2 while p <= len(lowerCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ): __magic_name__ : str = i __magic_name__ : List[str] = i + p - 1 __magic_name__ : Tuple = (low + high + 1) // 2 __magic_name__ : Union[str, Any] = merge(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase ): __magic_name__ : Optional[Any] = i __magic_name__ : Optional[int] = merge(lowerCAmelCase , 0 , lowerCAmelCase , len(lowerCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCAmelCase :Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": lowerCAmelCase :Tuple = [] else: lowerCAmelCase :List[Any] = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCAmelCase : list[float] ): """simple docstring""" __magic_name__ : Tuple = 0.00 __magic_name__ : int = 0 for resistor in resistors: if resistor <= 0: __magic_name__ : Tuple = f'Resistor at index {index} has a negative or zero value!' raise ValueError(lowerCAmelCase ) first_sum += 1 / float(lowerCAmelCase ) index += 1 return 1 / first_sum def lowerCamelCase ( lowerCAmelCase : list[float] ): """simple docstring""" __magic_name__ : Union[str, Any] = 0.00 __magic_name__ : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __magic_name__ : str = f'Resistor at index {index} has a negative value!' raise ValueError(lowerCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase :List[str] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' lowerCAmelCase :Any = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' lowerCAmelCase :Optional[int] = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def __lowerCAmelCase ( self : Tuple , _A : Optional[Any] , _A : List[Any] ) -> List[Any]: __magic_name__ : List[str] = 0.0 for i, j in zip(_A , _A ): n_correct += 1.0 if math_equivalence.is_equiv(_A , _A ) else 0.0 __magic_name__ : Dict = n_correct / len(_A ) return { "accuracy": accuracy, }
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[Any] , _A : Optional[Any]=13 , _A : int=7 , _A : List[Any]=True , _A : Tuple=True , _A : Dict=True , _A : List[Any]=True , _A : str=99 , _A : Union[str, Any]=32 , _A : Union[str, Any]=5 , _A : Dict=4 , _A : Optional[int]=37 , _A : Optional[int]="gelu" , _A : List[Any]=0.1 , _A : str=0.1 , _A : str=512 , _A : Any=16 , _A : Dict=2 , _A : Union[str, Any]=0.02 , _A : Dict=4 , ) -> Tuple: __magic_name__ : List[Any] = parent __magic_name__ : Union[str, Any] = batch_size __magic_name__ : List[str] = seq_length __magic_name__ : int = is_training __magic_name__ : Dict = use_attention_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Dict = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : List[str] = num_attention_heads __magic_name__ : List[str] = intermediate_size __magic_name__ : str = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : int = type_sequence_label_size __magic_name__ : List[Any] = initializer_range __magic_name__ : Optional[Any] = num_choices def __lowerCAmelCase ( self : int ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[int] = None if self.use_attention_mask: __magic_name__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] = None if self.use_token_type_ids: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self : Dict ) -> List[Any]: __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[str] = config_and_inputs __magic_name__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : str = True A_ : int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self : Optional[int] ) -> str: __magic_name__ : Dict = FlaxRoFormerModelTester(self ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_A ) __magic_name__ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A ) @require_flax class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Dict ) -> List[Any]: __magic_name__ : List[Any] = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __magic_name__ : Optional[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Union[str, Any] = model(_A )[0] __magic_name__ : Tuple = 50000 __magic_name__ : str = (1, 6, vocab_size) self.assertEqual(output.shape , _A ) __magic_name__ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _A , atol=1E-4 ) )
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1