code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
_A : Any =get_logger(__name__)
class _lowercase :
def __init__( self: Optional[Any] , UpperCamelCase__: Optional[str] = None ):
lowerCamelCase__ : str = (
os.path.join(UpperCamelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
lowerCamelCase__ : int = Extractor
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: str ):
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
lowerCamelCase__ : int = os.path.abspath(UpperCamelCase__ )
return os.path.join(self.extract_dir , hash_url_to_filename(UpperCamelCase__ ) )
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: str , UpperCamelCase__: bool ):
return force_extract or (
not os.path.isfile(UpperCamelCase__ ) and not (os.path.isdir(UpperCamelCase__ ) and os.listdir(UpperCamelCase__ ))
)
def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: bool = False ):
lowerCamelCase__ : Any = self.extractor.infer_extractor_format(UpperCamelCase__ )
if not extractor_format:
return input_path
lowerCamelCase__ : str = self._get_output_path(UpperCamelCase__ )
if self._do_extract(UpperCamelCase__ , UpperCamelCase__ ):
self.extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return output_path
class _lowercase ( _lowercase ):
@classmethod
@abstractmethod
def lowerCamelCase_ ( cls: Tuple , UpperCamelCase__: Union[Path, str] , **UpperCamelCase__: int ):
...
@staticmethod
@abstractmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
...
class _lowercase ( _lowercase , _lowercase ):
a = []
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: int ):
with open(UpperCamelCase__ , """rb""" ) as f:
return f.read(UpperCamelCase__ )
@classmethod
def lowerCamelCase_ ( cls: str , UpperCamelCase__: Union[Path, str] , UpperCamelCase__: bytes = b"" ):
if not magic_number:
lowerCamelCase__ : str = max(len(UpperCamelCase__ ) for cls_magic_number in cls.magic_numbers )
try:
lowerCamelCase__ : Optional[int] = cls.read_magic_number(UpperCamelCase__ , UpperCamelCase__ )
except OSError:
return False
return any(magic_number.startswith(UpperCamelCase__ ) for cls_magic_number in cls.magic_numbers )
class _lowercase ( _lowercase ):
@classmethod
def lowerCamelCase_ ( cls: int , UpperCamelCase__: Union[Path, str] , **UpperCamelCase__: Tuple ):
return tarfile.is_tarfile(UpperCamelCase__ )
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: str , UpperCamelCase__: int ):
def resolved(UpperCamelCase__: str ) -> str:
return os.path.realpath(os.path.abspath(UpperCamelCase__ ) )
def badpath(UpperCamelCase__: str , UpperCamelCase__: str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ).startswith(UpperCamelCase__ )
def badlink(UpperCamelCase__: int , UpperCamelCase__: str ) -> bool:
# Links are interpreted relative to the directory containing the link
lowerCamelCase__ : Any = resolved(os.path.join(UpperCamelCase__ , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = resolved(UpperCamelCase__ )
for finfo in members:
if badpath(finfo.name , UpperCamelCase__ ):
logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(UpperCamelCase__ , UpperCamelCase__ ):
logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(UpperCamelCase__ , UpperCamelCase__ ):
logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = tarfile.open(UpperCamelCase__ )
tar_file.extractall(UpperCamelCase__ , members=TarExtractor.safemembers(UpperCamelCase__ , UpperCamelCase__ ) )
tar_file.close()
class _lowercase ( _lowercase ):
a = [B"""\x1F\x8B"""]
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
with gzip.open(UpperCamelCase__ , """rb""" ) as gzip_file:
with open(UpperCamelCase__ , """wb""" ) as extracted_file:
shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ )
class _lowercase ( _lowercase ):
a = [
B"""PK\x03\x04""",
B"""PK\x05\x06""", # empty archive
B"""PK\x07\x08""", # spanned archive
]
@classmethod
def lowerCamelCase_ ( cls: Any , UpperCamelCase__: Union[Path, str] , UpperCamelCase__: bytes = b"" ):
if super().is_extractable(UpperCamelCase__ , magic_number=UpperCamelCase__ ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(UpperCamelCase__ , """rb""" ) as fp:
lowerCamelCase__ : Optional[Any] = _EndRecData(UpperCamelCase__ )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
lowerCamelCase__ : Any = fp.read(UpperCamelCase__ ) # CD is where we expect it to be
if len(UpperCamelCase__ ) == sizeCentralDir:
lowerCamelCase__ : Union[str, Any] = struct.unpack(UpperCamelCase__ , UpperCamelCase__ ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
with zipfile.ZipFile(UpperCamelCase__ , """r""" ) as zip_file:
zip_file.extractall(UpperCamelCase__ )
zip_file.close()
class _lowercase ( _lowercase ):
a = [B"""\xFD\x37\x7A\x58\x5A\x00"""]
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
with lzma.open(UpperCamelCase__ ) as compressed_file:
with open(UpperCamelCase__ , """wb""" ) as extracted_file:
shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ )
class _lowercase ( _lowercase ):
a = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
lowerCamelCase__ : str = rarfile.RarFile(UpperCamelCase__ )
rf.extractall(UpperCamelCase__ )
rf.close()
class _lowercase ( _lowercase ):
a = [B"""\x28\xb5\x2F\xFD"""]
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
lowerCamelCase__ : Dict = zstd.ZstdDecompressor()
with open(UpperCamelCase__ , """rb""" ) as ifh, open(UpperCamelCase__ , """wb""" ) as ofh:
dctx.copy_stream(UpperCamelCase__ , UpperCamelCase__ )
class _lowercase ( _lowercase ):
a = [B"""\x42\x5A\x68"""]
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
with bza.open(UpperCamelCase__ , """rb""" ) as compressed_file:
with open(UpperCamelCase__ , """wb""" ) as extracted_file:
shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ )
class _lowercase ( _lowercase ):
a = [B"""\x37\x7A\xBC\xAF\x27\x1C"""]
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
with pyazr.SevenZipFile(UpperCamelCase__ , """r""" ) as archive:
archive.extractall(UpperCamelCase__ )
class _lowercase ( _lowercase ):
a = [B"""\x04\x22\x4D\x18"""]
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] ):
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(UpperCamelCase__ , """rb""" ) as compressed_file:
with open(UpperCamelCase__ , """wb""" ) as extracted_file:
shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ )
class _lowercase :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
a = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def lowerCamelCase_ ( cls: Tuple ):
return max(
len(UpperCamelCase__ )
for extractor in cls.extractors.values()
if issubclass(UpperCamelCase__ , UpperCamelCase__ )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__: Union[Path, str] , UpperCamelCase__: int ):
try:
return MagicNumberBaseExtractor.read_magic_number(UpperCamelCase__ , magic_number_length=UpperCamelCase__ )
except OSError:
return b""
@classmethod
def lowerCamelCase_ ( cls: Optional[Any] , UpperCamelCase__: Union[Path, str] , UpperCamelCase__: bool = False ):
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=UpperCamelCase__ , )
lowerCamelCase__ : List[Any] = cls.infer_extractor_format(UpperCamelCase__ )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def lowerCamelCase_ ( cls: List[str] , UpperCamelCase__: Union[Path, str] ): # <Added version="2.4.0"/>
lowerCamelCase__ : int = cls._get_magic_number_max_length()
lowerCamelCase__ : str = cls._read_magic_number(UpperCamelCase__ , UpperCamelCase__ )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(UpperCamelCase__ , magic_number=UpperCamelCase__ ):
return extractor_format
@classmethod
def lowerCamelCase_ ( cls: List[str] , UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Union[Path, str] , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Optional[BaseExtractor] = "deprecated" , ):
os.makedirs(os.path.dirname(UpperCamelCase__ ) , exist_ok=UpperCamelCase__ )
# Prevent parallel extractions
lowerCamelCase__ : Optional[Any] = str(Path(UpperCamelCase__ ).with_suffix(""".lock""" ) )
with FileLock(UpperCamelCase__ ):
shutil.rmtree(UpperCamelCase__ , ignore_errors=UpperCamelCase__ )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=UpperCamelCase__ , )
lowerCamelCase__ : int = extractor if extractor != """deprecated""" else extractor_format
else:
lowerCamelCase__ : Dict = cls.extractors[extractor_format]
return extractor.extract(UpperCamelCase__ , UpperCamelCase__ )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=UpperCamelCase__ , )
for extractor in cls.extractors.values():
if extractor.is_extractable(UpperCamelCase__ ):
return extractor.extract(UpperCamelCase__ , UpperCamelCase__ )
| 41 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() )
__magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__)
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ):
"""simple docstring"""
if metric == "rouge2":
__magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
__magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
__magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
__magic_name__ : int = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
' function.' )
__magic_name__ : List[Any] = ModelCheckpoint(
dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return EarlyStopping(
monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int:
__magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_A )
@rank_zero_only
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None:
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
__magic_name__ : List[str] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
__magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
__magic_name__ : List[Any] = od / 'test_results.txt'
__magic_name__ : Dict = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
__magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_A )
generations_file.parent.mkdir(exist_ok=_A )
with open(_A , 'a+' ) as writer:
for key in sorted(_A ):
if key in ["log", "progress_bar", "preds"]:
continue
__magic_name__ : Optional[Any] = metrics[key]
if isinstance(_A , torch.Tensor ):
__magic_name__ : Tuple = val.item()
__magic_name__ : int = F'{key}: {val:.6f}\n'
writer.write(_A )
if not save_generations:
return
if "preds" in metrics:
__magic_name__ : str = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(_A )
@rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple:
try:
__magic_name__ : str = pl_module.model.model.num_parameters()
except AttributeError:
__magic_name__ : List[str] = pl_module.model.num_parameters()
__magic_name__ : List[Any] = count_trainable_parameters(_A )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_A , _A , 'test' )
@rank_zero_only
def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid") | 331 | 0 |
'''simple docstring'''
import os
import sys
import unittest
lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowercase : List[str] = os.path.join(git_repo_path, "src", "diffusers")
class __UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = find_backend(' if not is_torch_available():' )
self.assertEqual(lowerCAmelCase_ , 'torch' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
_snake_case = find_backend(' if not (is_torch_available() and is_transformers_available()):' )
self.assertEqual(lowerCAmelCase_ , 'torch_and_transformers' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
_snake_case = find_backend(
' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' )
self.assertEqual(lowerCAmelCase_ , 'torch_and_transformers_and_onnx' )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch' , lowerCAmelCase_ )
self.assertIn('torch_and_transformers' , lowerCAmelCase_ )
self.assertIn('flax_and_transformers' , lowerCAmelCase_ )
self.assertIn('torch_and_transformers_and_onnx' , lowerCAmelCase_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('UNet2DModel' , objects['torch'] )
self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] )
self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] )
self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] )
self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] )
self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = create_dummy_object('CONSTANT' , '\'torch\'' )
self.assertEqual(lowerCAmelCase_ , '\nCONSTANT = None\n' )
_snake_case = create_dummy_object('function' , '\'torch\'' )
self.assertEqual(
lowerCAmelCase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
_snake_case = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n'
_snake_case = create_dummy_object('FakeClass' , '\'torch\'' )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n'
_snake_case = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'] , lowerCAmelCase_ )
| 42 |
'''simple docstring'''
def lowerCamelCase ( ):
"""simple docstring"""
return 1
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int = 200 ):
"""simple docstring"""
return two_pound(lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 331 | 0 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : List[str] = """char"""
a__ : str = """bpe"""
a__ : Union[str, Any] = """wp"""
__lowercase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : List[Any] = ["""image_processor""", """char_tokenizer"""]
a__ : Optional[Any] = """ViTImageProcessor"""
a__ : Optional[Any] = """MgpstrTokenizer"""
def __init__( self , __lowercase=None , __lowercase=None , **__lowercase) -> Any:
__UpperCamelCase :Tuple = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __lowercase , )
__UpperCamelCase :Any = kwargs.pop('''feature_extractor''')
__UpperCamelCase :List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''')
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''')
__UpperCamelCase :Optional[Any] = tokenizer
__UpperCamelCase :Any = AutoTokenizer.from_pretrained('''gpt2''')
__UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''')
super().__init__(__lowercase , __lowercase)
def __call__( self , __lowercase=None , __lowercase=None , __lowercase=None , **__lowercase) -> Tuple:
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''')
if images is not None:
__UpperCamelCase :Union[str, Any] = self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase)
if text is not None:
__UpperCamelCase :Dict = self.char_tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase)
if text is None:
return inputs
elif images is None:
return encodings
else:
__UpperCamelCase :int = encodings['''input_ids''']
return inputs
def UpperCamelCase__ ( self , __lowercase) -> Any:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = sequences
__UpperCamelCase :Dict = char_preds.size(0)
__UpperCamelCase , __UpperCamelCase :Optional[Any] = self._decode_helper(__lowercase , '''char''')
__UpperCamelCase , __UpperCamelCase :Dict = self._decode_helper(__lowercase , '''bpe''')
__UpperCamelCase , __UpperCamelCase :Optional[int] = self._decode_helper(__lowercase , '''wp''')
__UpperCamelCase :Optional[int] = []
__UpperCamelCase :str = []
for i in range(__lowercase):
__UpperCamelCase :Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]]
__UpperCamelCase :Any = [char_strs[i], bpe_strs[i], wp_strs[i]]
__UpperCamelCase :Optional[Any] = scores.index(max(__lowercase))
final_strs.append(strs[max_score_index])
final_scores.append(scores[max_score_index])
__UpperCamelCase :int = {}
__UpperCamelCase :Dict = final_strs
__UpperCamelCase :Tuple = final_scores
__UpperCamelCase :Dict = char_strs
__UpperCamelCase :List[str] = bpe_strs
__UpperCamelCase :Union[str, Any] = wp_strs
return out
def UpperCamelCase__ ( self , __lowercase , __lowercase) -> str:
if format == DecodeType.CHARACTER:
__UpperCamelCase :Tuple = self.char_decode
__UpperCamelCase :Optional[Any] = 1
__UpperCamelCase :Any = '''[s]'''
elif format == DecodeType.BPE:
__UpperCamelCase :int = self.bpe_decode
__UpperCamelCase :Dict = 2
__UpperCamelCase :int = '''#'''
elif format == DecodeType.WORDPIECE:
__UpperCamelCase :Optional[int] = self.wp_decode
__UpperCamelCase :List[str] = 102
__UpperCamelCase :Tuple = '''[SEP]'''
else:
raise ValueError(f"""Format {format} is not supported.""")
__UpperCamelCase , __UpperCamelCase :List[str] = [], []
__UpperCamelCase :List[Any] = pred_logits.size(0)
__UpperCamelCase :List[str] = pred_logits.size(1)
__UpperCamelCase , __UpperCamelCase :List[str] = pred_logits.topk(1 , dim=-1 , largest=__lowercase , sorted=__lowercase)
__UpperCamelCase :List[Any] = preds_index.view(-1 , __lowercase)[:, 1:]
__UpperCamelCase :Optional[Any] = decoder(__lowercase)
__UpperCamelCase , __UpperCamelCase :str = torch.nn.functional.softmax(__lowercase , dim=2).max(dim=2)
__UpperCamelCase :str = preds_max_prob[:, 1:]
for index in range(__lowercase):
__UpperCamelCase :int = preds_str[index].find(__lowercase)
__UpperCamelCase :Union[str, Any] = preds_str[index][:pred_eos]
__UpperCamelCase :int = preds_index[index].cpu().tolist()
__UpperCamelCase :str = pred_index.index(__lowercase) if eos_token in pred_index else -1
__UpperCamelCase :Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
__UpperCamelCase :str = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowercase)
conf_scores.append(__lowercase)
return dec_strs, conf_scores
def UpperCamelCase__ ( self , __lowercase) -> Any:
__UpperCamelCase :Optional[int] = [seq.replace(''' ''' , '''''') for seq in self.char_tokenizer.batch_decode(__lowercase)]
return decode_strs
def UpperCamelCase__ ( self , __lowercase) -> Optional[int]:
return self.bpe_tokenizer.batch_decode(__lowercase)
def UpperCamelCase__ ( self , __lowercase) -> Tuple:
__UpperCamelCase :Optional[int] = [seq.replace(''' ''' , '''''') for seq in self.wp_tokenizer.batch_decode(__lowercase)]
return decode_strs
| 43 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Union[str, Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Dict = ["""flax""", """transformers"""]
def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[int] = ["""flax""", """transformers"""]
def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] ) | 331 | 0 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class __A ( unittest.TestCase ):
def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 255 , a__=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
_lowerCAmelCase : List[str] = parent
_lowerCAmelCase : Dict = batch_size
_lowerCAmelCase : int = num_channels
_lowerCAmelCase : Optional[Any] = min_resolution
_lowerCAmelCase : Tuple = max_resolution
_lowerCAmelCase : List[Any] = do_resize
_lowerCAmelCase : Optional[Any] = size
_lowerCAmelCase : Optional[int] = do_normalize
_lowerCAmelCase : Optional[int] = image_mean
_lowerCAmelCase : Dict = image_std
_lowerCAmelCase : Optional[Any] = do_rescale
_lowerCAmelCase : List[Any] = rescale_factor
_lowerCAmelCase : int = do_pad
def __A ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __A ( self , a__ , a__=False ):
if not batched:
_lowerCAmelCase : Optional[int] = image_inputs[0]
if isinstance(a__ , Image.Image ):
_lowerCAmelCase , _lowerCAmelCase : str = image.size
else:
_lowerCAmelCase , _lowerCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
_lowerCAmelCase : Any = int(self.size["""shortest_edge"""] * h / w )
_lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""]
elif w > h:
_lowerCAmelCase : Tuple = self.size["""shortest_edge"""]
_lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h )
else:
_lowerCAmelCase : List[Any] = self.size["""shortest_edge"""]
_lowerCAmelCase : Any = self.size["""shortest_edge"""]
else:
_lowerCAmelCase : Optional[int] = []
for image in image_inputs:
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCAmelCase : List[str] = max(a__ , key=lambda a__ : item[0] )[0]
_lowerCAmelCase : Any = max(a__ , key=lambda a__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : Tuple = ConditionalDetrImageProcessor if is_vision_available() else None
def __A ( self ):
_lowerCAmelCase : Dict = ConditionalDetrImageProcessingTester(self )
@property
def __A ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self ):
_lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a__ , """image_mean""" ) )
self.assertTrue(hasattr(a__ , """image_std""" ) )
self.assertTrue(hasattr(a__ , """do_normalize""" ) )
self.assertTrue(hasattr(a__ , """do_resize""" ) )
self.assertTrue(hasattr(a__ , """size""" ) )
def __A ( self ):
_lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , a__ )
_lowerCAmelCase : Tuple = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a__ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , a__ )
def __A ( self ):
pass
def __A ( self ):
# Initialize image_processing
_lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , Image.Image )
# Test not batched input
_lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase : str = self.image_processor_tester.get_expected_values(a__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ )
_lowerCAmelCase : Optional[Any] = image_processing(a__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self ):
# Initialize image_processing
_lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , np.ndarray )
# Test not batched input
_lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(a__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase : str = image_processing(a__ , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase : int = self.image_processor_tester.get_expected_values(a__ , batched=a__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self ):
# Initialize image_processing
_lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , torch.Tensor )
# Test not batched input
_lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(a__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase : Tuple = image_processing(a__ , return_tensors="""pt""" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(a__ , batched=a__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __A ( self ):
# prepare image and target
_lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
_lowerCAmelCase : Optional[Any] = json.loads(f.read() )
_lowerCAmelCase : Optional[int] = {"""image_id""": 39769, """annotations""": target}
# encode them
_lowerCAmelCase : Union[str, Any] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" )
_lowerCAmelCase : Any = image_processing(images=a__ , annotations=a__ , return_tensors="""pt""" )
# verify pixel values
_lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , a__ )
_lowerCAmelCase : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1e-4 ) )
# verify area
_lowerCAmelCase : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) )
# verify boxes
_lowerCAmelCase : str = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ )
_lowerCAmelCase : Union[str, Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1e-3 ) )
# verify image_id
_lowerCAmelCase : Any = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) )
# verify is_crowd
_lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) )
# verify class_labels
_lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) )
# verify orig_size
_lowerCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) )
# verify size
_lowerCAmelCase : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) )
@slow
def __A ( self ):
# prepare image, target and masks_path
_lowerCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
_lowerCAmelCase : str = json.loads(f.read() )
_lowerCAmelCase : Dict = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
_lowerCAmelCase : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
_lowerCAmelCase : List[str] = ConditionalDetrImageProcessor(format="""coco_panoptic""" )
_lowerCAmelCase : str = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors="""pt""" )
# verify pixel values
_lowerCAmelCase : List[Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , a__ )
_lowerCAmelCase : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1e-4 ) )
# verify area
_lowerCAmelCase : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) )
# verify boxes
_lowerCAmelCase : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ )
_lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1e-3 ) )
# verify image_id
_lowerCAmelCase : List[Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) )
# verify is_crowd
_lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) )
# verify class_labels
_lowerCAmelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) )
# verify masks
_lowerCAmelCase : int = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , a__ )
# verify orig_size
_lowerCAmelCase : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) )
# verify size
_lowerCAmelCase : Union[str, Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) )
| 44 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase :Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any:
super().__init__(*_A , **_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]:
__magic_name__ : Union[str, Any] = {}
__magic_name__ : Optional[Any] = {}
if prompt is not None:
__magic_name__ : Union[str, Any] = prompt
if generate_kwargs is not None:
__magic_name__ : str = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__magic_name__ : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
__magic_name__ : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict:
__magic_name__ : List[Any] = load_image(_A )
if prompt is not None:
if not isinstance(_A , _A ):
raise ValueError(
F'Received an invalid text input, got - {type(_A )} - but expected a single string. '
'Note also that one single text can be provided for conditional image to text generation.' )
__magic_name__ : Any = self.model.config.model_type
if model_type == "git":
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids
__magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids
__magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
__magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework )
model_inputs.update(_A )
else:
raise ValueError(F'Model type {model_type} does not support conditional text generation' )
else:
__magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__magic_name__ : int = None
return model_inputs
def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _A )
and all(x is None for x in model_inputs['input_ids'] )
):
__magic_name__ : str = None
if generate_kwargs is None:
__magic_name__ : Optional[int] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name )
__magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A )
return model_outputs
def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]:
__magic_name__ : Optional[Any] = []
for output_ids in model_outputs:
__magic_name__ : Union[str, Any] = {
'generated_text': self.tokenizer.decode(
_A , skip_special_tokens=_A , )
}
records.append(_A )
return records | 331 | 0 |
"""simple docstring"""
import numpy as np
def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> np.ndarray:
return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 45 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowerCAmelCase :Dict = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
lowerCAmelCase :str = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowerCAmelCase :Any = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys())
lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class _lowerCamelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_A )
__magic_name__ : List[str] = 0
__magic_name__ : Union[str, Any] = Path(self.hparams.output_dir )
__magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__magic_name__ : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , )
else:
__magic_name__ : PretrainedConfig = config
__magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , _A , _A ):
assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , _A , getattr(self.hparams , _A ) )
if tokenizer is None:
__magic_name__ : List[Any] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , )
else:
__magic_name__ : PreTrainedTokenizer = tokenizer
__magic_name__ : Optional[int] = MODEL_MODES[mode]
if model is None:
__magic_name__ : Tuple = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , )
else:
__magic_name__ : str = model
def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple:
__magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
__magic_name__ : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : Optional[Any] = self.model
__magic_name__ : int = ['bias', 'LayerNorm.weight']
__magic_name__ : Dict = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__magic_name__ : str = Adafactor(
_A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A )
else:
__magic_name__ : Tuple = AdamW(
_A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__magic_name__ : List[str] = optimizer
__magic_name__ : int = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]:
return self.validation_step(_A , _A )
def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any:
return self.validation_end(_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
__magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str:
if stage == "test":
__magic_name__ : Any = len(self.test_dataloader().dataset )
else:
__magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A )
__magic_name__ : int = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]:
raise NotImplementedError('You must implement this for your task' )
def __lowerCAmelCase ( self : int ) -> List[str]:
return self.train_loader
def __lowerCAmelCase ( self : Tuple ) -> int:
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str:
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
_A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None:
__magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' )
__magic_name__ : List[Any] = self.step_count
self.model.save_pretrained(_A )
self.tokenizer.save_pretrained(_A )
@staticmethod
def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple:
parser.add_argument(
'--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A )
parser.add_argument('--train_batch_size' , default=32 , type=_A )
parser.add_argument('--eval_batch_size' , default=32 , type=_A )
parser.add_argument('--adafactor' , action='store_true' )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_A )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]:
__magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler']
__magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_A )
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]:
rank_zero_info('***** Validation results *****' )
__magic_name__ : str = trainer.callback_metrics
# Log results
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]:
rank_zero_info('***** Test results *****' )
__magic_name__ : Optional[int] = trainer.callback_metrics
# Log and save results to file
__magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(_A , 'w' ) as writer:
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
parser.add_argument(
'--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__magic_name__ : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase )
if logging_callback is None:
__magic_name__ : Dict = LoggingCallback()
__magic_name__ : List[str] = {}
if args.fpaa:
__magic_name__ : Dict = 16
if args.gpus > 1:
__magic_name__ : Tuple = 'auto'
__magic_name__ : int = 'ddp'
__magic_name__ : str = args.accumulate_grad_batches
__magic_name__ : str = None
__magic_name__ : List[str] = 'auto'
__magic_name__ : List[Any] = pl.Trainer.from_argparse_args(
lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , )
if args.do_train:
trainer.fit(lowerCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer | 331 | 0 |
"""simple docstring"""
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
lowerCAmelCase = int(SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = t // 36_00, (t // 60) % 60, t % 60
return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}'
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=3_00 ):
'''simple docstring'''
return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n '
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
lowerCAmelCase = """<table border=\"1\" class=\"dataframe\">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F' <th>{i}</th>\n'
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
lowerCAmelCase = F'{elt:.6f}' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE )
html_code += F' <td>{elt}</td>\n'
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class lowercase :
_SCREAMING_SNAKE_CASE = 5
_SCREAMING_SNAKE_CASE = 0.2
def __init__( self , lowercase , lowercase = None , lowercase = True , lowercase = None , lowercase = 300 , ) -> List[Any]:
lowerCAmelCase = total
lowerCAmelCase = """""" if prefix is None else prefix
lowerCAmelCase = leave
lowerCAmelCase = parent
lowerCAmelCase = width
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
def _snake_case ( self , lowercase , lowercase = False , lowercase = None ) -> Optional[int]:
lowerCAmelCase = value
if comment is not None:
lowerCAmelCase = comment
if self.last_value is None:
lowerCAmelCase = lowerCAmelCase = time.time()
lowerCAmelCase = lowerCAmelCase = value
lowerCAmelCase = lowerCAmelCase = None
lowerCAmelCase = self.warmup
lowerCAmelCase = 1
self.update_bar(lowercase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
lowerCAmelCase = time.time()
lowerCAmelCase = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
lowerCAmelCase = self.elapsed_time / (value - self.start_value)
else:
lowerCAmelCase = None
if value >= self.total:
lowerCAmelCase = self.total
lowerCAmelCase = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
lowerCAmelCase = self.average_time_per_item * (self.total - value)
self.update_bar(lowercase )
lowerCAmelCase = value
lowerCAmelCase = current_time
if self.average_time_per_item is None:
lowerCAmelCase = 1
else:
lowerCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 )
def _snake_case ( self , lowercase , lowercase=None ) -> Dict:
lowerCAmelCase = """ """ * (len(str(self.total ) ) - len(str(lowercase ) )) + str(lowercase )
if self.elapsed_time is None:
lowerCAmelCase = f'[{spaced_value}/{self.total} : < :'
elif self.predicted_remaining is None:
lowerCAmelCase = f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}'
else:
lowerCAmelCase = (
f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <'
f' {format_time(self.predicted_remaining )}'
)
self.label += f', {1/self.average_time_per_item:.2f} it/s'
self.label += "]" if self.comment is None or len(self.comment ) == 0 else f', {self.comment}]'
self.display()
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
lowerCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowercase )
else:
self.output.update(disp.HTML(self.html_code ) )
def _snake_case ( self ) -> Dict:
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("""""" ) )
class lowercase ( _UpperCAmelCase ):
def __init__( self , lowercase , lowercase=None ) -> List[str]:
super().__init__(lowercase )
lowerCAmelCase = None if column_names is None else [column_names]
lowerCAmelCase = None
def _snake_case ( self ) -> Any:
lowerCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
lowerCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowercase )
else:
self.output.update(disp.HTML(self.html_code ) )
def _snake_case ( self , lowercase ) -> int:
if self.inner_table is None:
lowerCAmelCase = [list(values.keys() ), list(values.values() )]
else:
lowerCAmelCase = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(lowercase )
lowerCAmelCase = columns
self.inner_table.append([values[c] for c in columns] )
def _snake_case ( self , lowercase , lowercase=None , lowercase=300 ) -> List[Any]:
lowerCAmelCase = NotebookProgressBar(lowercase , prefix=lowercase , parent=self , width=lowercase )
return self.child_bar
def _snake_case ( self ) -> int:
lowerCAmelCase = None
self.display()
class lowercase ( _UpperCAmelCase ):
def __init__( self ) -> Union[str, Any]:
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = False
def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Optional[Any]:
lowerCAmelCase = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step"""
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = [self.first_column] + ["""Training Loss"""]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("""Validation Loss""" )
lowerCAmelCase = NotebookTrainingTracker(state.max_steps , lowercase )
def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict:
lowerCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else f'{state.epoch:.2f}'
self.training_tracker.update(
state.global_step + 1 , comment=f'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , )
lowerCAmelCase = False
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict:
if not has_length(lowercase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
lowerCAmelCase = self.training_tracker.add_child(len(lowercase ) )
else:
lowerCAmelCase = NotebookProgressBar(len(lowercase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict:
if self.prediction_bar is not None:
self.prediction_bar.close()
lowerCAmelCase = None
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> List[Any]:
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
lowerCAmelCase = {"""Training Loss""": logs["""loss"""]}
# First column is necessarily Step sine we're not in epoch eval strategy
lowerCAmelCase = state.global_step
self.training_tracker.write_line(lowercase )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> List[str]:
if self.training_tracker is not None:
lowerCAmelCase = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""}
for log in reversed(state.log_history ):
if "loss" in log:
lowerCAmelCase = log["""loss"""]
break
if self.first_column == "Epoch":
lowerCAmelCase = int(state.epoch )
else:
lowerCAmelCase = state.global_step
lowerCAmelCase = """eval"""
for k in metrics:
if k.endswith("""_loss""" ):
lowerCAmelCase = re.sub(r"""\_loss$""" , """""" , lowercase )
lowerCAmelCase = metrics.pop("""total_flos""" , lowercase )
lowerCAmelCase = metrics.pop("""epoch""" , lowercase )
lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_runtime' , lowercase )
lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_samples_per_second' , lowercase )
lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_steps_per_second' , lowercase )
lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_jit_compilation_time' , lowercase )
for k, v in metrics.items():
if k == f'{metric_key_prefix}_loss':
lowerCAmelCase = v
else:
lowerCAmelCase = k.split("""_""" )
lowerCAmelCase = """ """.join([part.capitalize() for part in splits[1:]] )
lowerCAmelCase = v
self.training_tracker.write_line(lowercase )
self.training_tracker.remove_child()
lowerCAmelCase = None
# Evaluation takes a long time so we should force the next update.
lowerCAmelCase = True
def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]:
self.training_tracker.update(
state.global_step , comment=f'Epoch {int(state.epoch )}/{state.num_train_epochs}' , force_update=lowercase )
lowerCAmelCase = None
| 46 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Dict = (DDPMScheduler,)
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str:
__magic_name__ : str = {
'num_train_timesteps': 1000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**_A )
return config
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_A )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> str:
self.check_over_configs(thresholding=_A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_A , prediction_type=_A , sample_max_value=_A , )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Dict = scheduler_class(**_A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def __lowerCAmelCase ( self : Tuple ) -> int:
__magic_name__ : Tuple = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : str = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Union[str, Any] = self.dummy_model()
__magic_name__ : List[Any] = self.dummy_sample_deter
__magic_name__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : Tuple = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : Dict = pred_prev_sample
__magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) )
__magic_name__ : Dict = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' )
__magic_name__ : Any = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Dict = self.dummy_model()
__magic_name__ : str = self.dummy_sample_deter
__magic_name__ : str = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : List[Any] = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : List[Any] = pred_prev_sample
__magic_name__ : int = torch.sum(torch.abs(_A ) )
__magic_name__ : Any = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def __lowerCAmelCase ( self : List[str] ) -> str:
__magic_name__ : Dict = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Optional[Any] = scheduler_class(**_A )
__magic_name__ : List[str] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_A )
__magic_name__ : List[str] = scheduler.timesteps
for i, timestep in enumerate(_A ):
if i == len(_A ) - 1:
__magic_name__ : Optional[int] = -1
else:
__magic_name__ : List[Any] = timesteps[i + 1]
__magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A )
__magic_name__ : Any = prev_t.item()
self.assertEqual(_A , _A )
def __lowerCAmelCase ( self : Tuple ) -> str:
__magic_name__ : str = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 1, 0]
__magic_name__ : Tuple = len(_A )
with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=_A ) | 331 | 0 |
'''simple docstring'''
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
lowerCamelCase : Any = logging.get_logger(__name__)
lowerCamelCase : Dict = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
lowerCamelCase : Union[str, Any] = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
lowerCamelCase : Dict = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
lowerCamelCase : Any = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
lowerCamelCase : Union[str, Any] = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
lowerCamelCase : Any = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
lowerCamelCase : List[Any] = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
lowerCamelCase : Optional[int] = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
lowerCamelCase : Optional[Any] = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
lowerCamelCase : List[str] = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
lowerCamelCase : Optional[int] = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
lowerCamelCase : str = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
lowerCamelCase : Dict = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
lowerCamelCase : Optional[int] = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
lowerCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
lowerCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
lowerCamelCase : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
lowerCamelCase : Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
lowerCamelCase : Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
lowerCamelCase : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
lowerCamelCase : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
lowerCamelCase : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
lowerCamelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
lowerCamelCase : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
lowerCamelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_MAPPING
lowerCamelCase : int = auto_class_update(FlaxAutoModel)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING
lowerCamelCase : Any = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
lowerCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING
lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCamelCase : Any = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowerCamelCase : Tuple = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCamelCase : str = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
lowerCamelCase : List[str] = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCamelCase : Optional[Any] = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class A__ ( _BaseAutoModelClass ):
A__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
lowerCamelCase : Optional[Any] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
)
| 47 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = IFInpaintingPipeline
A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
return self._get_dummy_components()
def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]:
if str(_A ).startswith('mps' ):
__magic_name__ : Optional[Any] = torch.manual_seed(_A )
else:
__magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
__magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Tuple = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __lowerCAmelCase ( self : List[Any] ) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def __lowerCAmelCase ( self : Dict ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __lowerCAmelCase ( self : Tuple ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
self._test_save_load_local()
def __lowerCAmelCase ( self : Any ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , ) | 331 | 0 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
'stable diffusion controlnet',
'0.22.0',
'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.',
standard_warn=False,
stacklevel=3,
)
| 48 |
'''simple docstring'''
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Optional[int] = seq_length
__magic_name__ : List[str] = is_training
__magic_name__ : Optional[Any] = use_input_mask
__magic_name__ : Dict = use_token_type_ids
__magic_name__ : str = use_labels
__magic_name__ : int = vocab_size
__magic_name__ : List[Any] = hidden_size
__magic_name__ : Dict = num_hidden_layers
__magic_name__ : Dict = num_attention_heads
__magic_name__ : Tuple = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : Union[str, Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = max_position_embeddings
__magic_name__ : Any = type_vocab_size
__magic_name__ : Union[str, Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = initializer_range
__magic_name__ : str = num_labels
__magic_name__ : Tuple = num_choices
__magic_name__ : Any = relative_attention
__magic_name__ : str = position_biased_input
__magic_name__ : str = pos_att_type
__magic_name__ : Union[str, Any] = scope
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : List[Any] = None
if self.use_input_mask:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__magic_name__ : int = None
if self.use_token_type_ids:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : List[str] = None
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.get_config()
__magic_name__ : Union[str, Any] = 300
return config
def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]:
__magic_name__ : Dict = DebertaModel(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0]
__magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0]
__magic_name__ : List[str] = model(_A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict:
__magic_name__ : List[str] = DebertaForMaskedLM(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]:
__magic_name__ : Optional[int] = self.num_labels
__magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A )
model.to(_A )
model.eval()
__magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(_A )
def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]:
__magic_name__ : str = self.num_labels
__magic_name__ : int = DebertaForTokenClassification(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]:
__magic_name__ : int = DebertaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[int] = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : int = config_and_inputs
__magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Tuple = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Union[str, Any] = True
A_ : Any = False
A_ : Dict = False
A_ : str = False
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : List[str] = DebertaModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : Any ) -> str:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A )
def __lowerCAmelCase ( self : str ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : int = DebertaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='Model not available yet' )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
pass
@slow
def __lowerCAmelCase ( self : Dict ) -> Tuple:
__magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' )
__magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
__magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0]
# compare the actual values for a slice.
__magic_name__ : Tuple = torch.tensor(
[[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' ) | 331 | 0 |
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class _A :
UpperCamelCase__ : Dict = BlenderbotSmallConfig
UpperCamelCase__ : Tuple = {}
UpperCamelCase__ : str = '''gelu'''
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Dict=99 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=20 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = eos_token_id
__a = pad_token_id
__a = bos_token_id
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size)
__a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1)
__a = tf.concat([input_ids, eos_tensor] , axis=1)
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__a = prepare_blenderbot_small_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
return config, inputs_dict
def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any):
'''simple docstring'''
__a = TFBlenderbotSmallModel(config=__SCREAMING_SNAKE_CASE).get_decoder()
__a = inputs_dict['''input_ids''']
__a = input_ids[:1, :]
__a = inputs_dict['''attention_mask'''][:1, :]
__a = inputs_dict['''head_mask''']
__a = 1
# first forward pass
__a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE)
__a , __a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__a = ids_tensor((self.batch_size, 3) , config.vocab_size)
__a = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta)
# append to next input_ids and
__a = tf.concat([input_ids, next_tokens] , axis=-1)
__a = tf.concat([attention_mask, next_attn_mask] , axis=-1)
__a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0]
__a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE)[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1])
# select random slice
__a = int(ids_tensor((1,) , output_from_past.shape[-1]))
__a = output_from_no_past[:, -3:, random_slice_idx]
__a = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-3)
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ):
if attention_mask is None:
__a = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__a = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__a = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__a = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__a = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ : Union[str, Any] = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
UpperCamelCase__ : Union[str, Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase__ : str = (
{
'''conversational''': TFBlenderbotSmallForConditionalGeneration,
'''feature-extraction''': TFBlenderbotSmallModel,
'''summarization''': TFBlenderbotSmallForConditionalGeneration,
'''text2text-generation''': TFBlenderbotSmallForConditionalGeneration,
'''translation''': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase__ : Optional[int] = True
UpperCamelCase__ : int = False
UpperCamelCase__ : str = False
def _lowerCamelCase ( self : int):
'''simple docstring'''
__a = TFBlenderbotSmallModelTester(self)
__a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : str):
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowerCamelCase ( self : List[str]):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE)
@require_tokenizers
@require_tf
class _A ( unittest.TestCase ):
UpperCamelCase__ : Union[str, Any] = [
'''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '''
''' i\'m going to throw up.\nand why is that?'''
]
UpperCamelCase__ : str = '''facebook/blenderbot_small-90M'''
@cached_property
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''')
@cached_property
def _lowerCamelCase ( self : Optional[int]):
'''simple docstring'''
__a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name)
return model
@slow
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
__a = self.tokenizer(self.src_text , return_tensors='''tf''')
__a = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__SCREAMING_SNAKE_CASE , )
__a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE)[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 49 |
'''simple docstring'''
class _lowerCamelCase : # Public class to implement a graph
'''simple docstring'''
def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
__magic_name__ : Tuple = row
__magic_name__ : str = col
__magic_name__ : Optional[Any] = graph
def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
# Checking all 8 elements surrounding nth element
__magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1]
__magic_name__ : Optional[int] = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A )
def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands.
__magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )]
__magic_name__ : Any = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(_A , _A , _A )
count += 1
return count | 331 | 0 |
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Any = {
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""",
# See all BART models at https://huggingface.co/models?filter=bart
}
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = """bart"""
UpperCAmelCase__ = ["""past_key_values"""]
UpperCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Tuple , UpperCAmelCase : Optional[int]=50265 , UpperCAmelCase : Optional[int]=1024 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Dict=4096 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[Any]=4096 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : Tuple=1024 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : Any=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=3 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=2 , UpperCAmelCase : List[str]=2 , **UpperCAmelCase : Dict , ) -> Union[str, Any]:
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Optional[Any] = d_model
lowerCamelCase__ : int = encoder_ffn_dim
lowerCamelCase__ : int = encoder_layers
lowerCamelCase__ : Optional[Any] = encoder_attention_heads
lowerCamelCase__ : Dict = decoder_ffn_dim
lowerCamelCase__ : Union[str, Any] = decoder_layers
lowerCamelCase__ : List[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Optional[Any] = activation_dropout
lowerCamelCase__ : str = activation_function
lowerCamelCase__ : List[str] = init_std
lowerCamelCase__ : Optional[Any] = encoder_layerdrop
lowerCamelCase__ : Optional[int] = decoder_layerdrop
lowerCamelCase__ : int = classifier_dropout
lowerCamelCase__ : Union[str, Any] = use_cache
lowerCamelCase__ : str = encoder_layers
lowerCamelCase__ : str = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , **UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , UpperCAmelCase ):
lowerCamelCase__ : Dict = self.bos_token_id
warnings.warn(
F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """
'The config can simply be saved and uploaded again to be fixed.' )
class lowerCAmelCase ( __UpperCamelCase ):
@property
def A_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Any = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
lowerCamelCase__ : Tuple = {0: 'batch'}
lowerCamelCase__ : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
lowerCamelCase__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'}
lowerCamelCase__ : Dict = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : int = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_layers
for i in range(UpperCAmelCase ):
lowerCamelCase__ : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'}
lowerCamelCase__ : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'}
else:
lowerCamelCase__ : Union[str, Any] = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
def A_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = super().outputs
else:
lowerCamelCase__ : Optional[Any] = super(UpperCAmelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : List[str] = self.num_layers
for i in range(UpperCAmelCase ):
lowerCamelCase__ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'}
lowerCamelCase__ : List[str] = {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def A_ ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : List[str] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[int] = dict(**UpperCAmelCase , **UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = common_inputs['input_ids'].shape
lowerCamelCase__ : List[str] = common_inputs['decoder_input_ids'].shape[1]
lowerCamelCase__ , lowerCamelCase__ : List[str] = self.num_attention_heads
lowerCamelCase__ : Any = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Dict = decoder_seq_length + 3
lowerCamelCase__ : int = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : Dict = torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(UpperCAmelCase , UpperCAmelCase )] , dim=1 )
lowerCamelCase__ : Any = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
lowerCamelCase__ : List[Any] = min(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : Tuple = max(UpperCAmelCase , UpperCAmelCase ) - min_num_layers
lowerCamelCase__ : str = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(UpperCAmelCase ),
torch.zeros(UpperCAmelCase ),
torch.zeros(UpperCAmelCase ),
torch.zeros(UpperCAmelCase ),
) )
# TODO: test this.
lowerCamelCase__ : List[str] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(UpperCAmelCase , UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) )
return common_inputs
def A_ ( self : Tuple , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
lowerCamelCase__ : Union[str, Any] = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs['attention_mask'].dtype
lowerCamelCase__ : int = torch.cat(
[common_inputs['attention_mask'], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
lowerCamelCase__ : Any = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(UpperCAmelCase )
]
return common_inputs
def A_ ( self : Optional[int] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowerCamelCase__ : Tuple = compute_effective_axis_dimension(
UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(UpperCAmelCase )
lowerCamelCase__ : List[str] = compute_effective_axis_dimension(
UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Dict = dict(tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase ) )
return common_inputs
def A_ ( self : List[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : int = self._generate_dummy_inputs_for_causal_lm(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
else:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
return common_inputs
def A_ ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : int ) -> List[Any]:
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
else:
lowerCamelCase__ : str = super(UpperCAmelCase , self )._flatten_past_key_values_(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __snake_case :
def __init__( self : str , _snake_case : Tuple , _snake_case : List[str]=13 , _snake_case : Tuple=7 , _snake_case : Optional[Any]=True , _snake_case : List[str]=True , _snake_case : Dict=False , _snake_case : List[str]=True , _snake_case : Optional[int]=99 , _snake_case : Optional[int]=32 , _snake_case : Dict=5 , _snake_case : List[Any]=4 , _snake_case : Optional[int]=37 , _snake_case : Optional[Any]="gelu" , _snake_case : Tuple=0.1 , _snake_case : Tuple=0.1 , _snake_case : int=512 , _snake_case : int=16 , _snake_case : List[Any]=2 , _snake_case : Any=0.0_2 , _snake_case : str=3 , _snake_case : Union[str, Any]=4 , _snake_case : str=None , ):
"""simple docstring"""
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_input_mask
UpperCAmelCase_ = use_token_type_ids
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = num_choices
UpperCAmelCase_ = scope
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCAmelCase_ = None
if self.use_input_mask:
UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length])
UpperCAmelCase_ = None
if self.use_token_type_ids:
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices)
UpperCAmelCase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase ( self : str):
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , )
def lowerCamelCase ( self : Optional[Any] , _snake_case : int , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = OpenLlamaModel(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)
UpperCAmelCase_ = model(_snake_case)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def lowerCamelCase ( self : Dict , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : List[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , ):
"""simple docstring"""
UpperCAmelCase_ = True
UpperCAmelCase_ = OpenLlamaModel(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , )
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : int , _snake_case : List[Any] , _snake_case : Any , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase_ = OpenLlamaForCausalLM(config=_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def lowerCamelCase ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : str , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Dict , ):
"""simple docstring"""
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = OpenLlamaForCausalLM(config=_snake_case)
model.to(_snake_case)
model.eval()
# first forward pass
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , )
UpperCAmelCase_ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size)
UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1)
UpperCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1)
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['''hidden_states'''][0]
UpperCAmelCase_ = model(
_snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['''hidden_states'''][0]
# select random slice
UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1]).item()
UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3))
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __snake_case ( a , a , a , unittest.TestCase ):
UpperCAmelCase__ : Dict = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
UpperCAmelCase__ : int = (OpenLlamaForCausalLM,) if is_torch_available() else ()
UpperCAmelCase__ : Union[str, Any] = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Any = False
UpperCAmelCase__ : Dict = False
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = OpenLlamaModelTester(self)
UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Dict):
"""simple docstring"""
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ = type
self.model_tester.create_and_check_model(*_snake_case)
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = 3
UpperCAmelCase_ = input_dict['''input_ids''']
UpperCAmelCase_ = input_ids.ne(1).to(_snake_case)
UpperCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
UpperCAmelCase_ = OpenLlamaForSequenceClassification(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = 3
UpperCAmelCase_ = '''single_label_classification'''
UpperCAmelCase_ = input_dict['''input_ids''']
UpperCAmelCase_ = input_ids.ne(1).to(_snake_case)
UpperCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
UpperCAmelCase_ = OpenLlamaForSequenceClassification(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def lowerCamelCase ( self : int):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = 3
UpperCAmelCase_ = '''multi_label_classification'''
UpperCAmelCase_ = input_dict['''input_ids''']
UpperCAmelCase_ = input_ids.ne(1).to(_snake_case)
UpperCAmelCase_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
UpperCAmelCase_ = OpenLlamaForSequenceClassification(_snake_case)
model.to(_snake_case)
model.eval()
UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''')
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)])
def lowerCamelCase ( self : List[Any] , _snake_case : List[Any]):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = ids_tensor([1, 10] , config.vocab_size)
UpperCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase_ = OpenLlamaModel(_snake_case)
original_model.to(_snake_case)
original_model.eval()
UpperCAmelCase_ = original_model(_snake_case).last_hidden_state
UpperCAmelCase_ = original_model(_snake_case).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase_ = {'''type''': scaling_type, '''factor''': 1_0.0}
UpperCAmelCase_ = OpenLlamaModel(_snake_case)
scaled_model.to(_snake_case)
scaled_model.eval()
UpperCAmelCase_ = scaled_model(_snake_case).last_hidden_state
UpperCAmelCase_ = scaled_model(_snake_case).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-5))
else:
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5))
| 51 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ):
"""simple docstring"""
__magic_name__ : list[int] = [0]
__magic_name__ : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
__magic_name__ : int = 0
# the area corresponding to the grid that gives the product closest to target
__magic_name__ : int = 0
# an estimate of b, using the quadratic formula
__magic_name__ : float
# the largest integer less than b_estimate
__magic_name__ : int
# the largest integer less than b_estimate
__magic_name__ : int
# the triangle number corresponding to b_floor
__magic_name__ : int
# the triangle number corresponding to b_ceil
__magic_name__ : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
__magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
__magic_name__ : List[Any] = floor(lowerCAmelCase )
__magic_name__ : Dict = ceil(lowerCAmelCase )
__magic_name__ : Any = triangle_numbers[b_floor]
__magic_name__ : Optional[int] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : Any = triangle_b_first_guess * triangle_a
__magic_name__ : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : List[str] = triangle_b_second_guess * triangle_a
__magic_name__ : Optional[int] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F'{solution() = }') | 331 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCamelCase : Dict = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = ["""PerceiverFeatureExtractor"""]
__lowerCamelCase : str = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 52 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Dict = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Tuple = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Any = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure) | 331 | 0 |
'''simple docstring'''
def lowercase__ ( __lowercase : int , __lowercase : int ) -> int:
"""simple docstring"""
while a != 0:
__UpperCamelCase , __UpperCamelCase = b % a, a
return b
def lowercase__ ( __lowercase : int , __lowercase : int ) -> int:
"""simple docstring"""
if gcd(__lowercase , __lowercase ) != 1:
__UpperCamelCase = F'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(__lowercase )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1, 0, a
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 1, m
while va != 0:
__UpperCamelCase = ua // va
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 53 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase :Optional[int] = logging.get_logger(__name__)
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Tuple = ["""pixel_values"""]
def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None:
super().__init__(**_A )
__magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384}
__magic_name__ : Dict = get_size_dict(_A , default_to_square=_A )
__magic_name__ : List[Any] = do_resize
__magic_name__ : str = size
# Default value set here for backwards compatibility where the value in config is None
__magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256
__magic_name__ : int = resample
__magic_name__ : List[str] = do_rescale
__magic_name__ : List[Any] = rescale_factor
__magic_name__ : str = do_normalize
__magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
__magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
__magic_name__ : Dict = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__magic_name__ : Dict = int(shortest_edge / crop_pct )
__magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
__magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int:
return rescale(_A , scale=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray:
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image:
__magic_name__ : int = do_resize if do_resize is not None else self.do_resize
__magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct
__magic_name__ : Optional[Any] = resample if resample is not None else self.resample
__magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : str = image_mean if image_mean is not None else self.image_mean
__magic_name__ : Dict = image_std if image_std is not None else self.image_std
__magic_name__ : Dict = size if size is not None else self.size
__magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A )
__magic_name__ : int = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
__magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images]
if do_rescale:
__magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
__magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
__magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images]
__magic_name__ : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A ) | 331 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : Union[str, Any] = "facebook/bart-large-mnli"
snake_case__ : str = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
snake_case__ : Tuple = "text_classifier"
snake_case__ : Any = AutoTokenizer
snake_case__ : Optional[Any] = AutoModelForSequenceClassification
snake_case__ : Any = ["text", ["text"]]
snake_case__ : Optional[int] = ["text"]
def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]:
super().setup()
__SCREAMING_SNAKE_CASE = self.model.config
__SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
__SCREAMING_SNAKE_CASE = int(UpperCAmelCase__ )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(UpperCAmelCase__ ) , [F"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , )
def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : List[str] ) -> Dict:
__SCREAMING_SNAKE_CASE = outputs.logits
__SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 54 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s
lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1
def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ):
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
__magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__magic_name__ : Union[str, Any] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod() | 331 | 0 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __snake_case ( UpperCAmelCase_ : Dict ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ):
lowerCamelCase_ = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowerCamelCase_ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
lowerCamelCase_ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
lowerCamelCase_ = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
lowerCamelCase_ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
lowerCamelCase_ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
lowerCamelCase_ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
lowerCamelCase_ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
lowerCamelCase_ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
lowerCamelCase_ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
lowerCamelCase_ = key.replace("image_encoder.module" , "flava.image_model" )
lowerCamelCase_ = key.replace("text_encoder.module" , "flava.text_model" )
lowerCamelCase_ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
lowerCamelCase_ = key.replace("mm_encoder.module" , "flava.multimodal_model" )
lowerCamelCase_ = key.replace("text_projection" , "flava.text_projection" )
lowerCamelCase_ = key.replace("image_projection" , "flava.image_projection" )
lowerCamelCase_ = value.float()
for key, value in codebook_state_dict.items():
lowerCamelCase_ = value
return upgrade
@torch.no_grad()
def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=None ):
if config_path is not None:
lowerCamelCase_ = FlavaConfig.from_pretrained(UpperCAmelCase_ )
else:
lowerCamelCase_ = FlavaConfig()
lowerCamelCase_ = FlavaForPreTraining(UpperCAmelCase_ ).eval()
lowerCamelCase_ = convert_dalle_checkpoint(UpperCAmelCase_ , UpperCAmelCase_ , save_checkpoint=UpperCAmelCase_ )
if os.path.exists(UpperCAmelCase_ ):
lowerCamelCase_ = torch.load(UpperCAmelCase_ , map_location="cpu" )
else:
lowerCamelCase_ = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location="cpu" )
lowerCamelCase_ = upgrade_state_dict(UpperCAmelCase_ , UpperCAmelCase_ )
hf_model.load_state_dict(UpperCAmelCase_ )
lowerCamelCase_ = hf_model.state_dict()
lowerCamelCase_ = count_parameters(UpperCAmelCase_ )
lowerCamelCase_ = count_parameters(UpperCAmelCase_ ) + count_parameters(UpperCAmelCase_ )
assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
hf_model.save_pretrained(UpperCAmelCase_ )
if __name__ == "__main__":
a_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
a_ : Union[str, Any] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 55 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCAmelCase :Tuple = (
'''4S 3H 2C 7S 5H''',
'''9D 8H 2C 6S 7H''',
'''2D 6D 9D TH 7D''',
'''TC 8C 2S JH 6C''',
'''JH 8S TH AH QH''',
'''TS KS 5S 9S AC''',
'''KD 6S 9D TH AD''',
'''KS 8D 4D 9S 4S''', # pair
'''8C 4S KH JS 4D''', # pair
'''QH 8H KD JH 8S''', # pair
'''KC 4H KS 2H 8D''', # pair
'''KD 4S KC 3H 8S''', # pair
'''AH 8S AS KC JH''', # pair
'''3H 4C 4H 3S 2H''', # 2 pairs
'''5S 5D 2C KH KH''', # 2 pairs
'''3C KH 5D 5S KH''', # 2 pairs
'''AS 3C KH AD KH''', # 2 pairs
'''7C 7S 3S 7H 5S''', # 3 of a kind
'''7C 7S KH 2H 7H''', # 3 of a kind
'''AC KH QH AH AS''', # 3 of a kind
'''2H 4D 3C AS 5S''', # straight (low ace)
'''3C 5C 4C 2C 6H''', # straight
'''6S 8S 7S 5H 9H''', # straight
'''JS QS 9H TS KH''', # straight
'''QC KH TS JS AH''', # straight (high ace)
'''8C 9C 5C 3C TC''', # flush
'''3S 8S 9S 5S KS''', # flush
'''4C 5C 9C 8C KC''', # flush
'''JH 8H AH KH QH''', # flush
'''3D 2H 3H 2C 2D''', # full house
'''2H 2C 3S 3H 3D''', # full house
'''KH KC 3S 3H 3D''', # full house
'''JC 6H JS JD JH''', # 4 of a kind
'''JC 7H JS JD JH''', # 4 of a kind
'''JC KH JS JD JH''', # 4 of a kind
'''2S AS 4S 5S 3S''', # straight flush (low ace)
'''2D 6D 3D 4D 5D''', # straight flush
'''5C 6C 3C 7C 4C''', # straight flush
'''JH 9H TH KH QH''', # straight flush
'''JH AH TH KH QH''', # royal flush (high ace straight flush)
)
lowerCAmelCase :List[Any] = (
('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''),
('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''),
('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''),
('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''),
('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''),
('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''),
('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''),
('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''),
('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''),
('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''),
('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''),
('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''),
('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''),
('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''),
('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''),
('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''),
('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''),
('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''),
('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''),
('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''),
('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''),
('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''),
('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''),
('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''),
('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''),
('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''),
('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', True),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', False),
('''AS 3S 4S 8S 2S''', True),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', False),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', True),
)
lowerCAmelCase :Optional[Any] = (
('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]),
('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]),
('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]),
('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]),
)
lowerCAmelCase :Union[str, Any] = (
('''JH AH TH KH QH''', 0),
('''JH 9H TH KH QH''', 0),
('''JC KH JS JD JH''', 7),
('''KH KC 3S 3H 3D''', 6),
('''8C 9C 5C 3C TC''', 0),
('''JS QS 9H TS KH''', 0),
('''7C 7S KH 2H 7H''', 3),
('''3C KH 5D 5S KH''', 2),
('''QH 8H KD JH 8S''', 1),
('''2D 6D 9D TH 7D''', 0),
)
lowerCAmelCase :Tuple = (
('''JH AH TH KH QH''', 2_3),
('''JH 9H TH KH QH''', 2_2),
('''JC KH JS JD JH''', 2_1),
('''KH KC 3S 3H 3D''', 2_0),
('''8C 9C 5C 3C TC''', 1_9),
('''JS QS 9H TS KH''', 1_8),
('''7C 7S KH 2H 7H''', 1_7),
('''3C KH 5D 5S KH''', 1_6),
('''QH 8H KD JH 8S''', 1_5),
('''2D 6D 9D TH 7D''', 1_4),
)
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) )
__magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)]
__magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCamelCase ( lowerCAmelCase : int = 100 ):
"""simple docstring"""
return (generate_random_hand() for _ in range(lowerCAmelCase ))
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_flush() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_straight() == expected
@pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : Any = PokerHand(lowerCAmelCase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_same_kind() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._hand_type == expected
@pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
@pytest.mark.parametrize('hand, other, expected' , generate_random_hands() )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS]
__magic_name__ : Tuple = poker_hands.copy()
shuffle(lowerCAmelCase )
__magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) )
for index, hand in enumerate(lowerCAmelCase ):
assert hand == poker_hands[index]
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )]
pokerhands.sort(reverse=lowerCAmelCase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' )
__magic_name__ : Optional[Any] = True
__magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = 0
__magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) )
__magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' )
with open(lowerCAmelCase ) as file_hand:
for line in file_hand:
__magic_name__ : Optional[int] = line[:14].strip()
__magic_name__ : List[Any] = line[15:].strip()
__magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase )
__magic_name__ : List[Any] = player.compare_with(lowerCAmelCase )
if output == "Win":
answer += 1
assert answer == 376 | 331 | 0 |
'''simple docstring'''
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class a ( _lowerCamelCase , unittest.TestCase ):
snake_case_ = ProphetNetTokenizer
snake_case_ = False
def A_ ( self : Optional[Any] ):
super().setUp()
snake_case_ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def A_ ( self : List[Any] , lowercase_ : Tuple ):
snake_case_ = '''UNwant\u00E9d,running'''
snake_case_ = '''unwanted, running'''
return input_text, output_text
def A_ ( self : Any ):
snake_case_ = self.tokenizer_class(self.vocab_file )
snake_case_ = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(lowercase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [9, 6, 7, 12, 10, 11] )
def A_ ( self : str ):
snake_case_ = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def A_ ( self : str ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A_ ( self : Dict ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def A_ ( self : Any ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A_ ( self : str ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A_ ( self : List[Any] ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A_ ( self : Any ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A_ ( self : Union[str, Any] ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A_ ( self : Any ):
snake_case_ = BasicTokenizer(do_lower_case=lowercase_ , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def A_ ( self : Dict ):
snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
snake_case_ = {}
for i, token in enumerate(lowercase_ ):
snake_case_ = i
snake_case_ = WordpieceTokenizer(vocab=lowercase_ , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def A_ ( self : List[Any] ):
snake_case_ = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
snake_case_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
snake_case_ = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102]
snake_case_ = tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''' )
self.assertIsInstance(lowercase_ , lowercase_ )
snake_case_ = list(batch.input_ids.numpy()[0] )
self.assertListEqual(lowercase_ , lowercase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def A_ ( self : Tuple ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def A_ ( self : int ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def A_ ( self : Optional[int] ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def A_ ( self : Optional[Any] ):
snake_case_ = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
snake_case_ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase_ )
snake_case_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase_ )
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowercase_ )
snake_case_ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 56 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase :Union[str, Any] = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
"""simple docstring"""
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
__lowerCAmelCase = update_area_of_max_square(_UpperCamelCase , col + 1 )
__lowerCAmelCase = update_area_of_max_square(row + 1 , col + 1 )
__lowerCAmelCase = update_area_of_max_square(row + 1 , _UpperCamelCase )
if mat[row][col]:
__lowerCAmelCase = 1 + min([right, diagonal, down] )
__lowerCAmelCase = max(largest_square_area[0] , _UpperCamelCase )
return sub_problem_sol
else:
return 0
__lowerCAmelCase = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
def update_area_of_max_square_using_dp_array(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
__lowerCAmelCase = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase )
__lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase )
__lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase )
if mat[row][col]:
__lowerCAmelCase = 1 + min([right, diagonal, down] )
__lowerCAmelCase = max(largest_square_area[0] , _UpperCamelCase )
__lowerCAmelCase = sub_problem_sol
return sub_problem_sol
else:
return 0
__lowerCAmelCase = [0]
__lowerCAmelCase = [[-1] * cols for _ in range(_UpperCamelCase )]
update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase )
return largest_square_area[0]
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )]
__lowerCAmelCase = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__lowerCAmelCase = dp_array[row][col + 1]
__lowerCAmelCase = dp_array[row + 1][col + 1]
__lowerCAmelCase = dp_array[row + 1][col]
if mat[row][col] == 1:
__lowerCAmelCase = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__lowerCAmelCase = max(dp_array[row][col] , _UpperCamelCase )
else:
__lowerCAmelCase = 0
return largest_square_area
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = [0] * (cols + 1)
__lowerCAmelCase = [0] * (cols + 1)
__lowerCAmelCase = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__lowerCAmelCase = current_row[col + 1]
__lowerCAmelCase = next_row[col + 1]
__lowerCAmelCase = next_row[col]
if mat[row][col] == 1:
__lowerCAmelCase = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__lowerCAmelCase = max(current_row[col] , _UpperCamelCase )
else:
__lowerCAmelCase = 0
__lowerCAmelCase = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 57 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase :Any = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple:
super().__init__(**_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]:
__magic_name__ : str = {}
if "candidate_labels" in kwargs:
__magic_name__ : str = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__magic_name__ : Tuple = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int:
__magic_name__ : Dict = load_image(_A )
__magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
__magic_name__ : Optional[Any] = candidate_labels
__magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels]
__magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A )
__magic_name__ : Optional[Any] = [text_inputs]
return inputs
def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str:
__magic_name__ : str = model_inputs.pop('candidate_labels' )
__magic_name__ : str = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , _A ):
__magic_name__ : Dict = text_inputs[0]
else:
# Batching case.
__magic_name__ : Optional[Any] = text_inputs[0][0]
__magic_name__ : List[Any] = self.model(**_A , **_A )
__magic_name__ : str = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]:
__magic_name__ : Tuple = model_outputs.pop('candidate_labels' )
__magic_name__ : Union[str, Any] = model_outputs['logits'][0]
if self.framework == "pt":
__magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 )
__magic_name__ : Tuple = probs.tolist()
if not isinstance(_A , _A ):
__magic_name__ : Any = [scores]
elif self.framework == "tf":
__magic_name__ : Any = stable_softmax(_A , axis=-1 )
__magic_name__ : Dict = probs.numpy().tolist()
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
__magic_name__ : Union[str, Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] )
]
return result | 331 | 0 |
'''simple docstring'''
lowercase_ = [
"""Audio""",
"""Array2D""",
"""Array3D""",
"""Array4D""",
"""Array5D""",
"""ClassLabel""",
"""Features""",
"""Sequence""",
"""Value""",
"""Image""",
"""Translation""",
"""TranslationVariableLanguages""",
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 58 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase :int = '''pt'''
elif is_tf_available():
lowerCAmelCase :Optional[Any] = '''tf'''
else:
lowerCAmelCase :Optional[Any] = '''jax'''
class _lowerCamelCase ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = ByTaTokenizer
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
super().setUp()
__magic_name__ : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__magic_name__ : Optional[Any] = []
for i in range(len(_A ) ):
try:
__magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) )
__magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) )
if max_length is not None and len(_A ) > max_length:
__magic_name__ : Optional[int] = toks[:max_length]
if min_length is not None and len(_A ) < min_length and len(_A ) > 0:
while len(_A ) < min_length:
__magic_name__ : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__magic_name__ : List[str] = [t[0] for t in toks]
# Ensure consistency
__magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A )
if " " not in output_txt and len(_A ) > 1:
__magic_name__ : int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A )
)
if with_prefix_space:
__magic_name__ : Union[str, Any] = ' ' + output_txt
__magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A )
return output_txt, output_ids
def __lowerCAmelCase ( self : int ) -> str:
__magic_name__ : Any = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
__magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __lowerCAmelCase ( self : int ) -> Tuple:
__magic_name__ : Optional[int] = self.ta_base_tokenizer
__magic_name__ : Optional[int] = 'Unicode €.'
__magic_name__ : Optional[Any] = tokenizer(_A )
__magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : Any = tokenizer.decode(_A )
self.assertEqual(_A , 'Unicode €.</s>' )
__magic_name__ : Any = tokenizer('e è é ê ë' )
__magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : List[str] = tokenizer.decode(_A )
self.assertEqual(_A , 'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' )
def __lowerCAmelCase ( self : Any ) -> int:
__magic_name__ : List[Any] = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
__magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A )
self.assertIsInstance(_A , _A )
if FRAMEWORK != "jax":
__magic_name__ : str = list(batch.input_ids.numpy()[0] )
else:
__magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_A , _A )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _A )
self.assertIn('attention_mask' , _A )
self.assertNotIn('decoder_input_ids' , _A )
self.assertNotIn('decoder_attention_mask' , _A )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
__magic_name__ : Union[str, Any] = self.ta_base_tokenizer
__magic_name__ : Tuple = [
'Summary of the text.',
'Another summary.',
]
__magic_name__ : Dict = tokenizer(
text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : Any = ['A long paragraph for summarization. </s>']
__magic_name__ : List[str] = ['Summary of the text. </s>']
# fmt: off
__magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
__magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
__magic_name__ : str = tokenizer(_A , text_target=_A )
self.assertEqual(_A , batch['input_ids'][0] )
self.assertEqual(_A , batch['labels'][0] )
def __lowerCAmelCase ( self : Any ) -> str:
# safety check on max_len default value so we are sure the test works
__magic_name__ : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__magic_name__ : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : str = tempfile.mkdtemp()
__magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running'
__magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
shutil.rmtree(_A )
__magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : Optional[Any] = tempfile.mkdtemp()
__magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : Any = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_A )
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
__magic_name__ : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Union[str, Any] = json.load(_A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Optional[Any] = json.load(_A )
__magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )]
__magic_name__ : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
__magic_name__ : Tuple = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__magic_name__ : str = tokenizer_class.from_pretrained(
_A , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )]
__magic_name__ : Optional[Any] = tokenizer_class.from_pretrained(
_A , additional_special_tokens=_A , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
__magic_name__ : int = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
__magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
pass
def __lowerCAmelCase ( self : List[str] ) -> int:
pass
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
pass
def __lowerCAmelCase ( self : List[Any] ) -> int:
pass
def __lowerCAmelCase ( self : str ) -> Tuple:
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
__magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
__magic_name__ : int = tokenizer.convert_tokens_to_string(_A )
self.assertIsInstance(_A , _A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : List[str] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
__magic_name__ : List[str] = 0
__magic_name__ : str = tokenizer.convert_ids_to_tokens(
_A , skip_special_tokens=_A )
for attr in attributes_list:
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] )
setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] ) | 331 | 0 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCAmelCase ( A_ ,A_ ):
@register_to_config
def __init__(self : Dict , snake_case__ : bool , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None ) -> List[Any]:
'''simple docstring'''
super().__init__()
snake_case : Optional[int] = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
snake_case : Optional[int] = torch.zeros(snake_case__ , snake_case__ )
else:
snake_case : Any = None
snake_case : Optional[Any] = torch.nn.Parameter(snake_case__ )
class UpperCAmelCase ( A_ ):
A__ : VQModel
A__ : CLIPTextModel
A__ : CLIPTokenizer
A__ : TransformeraDModel
A__ : LearnedClassifierFreeSamplingEmbeddings
A__ : VQDiffusionScheduler
def __init__(self : str , snake_case__ : VQModel , snake_case__ : CLIPTextModel , snake_case__ : CLIPTokenizer , snake_case__ : TransformeraDModel , snake_case__ : VQDiffusionScheduler , snake_case__ : LearnedClassifierFreeSamplingEmbeddings , ) -> List[Any]:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Any , snake_case__ : int , snake_case__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
snake_case : List[str] = len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
snake_case : Optional[Any] = self.tokenizer(
snake_case__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
snake_case : Dict = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
snake_case : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length]
snake_case : str = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
snake_case : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate text embeddings for each generation per prompt
snake_case : Dict = prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
snake_case : Optional[int] = self.learned_classifier_free_sampling_embeddings.embeddings
snake_case : Any = negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 )
else:
snake_case : Optional[int] = [""] * batch_size
snake_case : int = text_input_ids.shape[-1]
snake_case : Any = self.tokenizer(
snake_case__ , padding="max_length" , max_length=snake_case__ , truncation=snake_case__ , return_tensors="pt" , )
snake_case : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
snake_case : Optional[Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
snake_case : Dict = negative_prompt_embeds.shape[1]
snake_case : Any = negative_prompt_embeds.repeat(1 , snake_case__ , 1 )
snake_case : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
snake_case : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__(self : Any , snake_case__ : Union[str, List[str]] , snake_case__ : int = 1_00 , snake_case__ : float = 5.0 , snake_case__ : float = 1.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
snake_case : Optional[Any] = 1
elif isinstance(snake_case__ , snake_case__ ):
snake_case : int = len(snake_case__ )
else:
raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}""" )
snake_case : List[str] = batch_size * num_images_per_prompt
snake_case : Union[str, Any] = guidance_scale > 1.0
snake_case : Optional[int] = self._encode_prompt(snake_case__ , snake_case__ , snake_case__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(snake_case__ )}.""" )
# get the initial completely masked latents unless the user supplied it
snake_case : Tuple = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
snake_case : Optional[int] = self.transformer.num_vector_embeds - 1
snake_case : Optional[int] = torch.full(snake_case__ , snake_case__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" )
snake_case : List[str] = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
snake_case : Optional[int] = self.scheduler.timesteps.to(self.device )
snake_case : List[str] = latents
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the sample if we are doing classifier free guidance
snake_case : List[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
snake_case : Tuple = self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample
if do_classifier_free_guidance:
snake_case , snake_case : Optional[Any] = model_output.chunk(2 )
snake_case : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ )
snake_case : Tuple = self.truncate(snake_case__ , snake_case__ )
# remove `log(0)`'s (`-inf`s)
snake_case : List[str] = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
snake_case : int = self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
snake_case : List[Any] = self.vqvae.config.vq_embed_dim
snake_case : List[str] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
snake_case : List[str] = self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ )
snake_case : Optional[Any] = self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample
snake_case : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
snake_case : int = self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : float ) -> torch.FloatTensor:
'''simple docstring'''
snake_case , snake_case : Optional[int] = torch.sort(snake_case__ , 1 , descending=snake_case__ )
snake_case : List[Any] = torch.exp(snake_case__ )
snake_case : List[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
snake_case : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , snake_case__ )
snake_case : List[Any] = torch.cat((all_true, keep_mask) , dim=1 )
snake_case : str = keep_mask[:, :-1, :]
snake_case : Tuple = keep_mask.gather(1 , indices.argsort(1 ) )
snake_case : Any = log_p_x_0.clone()
snake_case : List[Any] = -torch.inf # -inf = log(0)
return rv
| 59 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]]
__magic_name__ : Dict = DisjunctiveConstraint(_A )
self.assertTrue(isinstance(dc.token_ids , _A ) )
with self.assertRaises(_A ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_A ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_A ):
DisjunctiveConstraint(_A ) # fails here
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
__magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]]
__magic_name__ : List[Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 )
__magic_name__ : Optional[int] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 )
__magic_name__ : List[Any] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 )
__magic_name__ : Any = stepped is True and completed is True and reset is False
self.assertTrue(_A )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] ) | 331 | 0 |
"""simple docstring"""
from math import log
from scipy.constants import Boltzmann, physical_constants
snake_case__ : Optional[Any] = 300 # TEMPERATURE (unit = K)
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float , ):
if donor_conc <= 0:
raise ValueError('''Donor concentration should be positive''' )
elif acceptor_conc <= 0:
raise ValueError('''Acceptor concentration should be positive''' )
elif intrinsic_conc <= 0:
raise ValueError('''Intrinsic concentration should be positive''' )
elif donor_conc <= intrinsic_conc:
raise ValueError(
'''Donor concentration should be greater than intrinsic concentration''' )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'''Acceptor concentration should be greater than intrinsic concentration''' )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 60 |
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
lowerCAmelCase :List[str] = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
lowerCAmelCase :List[Any] = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Union[str, Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Tuple = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Optional[Any] = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[int] = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
lowerCAmelCase :Tuple = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Union[str, Any] = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
lowerCAmelCase :Dict = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
lowerCAmelCase :Optional[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Any = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
lowerCAmelCase :Any = ''''''
lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
__magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : str = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
__magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Any = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) | 331 | 0 |
"""simple docstring"""
from itertools import product
def __a ( __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Dict = sides_number
UpperCAmelCase_ : Optional[Any] = max_face_number * dice_number
UpperCAmelCase_ : Optional[Any] = [0] * (max_total + 1)
UpperCAmelCase_ : List[str] = 1
UpperCAmelCase_ : int = range(__lowerCamelCase, max_face_number + 1 )
for dice_numbers in product(__lowerCamelCase, repeat=__lowerCamelCase ):
UpperCAmelCase_ : Union[str, Any] = sum(__lowerCamelCase )
totals_frequencies[total] += 1
return totals_frequencies
def __a ( ):
UpperCAmelCase_ : Optional[Any] = total_frequency_distribution(
sides_number=4, dice_number=9 )
UpperCAmelCase_ : Union[str, Any] = total_frequency_distribution(
sides_number=6, dice_number=6 )
UpperCAmelCase_ : List[Any] = 0
UpperCAmelCase_ : Dict = 9
UpperCAmelCase_ : Tuple = 4 * 9
UpperCAmelCase_ : int = 6
for peter_total in range(__lowerCamelCase, max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
UpperCAmelCase_ : List[Any] = (4**9) * (6**6)
UpperCAmelCase_ : List[str] = peter_wins_count / total_games_number
UpperCAmelCase_ : Any = round(__lowerCamelCase, ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f"""{solution() = }""")
| 61 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int:
__magic_name__ : str = parent
__magic_name__ : List[Any] = 13
__magic_name__ : Union[str, Any] = 7
__magic_name__ : Tuple = True
__magic_name__ : Dict = True
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = True
__magic_name__ : int = 99
__magic_name__ : List[str] = 384
__magic_name__ : Optional[int] = 2
__magic_name__ : List[Any] = 4
__magic_name__ : int = 37
__magic_name__ : Union[str, Any] = 'gelu'
__magic_name__ : Optional[int] = 0.1
__magic_name__ : str = 0.1
__magic_name__ : Optional[Any] = 512
__magic_name__ : Any = 16
__magic_name__ : Union[str, Any] = 2
__magic_name__ : Any = 0.02
__magic_name__ : List[str] = 3
__magic_name__ : Tuple = 4
__magic_name__ : List[Any] = 128
__magic_name__ : Optional[Any] = 2
__magic_name__ : List[str] = 9
__magic_name__ : str = 1
__magic_name__ : List[str] = None
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Optional[Any] = None
if self.use_input_mask:
__magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : List[str] = None
if self.use_token_type_ids:
__magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : int = None
if self.use_labels:
__magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Optional[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any:
__magic_name__ : Dict = TFConvBertModel(config=_A )
__magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__magic_name__ : Any = [input_ids, input_mask]
__magic_name__ : Tuple = model(_A )
__magic_name__ : List[Any] = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]:
__magic_name__ : Dict = TFConvBertForMaskedLM(config=_A )
__magic_name__ : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Dict = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple:
__magic_name__ : Any = self.num_labels
__magic_name__ : str = TFConvBertForSequenceClassification(config=_A )
__magic_name__ : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = self.num_choices
__magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A )
__magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Optional[int] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]:
__magic_name__ : List[Any] = self.num_labels
__magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A )
__magic_name__ : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int:
__magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A )
__magic_name__ : int = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[str] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : str = config_and_inputs
__magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
A_ : List[str] = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A_ : Tuple = False
A_ : Any = False
A_ : List[Any] = False
def __lowerCAmelCase ( self : List[Any] ) -> int:
__magic_name__ : Optional[Any] = TFConvBertModelTester(self )
__magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : str ) -> Dict:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : int ) -> Any:
__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : Dict ) -> List[str]:
__magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
__magic_name__ : Any = True
if hasattr(_A , 'use_cache' ):
__magic_name__ : List[Any] = True
__magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A )
for model_class in self.all_model_classes:
__magic_name__ : List[str] = self._prepare_for_class(_A , _A )
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Tuple = len(model(_A ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
__magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' )
__magic_name__ : Optional[int] = tf.keras.models.load_model(_A )
__magic_name__ : Optional[Any] = model(_A )
if self.is_encoder_decoder:
__magic_name__ : Optional[int] = outputs['encoder_hidden_states']
__magic_name__ : Tuple = outputs['encoder_attentions']
else:
__magic_name__ : Union[str, Any] = outputs['hidden_states']
__magic_name__ : Optional[Any] = outputs['attentions']
self.assertEqual(len(_A ) , _A )
__magic_name__ : Optional[Any] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_A ) , _A )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
__magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_A )
def __lowerCAmelCase ( self : List[str] ) -> Any:
__magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : str = True
__magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A )
__magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A )
def check_decoder_attentions_output(_A : List[Any] ):
__magic_name__ : Tuple = len(_A )
self.assertEqual(out_len % 2 , 0 )
__magic_name__ : Any = outputs.decoder_attentions
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_A : int ):
__magic_name__ : Dict = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = False
__magic_name__ : List[str] = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
__magic_name__ : Tuple = len(_A )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
if self.is_encoder_decoder:
__magic_name__ : Any = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_decoder_attentions_output(_A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[int] = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : str = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : str = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) )
self.assertEqual(model.config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : int ) -> int:
__magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ : Tuple = model(_A )[0]
__magic_name__ : str = [1, 6, 768]
self.assertEqual(output.shape , _A )
__magic_name__ : Tuple = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 ) | 331 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = "Salesforce/blip-image-captioning-base"
UpperCAmelCase__ : int = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
UpperCAmelCase__ : Optional[int] = "image_captioner"
UpperCAmelCase__ : Tuple = AutoModelForVisionaSeq
UpperCAmelCase__ : Union[str, Any] = ["image"]
UpperCAmelCase__ : Tuple = ["text"]
def __init__( self , *A_ , **A_ ) -> str:
requires_backends(self , ['vision'] )
super().__init__(*A_ , **A_ )
def _a ( self , A_ ) -> Optional[int]:
return self.pre_processor(images=A_ , return_tensors='pt' )
def _a ( self , A_ ) -> Any:
return self.model.generate(**A_ )
def _a ( self , A_ ) -> str:
return self.pre_processor.batch_decode(A_ , skip_special_tokens=A_ )[0].strip()
| 62 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
lowerCAmelCase :Dict = pytest.mark.integration
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
__magic_name__ : Union[str, Any] = dset.map(
lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A )
__magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
__magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def __lowerCAmelCase ( self : Any ) -> str:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Tuple ) -> int:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
from elasticsearch import Elasticsearch
__magic_name__ : Dataset = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : int = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
__magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
__magic_name__ : Union[str, Any] = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_A )
__magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
import faiss
__magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__magic_name__ : str = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Optional[int] = 1
__magic_name__ , __magic_name__ : str = index.search(_A )
self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1]
__magic_name__ , __magic_name__ : str = index.search_batch(_A )
self.assertRaises(_A , index.search_batch , queries[0] )
__magic_name__ : List[Any] = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _A )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
import faiss
__magic_name__ : str = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__magic_name__ : str = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_A ):
__magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
import faiss
__magic_name__ : Any = faiss.IndexFlat(5 )
__magic_name__ : Optional[Any] = FaissIndex(custom_index=_A )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : Dict ) -> Tuple:
import faiss
__magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
index.save(tmp_file.name )
__magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ : Dict = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Tuple = 1
__magic_name__ , __magic_name__ : Optional[Any] = index.search(_A )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
import faiss
__magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__magic_name__ : Dict = 'index.faiss'
__magic_name__ : Optional[Any] = f'mock://{index_name}'
index.save(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa )
__magic_name__ : List[str] = 1
__magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> Dict:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : Any = Elasticsearch()
__magic_name__ : Union[str, Any] = {'acknowledged': True}
__magic_name__ : Tuple = ElasticSearchIndex(es_client=_A )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
__magic_name__ : str = 'foo'
__magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__magic_name__ : str = 'foo'
__magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A )
__magic_name__ : Tuple = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A )
# batched queries with timeout
__magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 )
__magic_name__ : Optional[int] = [scores[0] for scores in total_scores]
__magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A ) | 331 | 0 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : int , __a : Optional[NestedDataStructureLike[PathLike]] = None , __a : Optional[NamedSplit] = None , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[int] = None , **__a : int , ):
_a = path_or_paths
_a = split if split or isinstance(__a , __a ) else "train"
_a = features
_a = cache_dir
_a = keep_in_memory
_a = streaming
_a = num_proc
_a = kwargs
@abstractmethod
def UpperCamelCase__ ( self : Union[str, Any] ):
pass
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[int] = None , **__a : List[Any] , ):
_a = features
_a = cache_dir
_a = keep_in_memory
_a = streaming
_a = num_proc
_a = kwargs
@abstractmethod
def UpperCamelCase__ ( self : List[Any] ):
pass
| 63 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() )
__magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__)
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ):
"""simple docstring"""
if metric == "rouge2":
__magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
__magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
__magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
__magic_name__ : int = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
' function.' )
__magic_name__ : List[Any] = ModelCheckpoint(
dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return EarlyStopping(
monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int:
__magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_A )
@rank_zero_only
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None:
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
__magic_name__ : List[str] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
__magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
__magic_name__ : List[Any] = od / 'test_results.txt'
__magic_name__ : Dict = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
__magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_A )
generations_file.parent.mkdir(exist_ok=_A )
with open(_A , 'a+' ) as writer:
for key in sorted(_A ):
if key in ["log", "progress_bar", "preds"]:
continue
__magic_name__ : Optional[Any] = metrics[key]
if isinstance(_A , torch.Tensor ):
__magic_name__ : Tuple = val.item()
__magic_name__ : int = F'{key}: {val:.6f}\n'
writer.write(_A )
if not save_generations:
return
if "preds" in metrics:
__magic_name__ : str = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(_A )
@rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple:
try:
__magic_name__ : str = pl_module.model.model.num_parameters()
except AttributeError:
__magic_name__ : List[str] = pl_module.model.num_parameters()
__magic_name__ : List[Any] = count_trainable_parameters(_A )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_A , _A , 'test' )
@rank_zero_only
def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid") | 331 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
A_ = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 64 |
'''simple docstring'''
def lowerCamelCase ( ):
"""simple docstring"""
return 1
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int = 200 ):
"""simple docstring"""
return two_pound(lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 331 | 0 |
def lowerCAmelCase_ ( __A ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") )
def lowerCAmelCase_ ( __A ) -> bool:
'''simple docstring'''
UpperCAmelCase__ = credit_card_number
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(__A ) - 2
for i in range(__A, -1, -2 ):
# double the value of every second digit
UpperCAmelCase__ = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
UpperCAmelCase__ = cc_number[:i] + str(__A ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__A ) - 1, -1, -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def lowerCAmelCase_ ( __A ) -> bool:
'''simple docstring'''
UpperCAmelCase__ = f"""{credit_card_number} is an invalid credit card number because"""
if not credit_card_number.isdigit():
print(f"""{error_message} it has nonnumerical characters.""" )
return False
if not 13 <= len(__A ) <= 16:
print(f"""{error_message} of its length.""" )
return False
if not validate_initial_digits(__A ):
print(f"""{error_message} of its first two digits.""" )
return False
if not luhn_validation(__A ):
print(f"""{error_message} it fails the Luhn check.""" )
return False
print(f"""{credit_card_number} is a valid credit card number.""" )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('4111111111111111')
validate_credit_card_number('32323')
| 65 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Union[str, Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Dict = ["""flax""", """transformers"""]
def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[int] = ["""flax""", """transformers"""]
def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] ) | 331 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.g4dn.xlarge""",
"""results""": {"""train_runtime""": 6_5_0, """eval_accuracy""": 0.6, """eval_loss""": 0.9},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.g4dn.xlarge""",
"""results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 0.9},
},
] )
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]:
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case , )
assert hasattr(self , """env""" )
def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple=1 ) -> Optional[int]:
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=snake_case , instance_type=self.instance_type , debugger_hook_config=snake_case , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , )
def lowerCAmelCase_ ( self: Optional[Any] , snake_case: str ) -> Any:
TrainingJobAnalytics(snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
def lowerCAmelCase_ ( self: List[str] ) -> int:
# create estimator
snake_case_ :int = self.create_estimator()
# run training
estimator.fit()
# result dataframe
snake_case_ :List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
snake_case_ :List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
snake_case_ :List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
snake_case_ :Union[str, Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case )
| 66 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase :Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any:
super().__init__(*_A , **_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]:
__magic_name__ : Union[str, Any] = {}
__magic_name__ : Optional[Any] = {}
if prompt is not None:
__magic_name__ : Union[str, Any] = prompt
if generate_kwargs is not None:
__magic_name__ : str = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__magic_name__ : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
__magic_name__ : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict:
__magic_name__ : List[Any] = load_image(_A )
if prompt is not None:
if not isinstance(_A , _A ):
raise ValueError(
F'Received an invalid text input, got - {type(_A )} - but expected a single string. '
'Note also that one single text can be provided for conditional image to text generation.' )
__magic_name__ : Any = self.model.config.model_type
if model_type == "git":
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids
__magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids
__magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
__magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework )
model_inputs.update(_A )
else:
raise ValueError(F'Model type {model_type} does not support conditional text generation' )
else:
__magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__magic_name__ : int = None
return model_inputs
def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _A )
and all(x is None for x in model_inputs['input_ids'] )
):
__magic_name__ : str = None
if generate_kwargs is None:
__magic_name__ : Optional[int] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name )
__magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A )
return model_outputs
def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]:
__magic_name__ : Optional[Any] = []
for output_ids in model_outputs:
__magic_name__ : Union[str, Any] = {
'generated_text': self.tokenizer.decode(
_A , skip_special_tokens=_A , )
}
records.append(_A )
return records | 331 | 0 |
'''simple docstring'''
import requests
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> None:
__lowerCamelCase = {'''Content-Type''': '''application/json'''}
__lowerCamelCase = requests.post(UpperCamelCase__ , json={'''text''': message_body} , headers=UpperCamelCase__ )
if response.status_code != 2_00:
__lowerCamelCase = (
'''Request to slack returned an error '''
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(UpperCamelCase__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 67 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowerCAmelCase :Dict = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
lowerCAmelCase :str = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowerCAmelCase :Any = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys())
lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class _lowerCamelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_A )
__magic_name__ : List[str] = 0
__magic_name__ : Union[str, Any] = Path(self.hparams.output_dir )
__magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__magic_name__ : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , )
else:
__magic_name__ : PretrainedConfig = config
__magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , _A , _A ):
assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , _A , getattr(self.hparams , _A ) )
if tokenizer is None:
__magic_name__ : List[Any] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , )
else:
__magic_name__ : PreTrainedTokenizer = tokenizer
__magic_name__ : Optional[int] = MODEL_MODES[mode]
if model is None:
__magic_name__ : Tuple = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , )
else:
__magic_name__ : str = model
def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple:
__magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
__magic_name__ : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : Optional[Any] = self.model
__magic_name__ : int = ['bias', 'LayerNorm.weight']
__magic_name__ : Dict = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__magic_name__ : str = Adafactor(
_A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A )
else:
__magic_name__ : Tuple = AdamW(
_A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__magic_name__ : List[str] = optimizer
__magic_name__ : int = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]:
return self.validation_step(_A , _A )
def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any:
return self.validation_end(_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
__magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str:
if stage == "test":
__magic_name__ : Any = len(self.test_dataloader().dataset )
else:
__magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A )
__magic_name__ : int = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]:
raise NotImplementedError('You must implement this for your task' )
def __lowerCAmelCase ( self : int ) -> List[str]:
return self.train_loader
def __lowerCAmelCase ( self : Tuple ) -> int:
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str:
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
_A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None:
__magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' )
__magic_name__ : List[Any] = self.step_count
self.model.save_pretrained(_A )
self.tokenizer.save_pretrained(_A )
@staticmethod
def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple:
parser.add_argument(
'--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A )
parser.add_argument('--train_batch_size' , default=32 , type=_A )
parser.add_argument('--eval_batch_size' , default=32 , type=_A )
parser.add_argument('--adafactor' , action='store_true' )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_A )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]:
__magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler']
__magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_A )
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]:
rank_zero_info('***** Validation results *****' )
__magic_name__ : str = trainer.callback_metrics
# Log results
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]:
rank_zero_info('***** Test results *****' )
__magic_name__ : Optional[int] = trainer.callback_metrics
# Log and save results to file
__magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(_A , 'w' ) as writer:
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
parser.add_argument(
'--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__magic_name__ : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase )
if logging_callback is None:
__magic_name__ : Dict = LoggingCallback()
__magic_name__ : List[str] = {}
if args.fpaa:
__magic_name__ : Dict = 16
if args.gpus > 1:
__magic_name__ : Tuple = 'auto'
__magic_name__ : int = 'ddp'
__magic_name__ : str = args.accumulate_grad_batches
__magic_name__ : str = None
__magic_name__ : List[str] = 'auto'
__magic_name__ : List[Any] = pl.Trainer.from_argparse_args(
lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , )
if args.do_train:
trainer.fit(lowerCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer | 331 | 0 |
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase__ = False
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = """ybelkada/fonts"""
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use '
"Pix2StructImageProcessor. Please upgrade torch." )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: int ) -> Tuple:
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
_check_torch_version()
A__ = image_tensor.unsqueeze(0 )
A__ = torch.nn.functional.unfold(SCREAMING_SNAKE_CASE_ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
A__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 )
A__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: int = 3_6 , SCREAMING_SNAKE_CASE_: str = "black" , SCREAMING_SNAKE_CASE_: str = "white" , SCREAMING_SNAKE_CASE_: int = 5 , SCREAMING_SNAKE_CASE_: int = 5 , SCREAMING_SNAKE_CASE_: int = 5 , SCREAMING_SNAKE_CASE_: int = 5 , SCREAMING_SNAKE_CASE_: Optional[bytes] = None , SCREAMING_SNAKE_CASE_: Optional[str] = None , ) -> Image.Image:
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , "vision" )
# Add new lines so that each line is no more than 80 characters.
A__ = textwrap.TextWrapper(width=8_0 )
A__ = wrapper.wrap(text=SCREAMING_SNAKE_CASE_ )
A__ = "\n".join(SCREAMING_SNAKE_CASE_ )
if font_bytes is not None and font_path is None:
A__ = io.BytesIO(SCREAMING_SNAKE_CASE_ )
elif font_path is not None:
A__ = font_path
else:
A__ = hf_hub_download(SCREAMING_SNAKE_CASE_ , "Arial.TTF" )
A__ = ImageFont.truetype(SCREAMING_SNAKE_CASE_ , encoding="UTF-8" , size=SCREAMING_SNAKE_CASE_ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
A__ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , SCREAMING_SNAKE_CASE_ ) )
A__ , A__ , A__ , A__ = temp_draw.textbbox((0, 0) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Create the actual image with a bit of padding around the text.
A__ = text_width + left_padding + right_padding
A__ = text_height + top_padding + bottom_padding
A__ = Image.new("RGB" , (image_width, image_height) , SCREAMING_SNAKE_CASE_ )
A__ = ImageDraw.Draw(SCREAMING_SNAKE_CASE_ )
draw.text(xy=(left_padding, top_padding) , text=SCREAMING_SNAKE_CASE_ , fill=SCREAMING_SNAKE_CASE_ , font=SCREAMING_SNAKE_CASE_ )
return image
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: np.ndarray , SCREAMING_SNAKE_CASE_: str , **SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Dict:
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , "vision" )
# Convert to PIL image if necessary
A__ = to_pil_image(SCREAMING_SNAKE_CASE_ )
A__ = render_text(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
A__ = max(header_image.width , image.width )
A__ = int(image.height * (new_width / image.width) )
A__ = int(header_image.height * (new_width / header_image.width) )
A__ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
A__ = to_numpy_array(SCREAMING_SNAKE_CASE_ )
if infer_channel_dimension_format(SCREAMING_SNAKE_CASE_ ) == ChannelDimension.LAST:
A__ = to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , ChannelDimension.LAST )
return new_image
class a__ ( snake_case ):
"""simple docstring"""
__lowerCamelCase = ['flattened_patches']
def __init__( self , lowercase = True , lowercase = True , lowercase = None , lowercase = 2048 , lowercase = False , **lowercase , ) -> None:
'''simple docstring'''
super().__init__(**lowercase )
A__ = patch_size if patch_size is not None else {"height": 16, "width": 16}
A__ = do_normalize
A__ = do_convert_rgb
A__ = max_patches
A__ = is_vqa
def UpperCamelCase ( self , lowercase , lowercase , lowercase , **lowercase ) -> np.ndarray:
'''simple docstring'''
requires_backends(self.extract_flattened_patches , "torch" )
_check_torch_version()
# convert to torch
A__ = to_channel_dimension_format(lowercase , ChannelDimension.FIRST )
A__ = torch.from_numpy(lowercase )
A__ , A__ = patch_size["height"], patch_size["width"]
A__ , A__ = get_image_size(lowercase )
# maximize scale s.t.
A__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
A__ = max(min(math.floor(scale * image_height / patch_height ) , lowercase ) , 1 )
A__ = max(min(math.floor(scale * image_width / patch_width ) , lowercase ) , 1 )
A__ = max(num_feasible_rows * patch_height , 1 )
A__ = max(num_feasible_cols * patch_width , 1 )
A__ = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=lowercase , antialias=lowercase , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
A__ = torch_extract_patches(lowercase , lowercase , lowercase )
A__ = patches.shape
A__ = patches_shape[1]
A__ = patches_shape[2]
A__ = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
A__ = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
A__ = torch.arange(lowercase ).reshape([rows, 1] ).repeat(1 , lowercase ).reshape([rows * columns, 1] )
A__ = torch.arange(lowercase ).reshape([1, columns] ).repeat(lowercase , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
A__ = row_ids.to(torch.floataa )
A__ = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
A__ = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
A__ = torch.nn.functional.pad(lowercase , [0, 0, 0, max_patches - (rows * columns)] ).float()
A__ = to_numpy_array(lowercase )
return result
def UpperCamelCase ( self , lowercase , lowercase = None , **lowercase ) -> np.ndarray:
'''simple docstring'''
if image.dtype == np.uinta:
A__ = image.astype(np.floataa )
# take mean across the whole `image`
A__ = np.mean(lowercase )
A__ = np.std(lowercase )
A__ = max(lowercase , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowercase , mean=lowercase , std=lowercase , **lowercase )
def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> ImageInput:
'''simple docstring'''
A__ = do_normalize if do_normalize is not None else self.do_normalize
A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A__ = patch_size if patch_size is not None else self.patch_size
A__ = max_patches if max_patches is not None else self.max_patches
A__ = self.is_vqa
if kwargs.get("data_format" , lowercase ) is not None:
raise ValueError("data_format is not an accepted input as the outputs are " )
A__ = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A__ = [convert_to_rgb(lowercase ) for image in images]
# All transformations expect numpy arrays.
A__ = [to_numpy_array(lowercase ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("A header text must be provided for VQA models." )
A__ = kwargs.pop("font_bytes" , lowercase )
A__ = kwargs.pop("font_path" , lowercase )
if isinstance(lowercase , lowercase ):
A__ = [header_text] * len(lowercase )
A__ = [
render_header(lowercase , header_text[i] , font_bytes=lowercase , font_path=lowercase )
for i, image in enumerate(lowercase )
]
if do_normalize:
A__ = [self.normalize(image=lowercase ) for image in images]
# convert to torch tensor and permute
A__ = [
self.extract_flattened_patches(image=lowercase , max_patches=lowercase , patch_size=lowercase )
for image in images
]
# create attention mask in numpy
A__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
A__ = BatchFeature(
data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=lowercase )
return encoded_outputs
| 68 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Dict = (DDPMScheduler,)
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str:
__magic_name__ : str = {
'num_train_timesteps': 1000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**_A )
return config
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_A )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> str:
self.check_over_configs(thresholding=_A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_A , prediction_type=_A , sample_max_value=_A , )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Dict = scheduler_class(**_A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def __lowerCAmelCase ( self : Tuple ) -> int:
__magic_name__ : Tuple = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : str = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Union[str, Any] = self.dummy_model()
__magic_name__ : List[Any] = self.dummy_sample_deter
__magic_name__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : Tuple = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : Dict = pred_prev_sample
__magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) )
__magic_name__ : Dict = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' )
__magic_name__ : Any = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Dict = self.dummy_model()
__magic_name__ : str = self.dummy_sample_deter
__magic_name__ : str = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : List[Any] = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : List[Any] = pred_prev_sample
__magic_name__ : int = torch.sum(torch.abs(_A ) )
__magic_name__ : Any = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def __lowerCAmelCase ( self : List[str] ) -> str:
__magic_name__ : Dict = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Optional[Any] = scheduler_class(**_A )
__magic_name__ : List[str] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_A )
__magic_name__ : List[str] = scheduler.timesteps
for i, timestep in enumerate(_A ):
if i == len(_A ) - 1:
__magic_name__ : Optional[int] = -1
else:
__magic_name__ : List[Any] = timesteps[i + 1]
__magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A )
__magic_name__ : Any = prev_t.item()
self.assertEqual(_A , _A )
def __lowerCAmelCase ( self : Tuple ) -> str:
__magic_name__ : str = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 1, 0]
__magic_name__ : Tuple = len(_A )
with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=_A ) | 331 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
__UpperCamelCase = {'''tokenization_tapex''': ['''TapexTokenizer''']}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 69 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = IFInpaintingPipeline
A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
return self._get_dummy_components()
def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]:
if str(_A ).startswith('mps' ):
__magic_name__ : Optional[Any] = torch.manual_seed(_A )
else:
__magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
__magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Tuple = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __lowerCAmelCase ( self : List[Any] ) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def __lowerCAmelCase ( self : Dict ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __lowerCAmelCase ( self : Tuple ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
self._test_save_load_local()
def __lowerCAmelCase ( self : Any ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , ) | 331 | 0 |
'''simple docstring'''
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
A__ : Any ='''tiny-wmt19-en-ru'''
# Build
# borrowed from a test
A__ : Optional[Any] =[
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
A__ : Dict =dict(zip(vocab, range(len(vocab))))
A__ : Tuple =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : str =Path(tmpdirname)
A__ : Union[str, Any] =build_dir / VOCAB_FILES_NAMES['''src_vocab_file''']
A__ : Union[str, Any] =build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file''']
A__ : str =build_dir / VOCAB_FILES_NAMES['''merges_file''']
with open(src_vocab_file, '''w''') as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, '''w''') as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, '''w''') as fp:
fp.write('''\n'''.join(merges))
A__ : Any =FSMTTokenizer(
langs=['''en''', '''ru'''],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
A__ : Optional[Any] =FSMTConfig(
langs=['''ru''', '''en'''],
src_vocab_size=10_00,
tgt_vocab_size=10_00,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
A__ : List[Any] =FSMTForConditionalGeneration(config)
print(F"""num of params {tiny_model.num_parameters()}""")
# Test
A__ : Union[str, Any] =tokenizer(['''Making tiny model'''], return_tensors='''pt''')
A__ : List[str] =tiny_model(**batch)
print('''test output:''', len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"""Generated {mname_tiny}""")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 70 |
'''simple docstring'''
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Optional[int] = seq_length
__magic_name__ : List[str] = is_training
__magic_name__ : Optional[Any] = use_input_mask
__magic_name__ : Dict = use_token_type_ids
__magic_name__ : str = use_labels
__magic_name__ : int = vocab_size
__magic_name__ : List[Any] = hidden_size
__magic_name__ : Dict = num_hidden_layers
__magic_name__ : Dict = num_attention_heads
__magic_name__ : Tuple = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : Union[str, Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = max_position_embeddings
__magic_name__ : Any = type_vocab_size
__magic_name__ : Union[str, Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = initializer_range
__magic_name__ : str = num_labels
__magic_name__ : Tuple = num_choices
__magic_name__ : Any = relative_attention
__magic_name__ : str = position_biased_input
__magic_name__ : str = pos_att_type
__magic_name__ : Union[str, Any] = scope
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : List[Any] = None
if self.use_input_mask:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__magic_name__ : int = None
if self.use_token_type_ids:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : List[str] = None
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.get_config()
__magic_name__ : Union[str, Any] = 300
return config
def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]:
__magic_name__ : Dict = DebertaModel(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0]
__magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0]
__magic_name__ : List[str] = model(_A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict:
__magic_name__ : List[str] = DebertaForMaskedLM(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]:
__magic_name__ : Optional[int] = self.num_labels
__magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A )
model.to(_A )
model.eval()
__magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(_A )
def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]:
__magic_name__ : str = self.num_labels
__magic_name__ : int = DebertaForTokenClassification(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]:
__magic_name__ : int = DebertaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[int] = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : int = config_and_inputs
__magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Tuple = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Union[str, Any] = True
A_ : Any = False
A_ : Dict = False
A_ : str = False
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : List[str] = DebertaModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : Any ) -> str:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A )
def __lowerCAmelCase ( self : str ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : int = DebertaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='Model not available yet' )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
pass
@slow
def __lowerCAmelCase ( self : Dict ) -> Tuple:
__magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' )
__magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
__magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0]
# compare the actual values for a slice.
__magic_name__ : Tuple = torch.tensor(
[[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' ) | 331 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Any =["""image_processor""", """tokenizer"""]
UpperCamelCase__ : List[Any] ="""LayoutLMv3ImageProcessor"""
UpperCamelCase__ : Dict =("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""")
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Dict =None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , lowerCamelCase__ , )
__UpperCamelCase : Tuple =kwargs.pop('feature_extractor' )
__UpperCamelCase : Optional[int] =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
# first, apply the image processor
__UpperCamelCase : List[str] =self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCamelCase : int =[text] # add batch dimension (as the image processor always adds a batch dimension)
__UpperCamelCase : Any =features['words']
__UpperCamelCase : int =self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , )
# add pixel values
__UpperCamelCase : Dict =features.pop('pixel_values' )
if return_overflowing_tokens is True:
__UpperCamelCase : Union[str, Any] =self.get_overflowing_images(lowerCamelCase__ , encoded_inputs['overflow_to_sample_mapping'] )
__UpperCamelCase : List[str] =images
return encoded_inputs
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Dict =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowerCamelCase__ ) != len(lowerCamelCase__ ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f' {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}' )
return images_with_overflow
def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@property
def __lowercase ( self ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def __lowercase ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCamelCase__ , )
return self.image_processor_class
@property
def __lowercase ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCamelCase__ , )
return self.image_processor
| 71 |
'''simple docstring'''
class _lowerCamelCase : # Public class to implement a graph
'''simple docstring'''
def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
__magic_name__ : Tuple = row
__magic_name__ : str = col
__magic_name__ : Optional[Any] = graph
def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
# Checking all 8 elements surrounding nth element
__magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1]
__magic_name__ : Optional[int] = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A )
def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands.
__magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )]
__magic_name__ : Any = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(_A , _A , _A )
count += 1
return count | 331 | 0 |
"""simple docstring"""
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase__ = '''sshleifer/bart-tiny-random'''
lowerCAmelCase__ = '''patrickvonplaten/t5-tiny-random'''
@require_torch
class __snake_case ( unittest.TestCase):
@cached_property
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return AutoConfig.from_pretrained(__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase , *_lowerCamelCase : List[Any] = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
_lowerCamelCase , *_lowerCamelCase : Optional[int] = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
_lowerCamelCase , *_lowerCamelCase : List[str] = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=__lowerCAmelCase )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase , *_lowerCamelCase : Any = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
with self.assertRaises(__lowerCAmelCase ):
create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=__lowerCAmelCase , d=__lowerCAmelCase )
| 72 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
_UpperCAmelCase : Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str=0):
__lowerCamelCase : Tuple = np.random.RandomState(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Any = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowerCAmelCase ( self : List[str]):
__lowerCamelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Dict = self.get_dummy_inputs()
__lowerCamelCase : Tuple = pipe(**SCREAMING_SNAKE_CASE__).images
__lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__lowerCamelCase : Any = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowerCAmelCase ( self : Dict):
__lowerCamelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
__lowerCamelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=SCREAMING_SNAKE_CASE__)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = self.get_dummy_inputs()
__lowerCamelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE__).images
__lowerCamelCase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__lowerCamelCase : Union[str, Any] = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowerCAmelCase ( self : Tuple):
__lowerCamelCase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
__lowerCamelCase : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[str] = self.get_dummy_inputs()
__lowerCamelCase : Dict = pipe(**SCREAMING_SNAKE_CASE__).images
__lowerCamelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__lowerCamelCase : List[str] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowerCAmelCase ( self : List[str]):
__lowerCamelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
__lowerCamelCase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = self.get_dummy_inputs()
__lowerCamelCase : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__).images
__lowerCamelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__lowerCamelCase : List[Any] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowerCAmelCase ( self : int):
__lowerCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
__lowerCamelCase : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Any = self.get_dummy_inputs()
__lowerCamelCase : Optional[int] = pipe(**SCREAMING_SNAKE_CASE__).images
__lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__lowerCamelCase : List[Any] = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowerCAmelCase ( self : Dict):
__lowerCamelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
__lowerCamelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = self.get_dummy_inputs()
__lowerCamelCase : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__).images
__lowerCamelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__lowerCamelCase : List[str] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowerCAmelCase ( self : Dict):
__lowerCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Dict = self.get_dummy_inputs()
__lowerCamelCase : Optional[int] = 3 * [inputs['prompt']]
# forward
__lowerCamelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = output.images[0, -3:, -3:, -1]
__lowerCamelCase : Union[str, Any] = self.get_dummy_inputs()
__lowerCamelCase : Union[str, Any] = 3 * [inputs.pop('prompt')]
__lowerCamelCase : Tuple = pipe.tokenizer(
SCREAMING_SNAKE_CASE__ ,padding='max_length' ,max_length=pipe.tokenizer.model_max_length ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors='np' ,)
__lowerCamelCase : List[Any] = text_inputs['input_ids']
__lowerCamelCase : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]
__lowerCamelCase : List[Any] = prompt_embeds
# forward
__lowerCamelCase : Optional[int] = pipe(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Dict = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4
def lowerCAmelCase ( self : Optional[Any]):
__lowerCamelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Any = self.get_dummy_inputs()
__lowerCamelCase : Dict = 3 * ['this is a negative prompt']
__lowerCamelCase : Dict = negative_prompt
__lowerCamelCase : Any = 3 * [inputs['prompt']]
# forward
__lowerCamelCase : Dict = pipe(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[str] = output.images[0, -3:, -3:, -1]
__lowerCamelCase : Any = self.get_dummy_inputs()
__lowerCamelCase : Dict = 3 * [inputs.pop('prompt')]
__lowerCamelCase : Optional[int] = []
for p in [prompt, negative_prompt]:
__lowerCamelCase : Any = pipe.tokenizer(
SCREAMING_SNAKE_CASE__ ,padding='max_length' ,max_length=pipe.tokenizer.model_max_length ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors='np' ,)
__lowerCamelCase : Optional[int] = text_inputs['input_ids']
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0])
__lowerCamelCase , __lowerCamelCase : Optional[int] = embeds
# forward
__lowerCamelCase : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[str] = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4
@nightly
@require_onnxruntime
@require_torch_gpu
class A_ ( unittest.TestCase ):
@property
def lowerCAmelCase ( self : str):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowerCAmelCase ( self : str):
__lowerCamelCase : List[Any] = ort.SessionOptions()
__lowerCamelCase : Any = False
return options
def lowerCAmelCase ( self : Union[str, Any]):
# using the PNDM scheduler by default
__lowerCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[int] = 'A painting of a squirrel eating a burger'
np.random.seed(0)
__lowerCamelCase : Dict = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=1_0 ,output_type='np')
__lowerCamelCase : Union[str, Any] = output.images
__lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowerCamelCase : Optional[int] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def lowerCAmelCase ( self : str):
__lowerCamelCase : Any = DDIMScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx')
__lowerCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : int = 'open neural network exchange'
__lowerCamelCase : Union[str, Any] = np.random.RandomState(0)
__lowerCamelCase : int = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np')
__lowerCamelCase : Union[str, Any] = output.images
__lowerCamelCase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowerCamelCase : Union[str, Any] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def lowerCAmelCase ( self : List[Any]):
__lowerCamelCase : List[str] = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx')
__lowerCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[int] = 'open neural network exchange'
__lowerCamelCase : Dict = np.random.RandomState(0)
__lowerCamelCase : Optional[int] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np')
__lowerCamelCase : Union[str, Any] = output.images
__lowerCamelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowerCamelCase : List[str] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def lowerCAmelCase ( self : int):
__lowerCamelCase : List[str] = 0
def test_callback_fn(SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : np.ndarray) -> None:
__lowerCamelCase : Any = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 6_4, 6_4)
__lowerCamelCase : Dict = latents[0, -3:, -3:, -1]
__lowerCamelCase : Dict = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3
elif step == 5:
assert latents.shape == (1, 4, 6_4, 6_4)
__lowerCamelCase : Tuple = latents[0, -3:, -3:, -1]
__lowerCamelCase : Optional[int] = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3
__lowerCamelCase : int = False
__lowerCamelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[str] = 'Andromeda galaxy in a bottle'
__lowerCamelCase : str = np.random.RandomState(0)
pipe(
prompt=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=SCREAMING_SNAKE_CASE__ ,callback=SCREAMING_SNAKE_CASE__ ,callback_steps=1 ,)
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def lowerCAmelCase ( self : List[str]):
__lowerCamelCase : Any = OnnxStableDiffusionPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
assert pipe.safety_checker is None
__lowerCamelCase : Union[str, Any] = pipe('example prompt' ,num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__lowerCamelCase : Tuple = pipe('example prompt' ,num_inference_steps=2).images[0]
assert image is not None
| 73 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ):
"""simple docstring"""
__magic_name__ : list[int] = [0]
__magic_name__ : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
__magic_name__ : int = 0
# the area corresponding to the grid that gives the product closest to target
__magic_name__ : int = 0
# an estimate of b, using the quadratic formula
__magic_name__ : float
# the largest integer less than b_estimate
__magic_name__ : int
# the largest integer less than b_estimate
__magic_name__ : int
# the triangle number corresponding to b_floor
__magic_name__ : int
# the triangle number corresponding to b_ceil
__magic_name__ : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
__magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
__magic_name__ : List[Any] = floor(lowerCAmelCase )
__magic_name__ : Dict = ceil(lowerCAmelCase )
__magic_name__ : Any = triangle_numbers[b_floor]
__magic_name__ : Optional[int] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : Any = triangle_b_first_guess * triangle_a
__magic_name__ : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : List[str] = triangle_b_second_guess * triangle_a
__magic_name__ : Optional[int] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F'{solution() = }') | 331 | 0 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_lowercase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
A = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir ,'schedulers/' ) )
A = self.diffusers_dir
shutil.copy(
os.path.join(A_ ,'src/diffusers/schedulers/scheduling_ddpm.py' ) ,os.path.join(self.diffusers_dir ,'schedulers/scheduling_ddpm.py' ) ,)
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
A = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[str]=None ) -> List[str]:
A = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
A = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
A = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 )
A = black.format_str(A_ ,mode=A_ )
A = os.path.join(self.diffusers_dir ,'new_code.py' )
with open(A_ ,'w' ,newline='\n' ) as f:
f.write(A_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name ,overwrite=A_ )
with open(A_ ,'r' ) as f:
self.assertTrue(f.read() ,A_ )
def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
A = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(A_ ,A_ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
# Base copy consistency
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' ,'DDPMSchedulerOutput' ,REFERENCE_CODE + '\n' ,)
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' ,'DDPMSchedulerOutput' ,A_ ,)
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' ,'TestSchedulerOutput' ,re.sub('DDPM' ,'Test' ,A_ ) ,)
# Copy consistency with a really long name
A = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' ,F'{long_class_name}SchedulerOutput' ,re.sub('Bert' ,A_ ,A_ ) ,)
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' ,'TestSchedulerOutput' ,A_ ,overwrite_result=re.sub('DDPM' ,'Test' ,A_ ) ,) | 74 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Dict = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Tuple = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Any = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure) | 331 | 0 |
'''simple docstring'''
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
a_ : int = logging.get_logger(__name__)
def a_ ( __snake_case : bool , __snake_case : bool ) -> List[str]:
"""simple docstring"""
def run_func(__snake_case : List[str] ):
@wraps(__snake_case )
def run_in_eager_mode(*__snake_case : Tuple , **__snake_case : Tuple ):
return func(*__snake_case , **__snake_case )
@wraps(__snake_case )
@tf.function(experimental_compile=__snake_case )
def run_in_graph_mode(*__snake_case : int , **__snake_case : Union[str, Any] ):
return func(*__snake_case , **__snake_case )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def a_ ( __snake_case : int , __snake_case : int , __snake_case : int ) -> ["tf.Tensor"]:
"""simple docstring"""
lowerCamelCase_ =random.Random()
lowerCamelCase_ =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(__snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : TensorFlowBenchmarkArguments
lowercase : PretrainedConfig
lowercase : str ="TensorFlow"
@property
def lowercase__ ( self ):
"""simple docstring"""
return tf.__version__
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowerCamelCase_ =self._prepare_inference_func(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
return self._measure_speed(_inference )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowerCamelCase_ =self._prepare_train_func(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
return self._measure_speed(_train )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], lowerCAmelCase )
lowerCamelCase_ =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowerCamelCase_ =self._prepare_inference_func(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
return self._measure_memory(_inference )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], lowerCAmelCase )
lowerCamelCase_ =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowerCamelCase_ =self._prepare_train_func(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
return self._measure_memory(_train )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
lowerCamelCase_ =(
hasattr(lowerCAmelCase, '''architectures''' )
and isinstance(config.architectures, lowerCAmelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
lowerCamelCase_ ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
lowerCamelCase_ =__import__('''transformers''', fromlist=[model_class] )
lowerCamelCase_ =getattr(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =model_cls(lowerCAmelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
lowerCamelCase_ =TF_MODEL_MAPPING[config.__class__](lowerCAmelCase )
# encoder-decoder has vocab size saved differently
lowerCamelCase_ =config.vocab_size if hasattr(lowerCAmelCase, '''vocab_size''' ) else config.encoder.vocab_size
lowerCamelCase_ =random_input_ids(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_forward():
return model(lowerCAmelCase, decoder_input_ids=lowerCAmelCase, training=lowerCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_forward():
return model(lowerCAmelCase, training=lowerCAmelCase )
lowerCamelCase_ =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' )
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
lowerCamelCase_ =(
hasattr(lowerCAmelCase, '''architectures''' )
and isinstance(config.architectures, lowerCAmelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
lowerCamelCase_ ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
lowerCamelCase_ =__import__('''transformers''', fromlist=[model_class] )
lowerCamelCase_ =getattr(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =model_cls(lowerCAmelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
lowerCamelCase_ =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCAmelCase )
# encoder-decoder has vocab size saved differently
lowerCamelCase_ =config.vocab_size if hasattr(lowerCAmelCase, '''vocab_size''' ) else config.encoder.vocab_size
lowerCamelCase_ =random_input_ids(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_train():
lowerCamelCase_ =model(lowerCAmelCase, decoder_input_ids=lowerCAmelCase, labels=lowerCAmelCase, training=lowerCAmelCase )[0]
lowerCamelCase_ =tf.gradients(lowerCAmelCase, model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_train():
lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase, training=lowerCAmelCase )[0]
lowerCamelCase_ =tf.gradients(lowerCAmelCase, model.trainable_variables )
return gradients
lowerCamelCase_ =encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' )
timeit.repeat(lowerCAmelCase, repeat=1, number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
lowerCamelCase_ =timeit.repeat(
lowerCAmelCase, repeat=self.args.repeat, number=10, )
return min(lowerCAmelCase ) / 1_0.0
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
logger.info(
'''Note that TensorFlow allocates more memory than '''
'''it might need to speed up computation. '''
'''The memory reported here corresponds to the memory '''
'''reported by `nvidia-smi`, which can vary depending '''
'''on total available memory on the GPU that is used.''' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'''
''' consumption line by line.''' )
lowerCamelCase_ =start_memory_tracing('''transformers''' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'''
''' with `args.memory=False`''' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'''py3nvml not installed, we won\'t log GPU memory usage. '''
'''Install py3nvml (pip install py3nvml) to log information about GPU.''' )
lowerCamelCase_ ='''N/A'''
else:
logger.info(
'''Measuring total GPU usage on GPU device. Make sure to not have additional processes'''
''' running on the same GPU.''' )
# init nvml
nvml.nvmlInit()
func()
lowerCamelCase_ =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
lowerCamelCase_ =nvml.nvmlDeviceGetMemoryInfo(lowerCAmelCase )
lowerCamelCase_ =meminfo.used
lowerCamelCase_ =Memory(lowerCAmelCase )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'''When enabling line by line tracing, the max peak memory for CPU is inaccurate in'''
''' TensorFlow.''' )
lowerCamelCase_ =None
else:
lowerCamelCase_ =measure_peak_memory_cpu(lowerCAmelCase )
lowerCamelCase_ =Memory(lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else memory_bytes
if self.args.trace_memory_line_by_line:
lowerCamelCase_ =stop_memory_tracing(lowerCAmelCase )
if memory is None:
lowerCamelCase_ =summary.total
else:
lowerCamelCase_ =None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None
| 75 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase :Optional[int] = logging.get_logger(__name__)
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Tuple = ["""pixel_values"""]
def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None:
super().__init__(**_A )
__magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384}
__magic_name__ : Dict = get_size_dict(_A , default_to_square=_A )
__magic_name__ : List[Any] = do_resize
__magic_name__ : str = size
# Default value set here for backwards compatibility where the value in config is None
__magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256
__magic_name__ : int = resample
__magic_name__ : List[str] = do_rescale
__magic_name__ : List[Any] = rescale_factor
__magic_name__ : str = do_normalize
__magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
__magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
__magic_name__ : Dict = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__magic_name__ : Dict = int(shortest_edge / crop_pct )
__magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
__magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int:
return rescale(_A , scale=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray:
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image:
__magic_name__ : int = do_resize if do_resize is not None else self.do_resize
__magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct
__magic_name__ : Optional[Any] = resample if resample is not None else self.resample
__magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : str = image_mean if image_mean is not None else self.image_mean
__magic_name__ : Dict = image_std if image_std is not None else self.image_std
__magic_name__ : Dict = size if size is not None else self.size
__magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A )
__magic_name__ : int = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
__magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images]
if do_rescale:
__magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
__magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
__magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images]
__magic_name__ : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A ) | 331 | 0 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
a_ = yaml.safe_load(
'\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n'
)
a_ = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Extra Ignored Subsection',
'text': '',
'is_empty_text': True,
'subsections': [],
}
],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
a_ = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = (
'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'
)
a_ = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = (
'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'
)
a_ = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'
a_ = ''
a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'
a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
a_ = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'
@pytest.mark.parametrize(
"readme_md, expected_dict" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase__ ( _a , _a):
assert ReadMe.from_string(_a , _a).to_dict() == expected_dict
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase__ ( _a , _a):
with pytest.raises(_a , match=re.escape(expected_error.format(path="root"))):
SCREAMING_SNAKE_CASE : str = ReadMe.from_string(_a , _a)
readme.validate()
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase__ ( _a , _a):
with pytest.raises(_a , match=re.escape(expected_error.format(path="root"))):
ReadMe.from_string(_a , _a)
@pytest.mark.parametrize(
"readme_md," , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase__ ( _a):
ReadMe.from_string(_a , _a , suppress_parsing_errors=_a)
@pytest.mark.parametrize(
"readme_md, expected_dict" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase__ ( _a , _a):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE : Optional[int] = Path(_a) / "README.md"
with open(_a , "w+") as readme_file:
readme_file.write(_a)
SCREAMING_SNAKE_CASE : Optional[Any] = ReadMe.from_readme(_a , _a).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase__ ( _a , _a):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE : List[str] = Path(_a) / "README.md"
with open(_a , "w+") as readme_file:
readme_file.write(_a)
SCREAMING_SNAKE_CASE : Optional[Any] = expected_error.format(path=_a)
with pytest.raises(_a , match=re.escape(_a)):
SCREAMING_SNAKE_CASE : Optional[int] = ReadMe.from_readme(_a , _a)
readme.validate()
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase__ ( _a , _a):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE : Any = Path(_a) / "README.md"
with open(_a , "w+") as readme_file:
readme_file.write(_a)
SCREAMING_SNAKE_CASE : Dict = expected_error.format(path=_a)
with pytest.raises(_a , match=re.escape(_a)):
ReadMe.from_readme(_a , _a)
@pytest.mark.parametrize(
"readme_md," , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase__ ( _a):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE : int = Path(_a) / "README.md"
with open(_a , "w+") as readme_file:
readme_file.write(_a)
ReadMe.from_readme(_a , _a , suppress_parsing_errors=_a) | 76 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s
lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1
def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ):
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
__magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__magic_name__ : Union[str, Any] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod() | 331 | 0 |
"""simple docstring"""
def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ):
'''simple docstring'''
return abs(_lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , _lowerCAmelCase )
def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ):
'''simple docstring'''
while y: # --> when y=0 then loop will terminate and return x as final GCD.
lowercase__ , lowercase__ : Optional[int] = y, x % y
return abs(_lowerCAmelCase )
def a_ ( ):
'''simple docstring'''
try:
lowercase__ : int = input('Enter two integers separated by comma (,): ' ).split(',' )
lowercase__ : Tuple = int(nums[0] )
lowercase__ : str = int(nums[1] )
print(
f"""greatest_common_divisor({num_a}, {num_a}) = """
f"""{greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase )}""" )
print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCAmelCase , _lowerCAmelCase )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('Wrong input' )
if __name__ == "__main__":
main()
| 77 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCAmelCase :Tuple = (
'''4S 3H 2C 7S 5H''',
'''9D 8H 2C 6S 7H''',
'''2D 6D 9D TH 7D''',
'''TC 8C 2S JH 6C''',
'''JH 8S TH AH QH''',
'''TS KS 5S 9S AC''',
'''KD 6S 9D TH AD''',
'''KS 8D 4D 9S 4S''', # pair
'''8C 4S KH JS 4D''', # pair
'''QH 8H KD JH 8S''', # pair
'''KC 4H KS 2H 8D''', # pair
'''KD 4S KC 3H 8S''', # pair
'''AH 8S AS KC JH''', # pair
'''3H 4C 4H 3S 2H''', # 2 pairs
'''5S 5D 2C KH KH''', # 2 pairs
'''3C KH 5D 5S KH''', # 2 pairs
'''AS 3C KH AD KH''', # 2 pairs
'''7C 7S 3S 7H 5S''', # 3 of a kind
'''7C 7S KH 2H 7H''', # 3 of a kind
'''AC KH QH AH AS''', # 3 of a kind
'''2H 4D 3C AS 5S''', # straight (low ace)
'''3C 5C 4C 2C 6H''', # straight
'''6S 8S 7S 5H 9H''', # straight
'''JS QS 9H TS KH''', # straight
'''QC KH TS JS AH''', # straight (high ace)
'''8C 9C 5C 3C TC''', # flush
'''3S 8S 9S 5S KS''', # flush
'''4C 5C 9C 8C KC''', # flush
'''JH 8H AH KH QH''', # flush
'''3D 2H 3H 2C 2D''', # full house
'''2H 2C 3S 3H 3D''', # full house
'''KH KC 3S 3H 3D''', # full house
'''JC 6H JS JD JH''', # 4 of a kind
'''JC 7H JS JD JH''', # 4 of a kind
'''JC KH JS JD JH''', # 4 of a kind
'''2S AS 4S 5S 3S''', # straight flush (low ace)
'''2D 6D 3D 4D 5D''', # straight flush
'''5C 6C 3C 7C 4C''', # straight flush
'''JH 9H TH KH QH''', # straight flush
'''JH AH TH KH QH''', # royal flush (high ace straight flush)
)
lowerCAmelCase :List[Any] = (
('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''),
('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''),
('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''),
('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''),
('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''),
('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''),
('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''),
('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''),
('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''),
('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''),
('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''),
('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''),
('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''),
('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''),
('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''),
('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''),
('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''),
('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''),
('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''),
('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''),
('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''),
('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''),
('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''),
('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''),
('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''),
('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''),
('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', True),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', False),
('''AS 3S 4S 8S 2S''', True),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', False),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', True),
)
lowerCAmelCase :Optional[Any] = (
('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]),
('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]),
('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]),
('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]),
)
lowerCAmelCase :Union[str, Any] = (
('''JH AH TH KH QH''', 0),
('''JH 9H TH KH QH''', 0),
('''JC KH JS JD JH''', 7),
('''KH KC 3S 3H 3D''', 6),
('''8C 9C 5C 3C TC''', 0),
('''JS QS 9H TS KH''', 0),
('''7C 7S KH 2H 7H''', 3),
('''3C KH 5D 5S KH''', 2),
('''QH 8H KD JH 8S''', 1),
('''2D 6D 9D TH 7D''', 0),
)
lowerCAmelCase :Tuple = (
('''JH AH TH KH QH''', 2_3),
('''JH 9H TH KH QH''', 2_2),
('''JC KH JS JD JH''', 2_1),
('''KH KC 3S 3H 3D''', 2_0),
('''8C 9C 5C 3C TC''', 1_9),
('''JS QS 9H TS KH''', 1_8),
('''7C 7S KH 2H 7H''', 1_7),
('''3C KH 5D 5S KH''', 1_6),
('''QH 8H KD JH 8S''', 1_5),
('''2D 6D 9D TH 7D''', 1_4),
)
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) )
__magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)]
__magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCamelCase ( lowerCAmelCase : int = 100 ):
"""simple docstring"""
return (generate_random_hand() for _ in range(lowerCAmelCase ))
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_flush() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_straight() == expected
@pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : Any = PokerHand(lowerCAmelCase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_same_kind() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._hand_type == expected
@pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
@pytest.mark.parametrize('hand, other, expected' , generate_random_hands() )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS]
__magic_name__ : Tuple = poker_hands.copy()
shuffle(lowerCAmelCase )
__magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) )
for index, hand in enumerate(lowerCAmelCase ):
assert hand == poker_hands[index]
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )]
pokerhands.sort(reverse=lowerCAmelCase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' )
__magic_name__ : Optional[Any] = True
__magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = 0
__magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) )
__magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' )
with open(lowerCAmelCase ) as file_hand:
for line in file_hand:
__magic_name__ : Optional[int] = line[:14].strip()
__magic_name__ : List[Any] = line[15:].strip()
__magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase )
__magic_name__ : List[Any] = player.compare_with(lowerCAmelCase )
if output == "Win":
answer += 1
assert answer == 376 | 331 | 0 |
"""simple docstring"""
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
snake_case_ = """\
"""
snake_case_ = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
snake_case_ = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase__ ( self :str ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'input_texts': datasets.Value('string' ),
} ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , )
def UpperCAmelCase__ ( self :str , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :int = 16 , lowercase_ :bool = True , lowercase_ :Any=None ) -> Optional[int]:
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase = 'cuda'
else:
UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
UpperCAmelCase = AutoModelForCausalLM.from_pretrained(lowercase_ )
UpperCAmelCase = model.to(lowercase_ )
UpperCAmelCase = AutoTokenizer.from_pretrained(lowercase_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(lowercase_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase = model.config.max_length - 1
else:
UpperCAmelCase = model.config.max_length
UpperCAmelCase = tokenizer(
lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors='pt' , return_attention_mask=lowercase_ , ).to(lowercase_ )
UpperCAmelCase = encodings['input_ids']
UpperCAmelCase = encodings['attention_mask']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase = []
UpperCAmelCase = CrossEntropyLoss(reduction='none' )
for start_index in logging.tqdm(range(0 , len(lowercase_ ) , lowercase_ ) ):
UpperCAmelCase = min(start_index + batch_size , len(lowercase_ ) )
UpperCAmelCase = encoded_texts[start_index:end_index]
UpperCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase_ )
UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase_ ), attn_mask] , dim=1 )
UpperCAmelCase = encoded_batch
with torch.no_grad():
UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ ).logits
UpperCAmelCase = out_logits[..., :-1, :].contiguous()
UpperCAmelCase = labels[..., 1:].contiguous()
UpperCAmelCase = attn_mask[..., 1:].contiguous()
UpperCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , lowercase_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase_ )}
| 78 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase :Union[str, Any] = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowerCamelCase_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
lowerCamelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
lowerCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
snake_case = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
snake_case = field(
default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
snake_case = field(
default=snake_case_ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , )
snake_case = field(default=snake_case_ , metadata={'''help''': '''A folder containing the training data.'''} )
snake_case = field(default=snake_case_ , metadata={'''help''': '''A folder containing the validation data.'''} )
snake_case = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
snake_case = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} )
snake_case = field(
default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , )
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a '''
'''checkpoint identifier on the hub. '''
'''Don\'t set if you want to train a model from scratch.'''
)
} , )
snake_case = field(
default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , )
snake_case = field(
default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
snake_case = field(
default=snake_case_ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , )
snake_case = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
snake_case = field(default=snake_case_ , metadata={'''help''': '''Name or path of preprocessor config.'''} )
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.'''
)
} , )
snake_case = field(
default=snake_case_ , metadata={
'''help''': (
'''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.'''
)
} , )
snake_case = field(
default=snake_case_ , metadata={'''help''': '''Stride to use for the encoder.'''} , )
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , __UpperCAmelCase : Optional[int]=192 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=0.6 ):
'''simple docstring'''
_A = input_size
_A = mask_patch_size
_A = model_patch_size
_A = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError("Input size must be divisible by mask patch size" )
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError("Mask patch size must be divisible by model patch size" )
_A = self.input_size // self.mask_patch_size
_A = self.mask_patch_size // self.model_patch_size
_A = self.rand_size**2
_A = int(np.ceil(self.token_count * self.mask_ratio ) )
def __call__( self : Any ):
'''simple docstring'''
_A = np.random.permutation(self.token_count )[: self.mask_count]
_A = np.zeros(self.token_count , dtype=__UpperCAmelCase )
_A = 1
_A = mask.reshape((self.rand_size, self.rand_size) )
_A = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 )
return torch.tensor(mask.flatten() )
def __lowercase ( __lowercase ) -> str:
'''simple docstring'''
_A = torch.stack([example["pixel_values"] for example in examples] )
_A = torch.stack([example["mask"] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def __lowercase ( ) -> Dict:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mim" , __lowercase , __lowercase )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(__lowercase )
transformers.utils.logging.set_verbosity(__lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if "validation" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0:
_A = ds["train"].train_test_split(data_args.train_val_split )
_A = split["train"]
_A = split["test"]
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
_A = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowercase )
elif model_args.model_name_or_path:
_A = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
_A = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(__lowercase , "decoder_type" ):
_A = "simmim"
# adapt config
_A = model_args.image_size if model_args.image_size is not None else config.image_size
_A = model_args.patch_size if model_args.patch_size is not None else config.patch_size
_A = (
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
"image_size": model_args.image_size,
"patch_size": model_args.patch_size,
"encoder_stride": model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
_A = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase )
elif model_args.model_name_or_path:
_A = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
_A = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
_A = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
_A = AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("Training new model from scratch" )
_A = AutoModelForMaskedImageModeling.from_config(__lowercase )
if training_args.do_train:
_A = ds["train"].column_names
else:
_A = ds["validation"].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = "image"
elif "img" in column_names:
_A = "img"
else:
_A = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
_A = Compose(
[
Lambda(lambda __lowercase : img.convert("RGB" ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
# create mask generator
_A = MaskGenerator(
input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , )
def preprocess_images(__lowercase ):
_A = [transforms(__lowercase ) for image in examples[image_column_name]]
_A = [mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("--do_train requires a train dataset" )
if data_args.max_train_samples is not None:
_A = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(__lowercase )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("--do_eval requires a validation dataset" )
if data_args.max_eval_samples is not None:
_A = (
ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(__lowercase )
# Initialize our trainer
_A = Trainer(
model=__lowercase , args=__lowercase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model()
trainer.log_metrics("train" , train_result.metrics )
trainer.save_metrics("train" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics("eval" , __lowercase )
trainer.save_metrics("eval" , __lowercase )
# Write model card and (optionally) push to hub
_A = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "masked-image-modeling",
"dataset": data_args.dataset_name,
"tags": ["masked-image-modeling"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowercase )
else:
trainer.create_model_card(**__lowercase )
if __name__ == "__main__":
main()
| 79 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase :Any = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple:
super().__init__(**_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]:
__magic_name__ : str = {}
if "candidate_labels" in kwargs:
__magic_name__ : str = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__magic_name__ : Tuple = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int:
__magic_name__ : Dict = load_image(_A )
__magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
__magic_name__ : Optional[Any] = candidate_labels
__magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels]
__magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A )
__magic_name__ : Optional[Any] = [text_inputs]
return inputs
def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str:
__magic_name__ : str = model_inputs.pop('candidate_labels' )
__magic_name__ : str = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , _A ):
__magic_name__ : Dict = text_inputs[0]
else:
# Batching case.
__magic_name__ : Optional[Any] = text_inputs[0][0]
__magic_name__ : List[Any] = self.model(**_A , **_A )
__magic_name__ : str = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]:
__magic_name__ : Tuple = model_outputs.pop('candidate_labels' )
__magic_name__ : Union[str, Any] = model_outputs['logits'][0]
if self.framework == "pt":
__magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 )
__magic_name__ : Tuple = probs.tolist()
if not isinstance(_A , _A ):
__magic_name__ : Any = [scores]
elif self.framework == "tf":
__magic_name__ : Any = stable_softmax(_A , axis=-1 )
__magic_name__ : Dict = probs.numpy().tolist()
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
__magic_name__ : Union[str, Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] )
]
return result | 331 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
def _UpperCamelCase ( __A ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead" , __A , )
if isinstance(__A , torch.Tensor ):
return image
elif isinstance(__A , PIL.Image.Image ):
UpperCamelCase__ = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCamelCase__ , UpperCamelCase__ = image[0].size
UpperCamelCase__ , UpperCamelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
UpperCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
UpperCamelCase__ = np.concatenate(__A , axis=0 )
UpperCamelCase__ = np.array(__A ).astype(np.floataa ) / 255.0
UpperCamelCase__ = image.transpose(0 , 3 , 1 , 2 )
UpperCamelCase__ = 2.0 * image - 1.0
UpperCamelCase__ = torch.from_numpy(__A )
elif isinstance(image[0] , torch.Tensor ):
UpperCamelCase__ = torch.cat(__A , dim=0 )
return image
def _UpperCamelCase ( __A ) -> Optional[int]:
'''simple docstring'''
if isinstance(__A , torch.Tensor ):
return mask
elif isinstance(__A , PIL.Image.Image ):
UpperCamelCase__ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
UpperCamelCase__ , UpperCamelCase__ = mask[0].size
UpperCamelCase__ , UpperCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCamelCase__ = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask]
UpperCamelCase__ = np.concatenate(__A , axis=0 )
UpperCamelCase__ = mask.astype(np.floataa ) / 255.0
UpperCamelCase__ = 0
UpperCamelCase__ = 1
UpperCamelCase__ = torch.from_numpy(__A )
elif isinstance(mask[0] , torch.Tensor ):
UpperCamelCase__ = torch.cat(__A , dim=0 )
return mask
class lowercase_ ( a__ ):
__UpperCAmelCase = 42
__UpperCAmelCase = 42
def __init__( self , a , a ):
super().__init__()
self.register_modules(unet=a , scheduler=a )
@torch.no_grad()
def __call__( self , a , a , a = 2_50 , a = 0.0 , a = 10 , a = 10 , a = None , a = "pil" , a = True , ):
UpperCamelCase__ = image
UpperCamelCase__ = _preprocess_image(a )
UpperCamelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype )
UpperCamelCase__ = _preprocess_mask(a )
UpperCamelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype )
UpperCamelCase__ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(a , a ) and len(a ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(a )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
UpperCamelCase__ = original_image.shape
UpperCamelCase__ = randn_tensor(a , generator=a , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(a , a , a , self.device )
UpperCamelCase__ = eta
UpperCamelCase__ = self.scheduler.timesteps[0] + 1
UpperCamelCase__ = generator[0] if isinstance(a , a ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
UpperCamelCase__ = self.unet(a , a ).sample
# compute previous image: x_t -> x_t-1
UpperCamelCase__ = self.scheduler.step(a , a , a , a , a , a ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
UpperCamelCase__ = self.scheduler.undo_step(a , a , a )
UpperCamelCase__ = t
UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase__ = self.numpy_to_pil(a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=a )
| 80 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase :int = '''pt'''
elif is_tf_available():
lowerCAmelCase :Optional[Any] = '''tf'''
else:
lowerCAmelCase :Optional[Any] = '''jax'''
class _lowerCamelCase ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = ByTaTokenizer
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
super().setUp()
__magic_name__ : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__magic_name__ : Optional[Any] = []
for i in range(len(_A ) ):
try:
__magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) )
__magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) )
if max_length is not None and len(_A ) > max_length:
__magic_name__ : Optional[int] = toks[:max_length]
if min_length is not None and len(_A ) < min_length and len(_A ) > 0:
while len(_A ) < min_length:
__magic_name__ : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__magic_name__ : List[str] = [t[0] for t in toks]
# Ensure consistency
__magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A )
if " " not in output_txt and len(_A ) > 1:
__magic_name__ : int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A )
)
if with_prefix_space:
__magic_name__ : Union[str, Any] = ' ' + output_txt
__magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A )
return output_txt, output_ids
def __lowerCAmelCase ( self : int ) -> str:
__magic_name__ : Any = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
__magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __lowerCAmelCase ( self : int ) -> Tuple:
__magic_name__ : Optional[int] = self.ta_base_tokenizer
__magic_name__ : Optional[int] = 'Unicode €.'
__magic_name__ : Optional[Any] = tokenizer(_A )
__magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : Any = tokenizer.decode(_A )
self.assertEqual(_A , 'Unicode €.</s>' )
__magic_name__ : Any = tokenizer('e è é ê ë' )
__magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : List[str] = tokenizer.decode(_A )
self.assertEqual(_A , 'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' )
def __lowerCAmelCase ( self : Any ) -> int:
__magic_name__ : List[Any] = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
__magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A )
self.assertIsInstance(_A , _A )
if FRAMEWORK != "jax":
__magic_name__ : str = list(batch.input_ids.numpy()[0] )
else:
__magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_A , _A )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _A )
self.assertIn('attention_mask' , _A )
self.assertNotIn('decoder_input_ids' , _A )
self.assertNotIn('decoder_attention_mask' , _A )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
__magic_name__ : Union[str, Any] = self.ta_base_tokenizer
__magic_name__ : Tuple = [
'Summary of the text.',
'Another summary.',
]
__magic_name__ : Dict = tokenizer(
text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : Any = ['A long paragraph for summarization. </s>']
__magic_name__ : List[str] = ['Summary of the text. </s>']
# fmt: off
__magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
__magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
__magic_name__ : str = tokenizer(_A , text_target=_A )
self.assertEqual(_A , batch['input_ids'][0] )
self.assertEqual(_A , batch['labels'][0] )
def __lowerCAmelCase ( self : Any ) -> str:
# safety check on max_len default value so we are sure the test works
__magic_name__ : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__magic_name__ : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : str = tempfile.mkdtemp()
__magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running'
__magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
shutil.rmtree(_A )
__magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : Optional[Any] = tempfile.mkdtemp()
__magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : Any = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_A )
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
__magic_name__ : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Union[str, Any] = json.load(_A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Optional[Any] = json.load(_A )
__magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )]
__magic_name__ : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
__magic_name__ : Tuple = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__magic_name__ : str = tokenizer_class.from_pretrained(
_A , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )]
__magic_name__ : Optional[Any] = tokenizer_class.from_pretrained(
_A , additional_special_tokens=_A , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
__magic_name__ : int = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
__magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
pass
def __lowerCAmelCase ( self : List[str] ) -> int:
pass
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
pass
def __lowerCAmelCase ( self : List[Any] ) -> int:
pass
def __lowerCAmelCase ( self : str ) -> Tuple:
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
__magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
__magic_name__ : int = tokenizer.convert_tokens_to_string(_A )
self.assertIsInstance(_A , _A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : List[str] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
__magic_name__ : List[str] = 0
__magic_name__ : str = tokenizer.convert_ids_to_tokens(
_A , skip_special_tokens=_A )
for attr in attributes_list:
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] )
setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] ) | 331 | 0 |
"""simple docstring"""
def _A ( lowercase , lowercase ):
"""simple docstring"""
assert x is not None
assert y is not None
a =len(lowercase )
a =len(lowercase )
# declaring the array for storing the dp values
a =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
a =1 if x[i - 1] == y[j - 1] else 0
a =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
a =''''''
a , a =m, n
while i > 0 and j > 0:
a =1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
a =x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
lowerCamelCase_ : List[Any] = """AGGTAB"""
lowerCamelCase_ : str = """GXTXAYB"""
lowerCamelCase_ : Any = 4
lowerCamelCase_ : List[Any] = """GTAB"""
lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = longest_common_subsequence(a, b)
print("""len =""", ln, """, sub-sequence =""", subseq)
import doctest
doctest.testmod() | 81 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]]
__magic_name__ : Dict = DisjunctiveConstraint(_A )
self.assertTrue(isinstance(dc.token_ids , _A ) )
with self.assertRaises(_A ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_A ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_A ):
DisjunctiveConstraint(_A ) # fails here
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
__magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]]
__magic_name__ : List[Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 )
__magic_name__ : Optional[int] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 )
__magic_name__ : List[Any] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 )
__magic_name__ : Any = stepped is True and completed is True and reset is False
self.assertTrue(_A )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] ) | 331 | 0 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
A__ = logging.get_logger(__name__) # pylint: disable=invalid-name
A__ = """
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior.to(\"cuda\")
>>> prompt = \"A red cartoon frog, 4k\"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16
... )
>>> pipe.to(\"cuda\")
>>> init_image = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/frog.png\"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save(\"red_frog.png\")
```
"""
def _UpperCAmelCase ( snake_case , snake_case , snake_case=8 ):
"""simple docstring"""
_lowerCAmelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCAmelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def _UpperCAmelCase ( snake_case , snake_case=5_12 , snake_case=5_12 ):
"""simple docstring"""
_lowerCAmelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_lowerCAmelCase = np.array(pil_image.convert("""RGB""" ) )
_lowerCAmelCase = arr.astype(np.floataa ) / 127.5 - 1
_lowerCAmelCase = np.transpose(snake_case , [2, 0, 1] )
_lowerCAmelCase = torch.from_numpy(snake_case ).unsqueeze(0 )
return image
class __lowerCAmelCase ( lowerCamelCase__ ):
def __init__( self , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=_snake_case , scheduler=_snake_case , movq=_snake_case , )
_lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def snake_case ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = min(int(num_inference_steps * strength ) , _snake_case )
_lowerCAmelCase = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None ):
"""simple docstring"""
if not isinstance(_snake_case , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_snake_case )}' )
_lowerCAmelCase = image.to(device=_snake_case , dtype=_snake_case )
_lowerCAmelCase = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_lowerCAmelCase = image
else:
if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(_snake_case )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
elif isinstance(_snake_case , _snake_case ):
_lowerCAmelCase = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_snake_case )
]
_lowerCAmelCase = torch.cat(_snake_case , dim=0 )
else:
_lowerCAmelCase = self.movq.encode(_snake_case ).latent_dist.sample(_snake_case )
_lowerCAmelCase = self.movq.config.scaling_factor * init_latents
_lowerCAmelCase = torch.cat([init_latents] , dim=0 )
_lowerCAmelCase = init_latents.shape
_lowerCAmelCase = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case )
# get latents
_lowerCAmelCase = self.scheduler.add_noise(_snake_case , _snake_case , _snake_case )
_lowerCAmelCase = init_latents
return latents
def snake_case ( self , _snake_case=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
_lowerCAmelCase = torch.device(F'cuda:{gpu_id}' )
_lowerCAmelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_snake_case , _snake_case )
def snake_case ( self , _snake_case=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
_lowerCAmelCase = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=_snake_case )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCAmelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCAmelCase , _lowerCAmelCase = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case )
# We'll offload the last model manually.
_lowerCAmelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def snake_case ( self ):
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(_snake_case , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_snake_case )
def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case = 512 , _snake_case = 512 , _snake_case = 100 , _snake_case = 4.0 , _snake_case = 0.3 , _snake_case = 1 , _snake_case = None , _snake_case = "pil" , _snake_case = True , ):
"""simple docstring"""
_lowerCAmelCase = self._execution_device
_lowerCAmelCase = guidance_scale > 1.0
if isinstance(_snake_case , _snake_case ):
_lowerCAmelCase = torch.cat(_snake_case , dim=0 )
_lowerCAmelCase = image_embeds.shape[0]
if isinstance(_snake_case , _snake_case ):
_lowerCAmelCase = torch.cat(_snake_case , dim=0 )
if do_classifier_free_guidance:
_lowerCAmelCase = image_embeds.repeat_interleave(_snake_case , dim=0 )
_lowerCAmelCase = negative_image_embeds.repeat_interleave(_snake_case , dim=0 )
_lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case )
if not isinstance(_snake_case , _snake_case ):
_lowerCAmelCase = [image]
if not all(isinstance(_snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'Input is in incorrect format: {[type(_snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor' )
_lowerCAmelCase = torch.cat([prepare_image(_snake_case , _snake_case , _snake_case ) for i in image] , dim=0 )
_lowerCAmelCase = image.to(dtype=image_embeds.dtype , device=_snake_case )
_lowerCAmelCase = self.movq.encode(_snake_case )["""latents"""]
_lowerCAmelCase = latents.repeat_interleave(_snake_case , dim=0 )
self.scheduler.set_timesteps(_snake_case , device=_snake_case )
_lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(_snake_case , _snake_case , _snake_case )
_lowerCAmelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_lowerCAmelCase , _lowerCAmelCase = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor )
_lowerCAmelCase = self.prepare_latents(
_snake_case , _snake_case , _snake_case , _snake_case , image_embeds.dtype , _snake_case , _snake_case )
for i, t in enumerate(self.progress_bar(_snake_case ) ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase = {"""image_embeds""": image_embeds}
_lowerCAmelCase = self.unet(
sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0]
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
_lowerCAmelCase , _lowerCAmelCase = noise_pred.chunk(2 )
_lowerCAmelCase , _lowerCAmelCase = variance_pred.chunk(2 )
_lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase = self.scheduler.step(
_snake_case , _snake_case , _snake_case , generator=_snake_case , )[0]
# post-processing
_lowerCAmelCase = self.movq.decode(_snake_case , force_not_quantize=_snake_case )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
_lowerCAmelCase = image * 0.5 + 0.5
_lowerCAmelCase = image.clamp(0 , 1 )
_lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
_lowerCAmelCase = self.numpy_to_pil(_snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_snake_case )
| 82 |
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
lowerCAmelCase :List[str] = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
lowerCAmelCase :List[Any] = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Union[str, Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Tuple = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Optional[Any] = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[int] = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
lowerCAmelCase :Tuple = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Union[str, Any] = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
lowerCAmelCase :Dict = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
lowerCAmelCase :Optional[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Any = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
lowerCAmelCase :Any = ''''''
lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
__magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : str = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
__magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Any = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) | 331 | 0 |
'''simple docstring'''
import os
import jsonlines
import numpy as np
from tqdm import tqdm
snake_case_ : Optional[Any] = 2048
snake_case_ : Union[str, Any] = 4096
snake_case_ : int = 42
snake_case_ : Any = os.environ.pop('PROCESS_TRAIN', 'false')
snake_case_ : Dict = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4}
def A__ ( UpperCAmelCase_ ):
def choose_first(UpperCAmelCase_ , UpperCAmelCase_=False ):
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
if len(UpperCAmelCase_ ) == 1:
_UpperCamelCase : Any = answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
_UpperCamelCase : Optional[Any] = {k: [a[k]] for k in a}
if len(a['start_token'] ) > 0:
break
return a
_UpperCamelCase : Optional[int] = {'id': example['id']}
_UpperCamelCase : Any = example['annotations']
_UpperCamelCase : int = annotation['yes_no_answer']
if 0 in yes_no_answer or 1 in yes_no_answer:
_UpperCamelCase : Union[str, Any] = ['yes'] if 1 in yes_no_answer else ['no']
_UpperCamelCase : List[Any] = []
_UpperCamelCase : Optional[int] = []
_UpperCamelCase : Any = ['<cls>']
else:
_UpperCamelCase : List[str] = ['short']
_UpperCamelCase : List[Any] = choose_first(annotation['short_answers'] )
if len(out['start_token'] ) == 0:
# answer will be long if short is not available
_UpperCamelCase : str = ['long']
_UpperCamelCase : Dict = choose_first(annotation['long_answer'] , is_long_answer=UpperCAmelCase_ )
_UpperCamelCase : List[str] = []
answer.update(UpperCAmelCase_ )
# disregard some samples
if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]:
_UpperCamelCase : List[str] = True
else:
_UpperCamelCase : str = False
_UpperCamelCase : List[str] = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text']
if not all(isinstance(answer[k] , UpperCAmelCase_ ) for k in cols ):
raise ValueError('Issue in ID' , example['id'] )
return answer
def A__ ( UpperCAmelCase_ , UpperCAmelCase_=False ):
_UpperCamelCase : List[str] = _get_single_answer(UpperCAmelCase_ )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
_UpperCamelCase : Optional[Any] = example['document']['tokens']
_UpperCamelCase : List[str] = []
for i in range(len(doc['token'] ) ):
if not doc["is_html"][i]:
context.append(doc['token'][i] )
return {
"context": " ".join(UpperCAmelCase_ ),
"answer": {
"start_token": -1_0_0, # ignore index in cross-entropy
"end_token": -1_0_0, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
_UpperCamelCase : Optional[int] = ['start_token', 'end_token']
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
_UpperCamelCase : List[Any] = example['document']['tokens']
_UpperCamelCase : Union[str, Any] = answer['start_token']
_UpperCamelCase : List[Any] = answer['end_token']
_UpperCamelCase : Dict = []
for i in range(len(doc['token'] ) ):
if not doc["is_html"][i]:
context.append(doc['token'][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
_UpperCamelCase : Tuple = ' '.join(context[start_token:end_token] )
# checking above code
if assertion:
_UpperCamelCase : List[Any] = doc['is_html'][answer['start_token'] : answer['end_token']]
_UpperCamelCase : List[Any] = doc['token'][answer['start_token'] : answer['end_token']]
_UpperCamelCase : List[str] = ' '.join([old[i] for i in range(len(UpperCAmelCase_ ) ) if not is_html[i]] )
if new != old:
print('ID:' , example['id'] )
print('New:' , UpperCAmelCase_ , end='\n' )
print('Old:' , UpperCAmelCase_ , end='\n\n' )
return {
"context": " ".join(UpperCAmelCase_ ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=2_0_4_8 , UpperCAmelCase_=4_0_9_6 , UpperCAmelCase_=True ):
# overlap will be of doc_stride - q_len
_UpperCamelCase : Any = get_context_and_ans(UpperCAmelCase_ , assertion=UpperCAmelCase_ )
_UpperCamelCase : Optional[int] = out['answer']
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
_UpperCamelCase : Optional[Any] = tokenizer(example['question']['text'] , out['context'] ).input_ids
_UpperCamelCase : Dict = input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : str = []
_UpperCamelCase : Any = input_ids[:q_len]
_UpperCamelCase : Optional[Any] = range(UpperCAmelCase_ , len(UpperCAmelCase_ ) , max_length - doc_stride )
for i in doc_start_indices:
_UpperCamelCase : Optional[Any] = i + max_length - q_len
_UpperCamelCase : Any = input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer['category'][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-1_0_0] * len(UpperCAmelCase_ ),
"end_token": [-1_0_0] * len(UpperCAmelCase_ ),
"category": category,
},
}
_UpperCamelCase : Any = out['context'].split()
_UpperCamelCase : Optional[int] = splitted_context[answer['end_token']]
_UpperCamelCase : Optional[Any] = len(
tokenizer(
' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCAmelCase_ , ).input_ids )
_UpperCamelCase : Optional[int] = len(
tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCAmelCase_ ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
_UpperCamelCase : Tuple = len(tokenizer(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
_UpperCamelCase : Union[str, Any] = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive
_UpperCamelCase : List[Any] = answer['start_token']
_UpperCamelCase : Any = answer['end_token']
if assertion:
_UpperCamelCase : Dict = tokenizer.decode(UpperCAmelCase_ )
if answer["span"] != new:
print('ISSUE IN TOKENIZATION' )
print('OLD:' , answer['span'] )
print('NEW:' , UpperCAmelCase_ , end='\n\n' )
if len(UpperCAmelCase_ ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
_UpperCamelCase : Optional[int] = input_ids[:q_len]
_UpperCamelCase : Dict = range(UpperCAmelCase_ , len(UpperCAmelCase_ ) , max_length - doc_stride )
_UpperCamelCase : Any = []
_UpperCamelCase : List[Any] = []
_UpperCamelCase : Any = []
_UpperCamelCase : int = [] # null, yes, no, long, short
for i in doc_start_indices:
_UpperCamelCase : str = i + max_length - q_len
_UpperCamelCase : Tuple = input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
_UpperCamelCase : int = start_token - i + q_len
_UpperCamelCase : Any = end_token - i + q_len
answers_category.append(answer['category'][0] ) # ["short"] -> "short"
else:
_UpperCamelCase : Union[str, Any] = -1_0_0
_UpperCamelCase : List[str] = -1_0_0
answers_category.append('null' )
_UpperCamelCase : Optional[Any] = inputs[-1][start_token : end_token + 1]
answers_start_token.append(UpperCAmelCase_ )
answers_end_token.append(UpperCAmelCase_ )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print('ISSUE in strided for ID:' , example['id'] )
print('New:' , tokenizer.decode(UpperCAmelCase_ ) )
print('Old:' , tokenizer.decode(UpperCAmelCase_ ) , end='\n\n' )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=2_0_4_8 , UpperCAmelCase_=4_0_9_6 , UpperCAmelCase_=False ):
_UpperCamelCase : Dict = get_strided_contexts_and_ans(
UpperCAmelCase_ , UpperCAmelCase_ , doc_stride=UpperCAmelCase_ , max_length=UpperCAmelCase_ , assertion=UpperCAmelCase_ , )
return example
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ):
with jsonlines.open(UpperCAmelCase_ , 'a' ) as writer:
for example in tqdm(UpperCAmelCase_ , total=len(UpperCAmelCase_ ) , desc='Saving samples ... ' ):
_UpperCamelCase : Union[str, Any] = example['labels']
for ids, start, end, cat in zip(
example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
'input_ids': ids,
'start_token': start,
'end_token': end,
'category': CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
snake_case_ : List[Any] = load_dataset('natural_questions')
snake_case_ : List[Any] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
snake_case_ : str = data['train' if PROCESS_TRAIN == 'true' else 'validation']
snake_case_ : str = {
'tokenizer': tokenizer,
'doc_stride': DOC_STRIDE,
'max_length': MAX_LENGTH,
'assertion': False,
}
snake_case_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
snake_case_ : List[str] = data.remove_columns(['annotations', 'document', 'id', 'question'])
print(data)
np.random.seed(SEED)
snake_case_ : Any = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl'
save_to_disk(data, file_name=cache_file_name)
| 83 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int:
__magic_name__ : str = parent
__magic_name__ : List[Any] = 13
__magic_name__ : Union[str, Any] = 7
__magic_name__ : Tuple = True
__magic_name__ : Dict = True
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = True
__magic_name__ : int = 99
__magic_name__ : List[str] = 384
__magic_name__ : Optional[int] = 2
__magic_name__ : List[Any] = 4
__magic_name__ : int = 37
__magic_name__ : Union[str, Any] = 'gelu'
__magic_name__ : Optional[int] = 0.1
__magic_name__ : str = 0.1
__magic_name__ : Optional[Any] = 512
__magic_name__ : Any = 16
__magic_name__ : Union[str, Any] = 2
__magic_name__ : Any = 0.02
__magic_name__ : List[str] = 3
__magic_name__ : Tuple = 4
__magic_name__ : List[Any] = 128
__magic_name__ : Optional[Any] = 2
__magic_name__ : List[str] = 9
__magic_name__ : str = 1
__magic_name__ : List[str] = None
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Optional[Any] = None
if self.use_input_mask:
__magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : List[str] = None
if self.use_token_type_ids:
__magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : int = None
if self.use_labels:
__magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Optional[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any:
__magic_name__ : Dict = TFConvBertModel(config=_A )
__magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__magic_name__ : Any = [input_ids, input_mask]
__magic_name__ : Tuple = model(_A )
__magic_name__ : List[Any] = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]:
__magic_name__ : Dict = TFConvBertForMaskedLM(config=_A )
__magic_name__ : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Dict = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple:
__magic_name__ : Any = self.num_labels
__magic_name__ : str = TFConvBertForSequenceClassification(config=_A )
__magic_name__ : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = self.num_choices
__magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A )
__magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Optional[int] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]:
__magic_name__ : List[Any] = self.num_labels
__magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A )
__magic_name__ : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int:
__magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A )
__magic_name__ : int = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[str] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : str = config_and_inputs
__magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
A_ : List[str] = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A_ : Tuple = False
A_ : Any = False
A_ : List[Any] = False
def __lowerCAmelCase ( self : List[Any] ) -> int:
__magic_name__ : Optional[Any] = TFConvBertModelTester(self )
__magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : str ) -> Dict:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : int ) -> Any:
__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : Dict ) -> List[str]:
__magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
__magic_name__ : Any = True
if hasattr(_A , 'use_cache' ):
__magic_name__ : List[Any] = True
__magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A )
for model_class in self.all_model_classes:
__magic_name__ : List[str] = self._prepare_for_class(_A , _A )
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Tuple = len(model(_A ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
__magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' )
__magic_name__ : Optional[int] = tf.keras.models.load_model(_A )
__magic_name__ : Optional[Any] = model(_A )
if self.is_encoder_decoder:
__magic_name__ : Optional[int] = outputs['encoder_hidden_states']
__magic_name__ : Tuple = outputs['encoder_attentions']
else:
__magic_name__ : Union[str, Any] = outputs['hidden_states']
__magic_name__ : Optional[Any] = outputs['attentions']
self.assertEqual(len(_A ) , _A )
__magic_name__ : Optional[Any] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_A ) , _A )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
__magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_A )
def __lowerCAmelCase ( self : List[str] ) -> Any:
__magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : str = True
__magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A )
__magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A )
def check_decoder_attentions_output(_A : List[Any] ):
__magic_name__ : Tuple = len(_A )
self.assertEqual(out_len % 2 , 0 )
__magic_name__ : Any = outputs.decoder_attentions
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_A : int ):
__magic_name__ : Dict = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = False
__magic_name__ : List[str] = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
__magic_name__ : Tuple = len(_A )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
if self.is_encoder_decoder:
__magic_name__ : Any = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_decoder_attentions_output(_A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[int] = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : str = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : str = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) )
self.assertEqual(model.config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : int ) -> int:
__magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ : Tuple = model(_A )[0]
__magic_name__ : str = [1, 6, 768]
self.assertEqual(output.shape , _A )
__magic_name__ : Tuple = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 ) | 331 | 0 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
__UpperCAmelCase = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@classmethod
def __lowerCAmelCase ( cls ) -> Union[str, Any]:
lowerCAmelCase_ :Union[str, Any] = TOKEN
HfFolder.save_token(__A )
@classmethod
def __lowerCAmelCase ( cls ) -> Optional[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-model-flax""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" )
except HTTPError:
pass
def __lowerCAmelCase ( self ) -> List[str]:
lowerCAmelCase_ :int = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
lowerCAmelCase_ :Optional[Any] = FlaxBertModel(__A )
model.push_to_hub("""test-model-flax""" , use_auth_token=self._token )
lowerCAmelCase_ :Union[str, Any] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" )
lowerCAmelCase_ :str = flatten_dict(unfreeze(model.params ) )
lowerCAmelCase_ :Union[str, Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
lowerCAmelCase_ :str = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__A , 1E-3 , msg=f"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id="""test-model-flax""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__A , repo_id="""test-model-flax""" , push_to_hub=__A , use_auth_token=self._token )
lowerCAmelCase_ :Any = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" )
lowerCAmelCase_ :Dict = flatten_dict(unfreeze(model.params ) )
lowerCAmelCase_ :Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
lowerCAmelCase_ :List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__A , 1E-3 , msg=f"""{key} not identical""" )
def __lowerCAmelCase ( self ) -> Any:
lowerCAmelCase_ :List[str] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
lowerCAmelCase_ :Optional[int] = FlaxBertModel(__A )
model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token )
lowerCAmelCase_ :Any = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" )
lowerCAmelCase_ :Tuple = flatten_dict(unfreeze(model.params ) )
lowerCAmelCase_ :str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
lowerCAmelCase_ :Tuple = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__A , 1E-3 , msg=f"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__A , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=__A , use_auth_token=self._token )
lowerCAmelCase_ :Dict = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" )
lowerCAmelCase_ :str = flatten_dict(unfreeze(model.params ) )
lowerCAmelCase_ :int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
lowerCAmelCase_ :str = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__A , 1E-3 , msg=f"""{key} not identical""" )
def _snake_case ( lowercase__ : List[str] , lowercase__ : Optional[int] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ :str = True
lowerCAmelCase_ :Any = flatten_dict(modela.params )
lowerCAmelCase_ :Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4:
lowerCAmelCase_ :str = False
return models_are_equal
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> int:
lowerCAmelCase_ :Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
lowerCAmelCase_ :Union[str, Any] = FlaxBertModel(__A )
lowerCAmelCase_ :Union[str, Any] = """bert"""
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__A , __A ) )
with self.assertRaises(__A ):
lowerCAmelCase_ :List[Any] = FlaxBertModel.from_pretrained(__A )
lowerCAmelCase_ :List[Any] = FlaxBertModel.from_pretrained(__A , subfolder=__A )
self.assertTrue(check_models_equal(__A , __A ) )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
lowerCAmelCase_ :Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
lowerCAmelCase_ :List[Any] = FlaxBertModel(__A )
lowerCAmelCase_ :str = """bert"""
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__A , __A ) , max_shard_size="""10KB""" )
with self.assertRaises(__A ):
lowerCAmelCase_ :List[str] = FlaxBertModel.from_pretrained(__A )
lowerCAmelCase_ :int = FlaxBertModel.from_pretrained(__A , subfolder=__A )
self.assertTrue(check_models_equal(__A , __A ) )
def __lowerCAmelCase ( self ) -> Tuple:
lowerCAmelCase_ :int = """bert"""
lowerCAmelCase_ :Any = """hf-internal-testing/tiny-random-bert-subfolder"""
with self.assertRaises(__A ):
lowerCAmelCase_ :Tuple = FlaxBertModel.from_pretrained(__A )
lowerCAmelCase_ :Any = FlaxBertModel.from_pretrained(__A , subfolder=__A )
self.assertIsNotNone(__A )
def __lowerCAmelCase ( self ) -> Tuple:
lowerCAmelCase_ :Optional[Any] = """bert"""
lowerCAmelCase_ :str = """hf-internal-testing/tiny-random-bert-sharded-subfolder"""
with self.assertRaises(__A ):
lowerCAmelCase_ :Dict = FlaxBertModel.from_pretrained(__A )
lowerCAmelCase_ :Optional[int] = FlaxBertModel.from_pretrained(__A , subfolder=__A )
self.assertIsNotNone(__A )
| 84 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
lowerCAmelCase :Dict = pytest.mark.integration
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
__magic_name__ : Union[str, Any] = dset.map(
lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A )
__magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
__magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def __lowerCAmelCase ( self : Any ) -> str:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Tuple ) -> int:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
from elasticsearch import Elasticsearch
__magic_name__ : Dataset = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : int = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
__magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
__magic_name__ : Union[str, Any] = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_A )
__magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
import faiss
__magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__magic_name__ : str = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Optional[int] = 1
__magic_name__ , __magic_name__ : str = index.search(_A )
self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1]
__magic_name__ , __magic_name__ : str = index.search_batch(_A )
self.assertRaises(_A , index.search_batch , queries[0] )
__magic_name__ : List[Any] = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _A )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
import faiss
__magic_name__ : str = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__magic_name__ : str = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_A ):
__magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
import faiss
__magic_name__ : Any = faiss.IndexFlat(5 )
__magic_name__ : Optional[Any] = FaissIndex(custom_index=_A )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : Dict ) -> Tuple:
import faiss
__magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
index.save(tmp_file.name )
__magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ : Dict = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Tuple = 1
__magic_name__ , __magic_name__ : Optional[Any] = index.search(_A )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
import faiss
__magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__magic_name__ : Dict = 'index.faiss'
__magic_name__ : Optional[Any] = f'mock://{index_name}'
index.save(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa )
__magic_name__ : List[str] = 1
__magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> Dict:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : Any = Elasticsearch()
__magic_name__ : Union[str, Any] = {'acknowledged': True}
__magic_name__ : Tuple = ElasticSearchIndex(es_client=_A )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
__magic_name__ : str = 'foo'
__magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__magic_name__ : str = 'foo'
__magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A )
__magic_name__ : Tuple = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A )
# batched queries with timeout
__magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 )
__magic_name__ : Optional[int] = [scores[0] for scores in total_scores]
__magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A ) | 331 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE : Tuple = logging.get_logger("transformers.models.speecht5")
_SCREAMING_SNAKE_CASE : int = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
_SCREAMING_SNAKE_CASE : Tuple = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
_SCREAMING_SNAKE_CASE : Optional[Any] = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
_SCREAMING_SNAKE_CASE : List[Any] = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
_SCREAMING_SNAKE_CASE : Optional[int] = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
_SCREAMING_SNAKE_CASE : int = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
_SCREAMING_SNAKE_CASE : List[Any] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
_SCREAMING_SNAKE_CASE : List[Any] = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_SCREAMING_SNAKE_CASE : int = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_SCREAMING_SNAKE_CASE : Tuple = []
_SCREAMING_SNAKE_CASE : str = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
_SCREAMING_SNAKE_CASE : str = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
_SCREAMING_SNAKE_CASE : Tuple = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
_SCREAMING_SNAKE_CASE : List[Any] = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def UpperCamelCase_( snake_case : Any , snake_case : Any , snake_case : Union[str, Any] , snake_case : Any , snake_case : str ):
'''simple docstring'''
for attribute in key.split("." ):
snake_case_ = getattr(snake_case , snake_case )
if weight_type is not None:
snake_case_ = getattr(snake_case , snake_case ).shape
else:
snake_case_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
snake_case_ = value
elif weight_type == "weight_g":
snake_case_ = value
elif weight_type == "weight_v":
snake_case_ = value
elif weight_type == "bias":
snake_case_ = value
elif weight_type == "running_mean":
snake_case_ = value
elif weight_type == "running_var":
snake_case_ = value
elif weight_type == "num_batches_tracked":
snake_case_ = value
else:
snake_case_ = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def UpperCamelCase_( snake_case : Tuple , snake_case : Optional[int] ):
'''simple docstring'''
for key in ignore_keys:
if key.endswith(".*" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
snake_case_ , snake_case_ = key.split(".*." )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def UpperCamelCase_( snake_case : int , snake_case : List[Any] , snake_case : str ):
'''simple docstring'''
snake_case_ = []
if task == "s2t":
snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder
snake_case_ = MAPPING_S2T
snake_case_ = IGNORE_KEYS_S2T
elif task == "t2s":
snake_case_ = None
snake_case_ = MAPPING_T2S
snake_case_ = IGNORE_KEYS_T2S
elif task == "s2s":
snake_case_ = hf_model.speechta.encoder.prenet.feature_encoder
snake_case_ = MAPPING_S2S
snake_case_ = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(snake_case , snake_case ):
logger.info(f'{name} was ignored' )
continue
snake_case_ = False
if "conv_layers" in name:
load_conv_layer(
snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , )
snake_case_ = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
snake_case_ , snake_case_ = key.split(".*." )
if prefix in name and suffix in name:
snake_case_ = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
snake_case_ = True
if "*" in mapped_key:
snake_case_ = name.split(snake_case )[0].split("." )[-2]
snake_case_ = mapped_key.replace("*" , snake_case )
if "weight_g" in name:
snake_case_ = "weight_g"
elif "weight_v" in name:
snake_case_ = "weight_v"
elif "bias" in name:
snake_case_ = "bias"
elif "weight" in name:
snake_case_ = "weight"
elif "running_mean" in name:
snake_case_ = "running_mean"
elif "running_var" in name:
snake_case_ = "running_var"
elif "num_batches_tracked" in name:
snake_case_ = "num_batches_tracked"
else:
snake_case_ = None
set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case )
continue
if not is_used:
unused_weights.append(snake_case )
logger.warning(f'Unused weights: {unused_weights}' )
def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Dict ):
'''simple docstring'''
snake_case_ = full_name.split("conv_layers." )[-1]
snake_case_ = name.split("." )
snake_case_ = int(items[0] )
snake_case_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
snake_case_ = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
snake_case_ = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
snake_case_ = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
snake_case_ = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(snake_case )
@torch.no_grad()
def UpperCamelCase_( snake_case : Dict , snake_case : int , snake_case : Dict , snake_case : Union[str, Any]=None , snake_case : Dict=None , snake_case : List[Any]=None , ):
'''simple docstring'''
if config_path is not None:
snake_case_ = SpeechTaConfig.from_pretrained(snake_case )
else:
snake_case_ = SpeechTaConfig()
if task == "s2t":
snake_case_ = config.max_text_positions
snake_case_ = SpeechTaForSpeechToText(snake_case )
elif task == "t2s":
snake_case_ = 1_8_7_6
snake_case_ = 6_0_0
snake_case_ = config.max_speech_positions
snake_case_ = SpeechTaForTextToSpeech(snake_case )
elif task == "s2s":
snake_case_ = 1_8_7_6
snake_case_ = config.max_speech_positions
snake_case_ = SpeechTaForSpeechToSpeech(snake_case )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
snake_case_ = SpeechTaTokenizer(snake_case , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
snake_case_ = AddedToken("<mask>" , lstrip=snake_case , rstrip=snake_case )
snake_case_ = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
snake_case_ = SpeechTaFeatureExtractor()
snake_case_ = SpeechTaProcessor(tokenizer=snake_case , feature_extractor=snake_case )
processor.save_pretrained(snake_case )
snake_case_ = torch.load(snake_case )
recursively_load_weights(fairseq_checkpoint["model"] , snake_case , snake_case )
model.save_pretrained(snake_case )
if repo_id:
print("Pushing to the hub..." )
processor.push_to_hub(snake_case )
model.push_to_hub(snake_case )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
_SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 85 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() )
__magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__)
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ):
"""simple docstring"""
if metric == "rouge2":
__magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
__magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
__magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
__magic_name__ : int = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
' function.' )
__magic_name__ : List[Any] = ModelCheckpoint(
dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return EarlyStopping(
monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int:
__magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_A )
@rank_zero_only
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None:
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
__magic_name__ : List[str] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
__magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
__magic_name__ : List[Any] = od / 'test_results.txt'
__magic_name__ : Dict = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
__magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_A )
generations_file.parent.mkdir(exist_ok=_A )
with open(_A , 'a+' ) as writer:
for key in sorted(_A ):
if key in ["log", "progress_bar", "preds"]:
continue
__magic_name__ : Optional[Any] = metrics[key]
if isinstance(_A , torch.Tensor ):
__magic_name__ : Tuple = val.item()
__magic_name__ : int = F'{key}: {val:.6f}\n'
writer.write(_A )
if not save_generations:
return
if "preds" in metrics:
__magic_name__ : str = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(_A )
@rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple:
try:
__magic_name__ : str = pl_module.model.model.num_parameters()
except AttributeError:
__magic_name__ : List[str] = pl_module.model.num_parameters()
__magic_name__ : List[Any] = count_trainable_parameters(_A )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_A , _A , 'test' )
@rank_zero_only
def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid") | 331 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class A__ ( unittest.TestCase):
@slow
def __lowerCamelCase ( self ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[str] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[int] = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : str = AutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase : int = TFAutoModelForMaskedLM.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase : str = AutoModelForMaskedLM.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
__lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 )
__lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 )
def __lowerCamelCase ( self ):
__lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 )
__lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) | 86 |
'''simple docstring'''
def lowerCamelCase ( ):
"""simple docstring"""
return 1
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int = 200 ):
"""simple docstring"""
return two_pound(lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 331 | 0 |
import requests
UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='''
def lowercase_ ( _lowerCamelCase : str):
# fetching a list of articles in json format
lowercase__ : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["articles"] , 1):
print(f'''{i}.) {article["title"]}''')
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
| 87 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Union[str, Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Dict = ["""flax""", """transformers"""]
def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[int] = ["""flax""", """transformers"""]
def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] ) | 331 | 0 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : Any=[1, 2, 1] , UpperCamelCase__ : int=[2, 2, 4] , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[int]=2.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Union[str, Any]=1E-5 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : Tuple=["stage1", "stage2", "stage3"] , UpperCamelCase__ : Tuple=[1, 2, 3] , ) -> Dict:
"""simple docstring"""
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = image_size
__magic_name__ = patch_size
__magic_name__ = num_channels
__magic_name__ = embed_dim
__magic_name__ = depths
__magic_name__ = num_heads
__magic_name__ = window_size
__magic_name__ = mlp_ratio
__magic_name__ = qkv_bias
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = drop_path_rate
__magic_name__ = hidden_act
__magic_name__ = use_absolute_embeddings
__magic_name__ = patch_norm
__magic_name__ = layer_norm_eps
__magic_name__ = initializer_range
__magic_name__ = is_training
__magic_name__ = scope
__magic_name__ = use_labels
__magic_name__ = type_sequence_label_size
__magic_name__ = encoder_stride
__magic_name__ = out_features
__magic_name__ = out_indices
def _lowercase ( self : str ) -> Optional[int]:
"""simple docstring"""
__magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = self.get_config()
return config, pixel_values, labels
def _lowercase ( self : Tuple ) -> str:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowercase ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[str]:
"""simple docstring"""
__magic_name__ = MaskFormerSwinModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__magic_name__ = model(UpperCamelCase__ )
__magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _lowercase ( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__magic_name__ = MaskFormerSwinBackbone(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__magic_name__ = model(UpperCamelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(UpperCamelCase__ ):
__magic_name__ = ["""stem"""]
__magic_name__ = MaskFormerSwinBackbone(config=UpperCamelCase__ )
def _lowercase ( self : Any ) -> Any:
"""simple docstring"""
__magic_name__ = self.prepare_config_and_inputs()
__magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs
__magic_name__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _A , _A , unittest.TestCase ):
'''simple docstring'''
a__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
a__ = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {}
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def _lowercase ( self : Any ) -> List[str]:
"""simple docstring"""
__magic_name__ = MaskFormerSwinModelTester(self )
__magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def _lowercase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
pass
def _lowercase ( self : str ) -> Dict:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return
def _lowercase ( self : str ) -> str:
"""simple docstring"""
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def _lowercase ( self : int ) -> Optional[Any]:
"""simple docstring"""
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCamelCase__ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def _lowercase ( self : Any ) -> int:
"""simple docstring"""
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def _lowercase ( self : str ) -> List[Any]:
"""simple docstring"""
pass
def _lowercase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) )
def _lowercase ( self : Tuple ) -> Dict:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
__magic_name__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ = [*signature.parameters.keys()]
__magic_name__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def _lowercase ( self : Tuple ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def _lowercase ( self : List[str] ) -> Dict:
"""simple docstring"""
pass
def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> Any:
"""simple docstring"""
__magic_name__ = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
__magic_name__ = outputs.hidden_states
__magic_name__ = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ )
# Swin has a different seq_length
__magic_name__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _lowercase ( self : Dict ) -> Dict:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = 3
__magic_name__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def _lowercase ( self : Optional[int] ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def _lowercase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def _lowercase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
pass
def _lowercase ( self : Dict ) -> Any:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(UpperCamelCase__ : Union[str, Any] ):
__magic_name__ = 0
return t
def check_equivalence(UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int={} ):
with torch.no_grad():
__magic_name__ = model(**UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ )
__magic_name__ = model(**UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ).to_tuple()
def recursive_check(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ):
if isinstance(UpperCamelCase__ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase__ , UpperCamelCase__ ):
recursive_check(UpperCamelCase__ , UpperCamelCase__ )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(UpperCamelCase__ , UpperCamelCase__ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(UpperCamelCase__ ) , set_nan_tensor_to_zero(UpperCamelCase__ ) , atol=1E-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
F''' {torch.isnan(UpperCamelCase__ ).any()} and `inf`: {torch.isinf(UpperCamelCase__ )}. Dict has'''
F''' `nan`: {torch.isnan(UpperCamelCase__ ).any()} and `inf`: {torch.isinf(UpperCamelCase__ )}.'''
) , )
recursive_check(UpperCamelCase__ , UpperCamelCase__ )
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase , _A ):
'''simple docstring'''
a__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
a__ = MaskFormerSwinConfig
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__magic_name__ = MaskFormerSwinModelTester(self )
def _lowercase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
__magic_name__ = backbone_class(UpperCamelCase__ )
backbone.to(UpperCamelCase__ )
backbone.eval()
__magic_name__ = backbone(**UpperCamelCase__ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , UpperCamelCase__ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__magic_name__ = backbone(**UpperCamelCase__ , output_hidden_states=UpperCamelCase__ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__magic_name__ , __magic_name__ , __magic_name__ = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__magic_name__ = backbone(**UpperCamelCase__ , output_attentions=UpperCamelCase__ )
self.assertIsNotNone(outputs.attentions )
| 88 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase :Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any:
super().__init__(*_A , **_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]:
__magic_name__ : Union[str, Any] = {}
__magic_name__ : Optional[Any] = {}
if prompt is not None:
__magic_name__ : Union[str, Any] = prompt
if generate_kwargs is not None:
__magic_name__ : str = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__magic_name__ : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
__magic_name__ : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict:
__magic_name__ : List[Any] = load_image(_A )
if prompt is not None:
if not isinstance(_A , _A ):
raise ValueError(
F'Received an invalid text input, got - {type(_A )} - but expected a single string. '
'Note also that one single text can be provided for conditional image to text generation.' )
__magic_name__ : Any = self.model.config.model_type
if model_type == "git":
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids
__magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids
__magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
__magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework )
model_inputs.update(_A )
else:
raise ValueError(F'Model type {model_type} does not support conditional text generation' )
else:
__magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__magic_name__ : int = None
return model_inputs
def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _A )
and all(x is None for x in model_inputs['input_ids'] )
):
__magic_name__ : str = None
if generate_kwargs is None:
__magic_name__ : Optional[int] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name )
__magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A )
return model_outputs
def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]:
__magic_name__ : Optional[Any] = []
for output_ids in model_outputs:
__magic_name__ : Union[str, Any] = {
'generated_text': self.tokenizer.decode(
_A , skip_special_tokens=_A , )
}
records.append(_A )
return records | 331 | 0 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = '''▁'''
__lowerCAmelCase = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
__lowerCAmelCase = {
'''vocab_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''',
},
'''spm_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_config_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''',
},
}
__lowerCAmelCase = {
'''facebook/m2m100_418M''': 1_024,
}
# fmt: off
__lowerCAmelCase = {
'''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''],
'''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de''']
}
class __magic_name__ ( _UpperCamelCase ):
lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES
lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : Union[str, Any] = ['input_ids', 'attention_mask']
lowerCAmelCase : List[int] = []
lowerCAmelCase : List[int] = []
def __init__( self : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : Union[str, Any]="<s>" ,_UpperCAmelCase : Union[str, Any]="</s>" ,_UpperCAmelCase : int="</s>" ,_UpperCAmelCase : Tuple="<pad>" ,_UpperCAmelCase : str="<unk>" ,_UpperCAmelCase : Tuple="m2m100" ,_UpperCAmelCase : Optional[Dict[str, Any]] = None ,_UpperCAmelCase : List[Any]=8 ,**_UpperCAmelCase : Union[str, Any] ,):
_a : int = {} if sp_model_kwargs is None else sp_model_kwargs
_a : int = language_codes
_a : List[Any] = FAIRSEQ_LANGUAGE_CODES[language_codes]
_a : Union[str, Any] = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code}
_a : List[str] = kwargs.get('additional_special_tokens' ,[] )
kwargs["additional_special_tokens"] += [
self.get_lang_token(_UpperCAmelCase )
for lang_code in fairseq_language_code
if self.get_lang_token(_UpperCAmelCase ) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=_UpperCAmelCase ,tgt_lang=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,language_codes=_UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=_UpperCAmelCase ,**_UpperCAmelCase ,)
_a : Any = vocab_file
_a : int = load_json(_UpperCAmelCase )
_a : Dict = {v: k for k, v in self.encoder.items()}
_a : int = spm_file
_a : int = load_spm(_UpperCAmelCase ,self.sp_model_kwargs )
_a : Any = len(self.encoder )
_a : str = {
self.get_lang_token(_UpperCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(_UpperCAmelCase )
}
_a : Optional[int] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_UpperCAmelCase )}
_a : Dict = {v: k for k, v in self.lang_token_to_id.items()}
_a : Union[str, Any] = src_lang if src_lang is not None else 'en'
_a : Optional[int] = tgt_lang
_a : Optional[Any] = self.get_lang_id(self._src_lang )
self.set_src_lang_special_tokens(self._src_lang )
_a : List[Any] = num_madeup_words
@property
def __lowercase ( self : int ):
return len(self.encoder ) + len(self.lang_token_to_id )
@property
def __lowercase ( self : Optional[int] ):
return self._src_lang
@src_lang.setter
def __lowercase ( self : str ,_UpperCAmelCase : str ):
_a : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : str ):
return self.sp_model.encode(_UpperCAmelCase ,out_type=_UpperCAmelCase )
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : int ):
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(_UpperCAmelCase ,self.encoder[self.unk_token] )
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : int ):
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(_UpperCAmelCase ,self.unk_token )
def __lowercase ( self : int ,_UpperCAmelCase : Dict ):
_a : Dict = []
_a : List[str] = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_UpperCAmelCase ) + token
_a : Optional[Any] = []
else:
current_sub_tokens.append(_UpperCAmelCase )
out_string += self.sp_model.decode(_UpperCAmelCase )
return out_string.strip()
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ,_UpperCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase )
_a : List[str] = [1] * len(self.prefix_tokens )
_a : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowercase ( self : List[Any] ):
_a : Dict = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[str] ):
_a : Dict = self.__dict__.copy()
_a : Any = None
return state
def __setstate__( self : Union[str, Any] ,_UpperCAmelCase : Dict ):
_a : List[Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_a : Union[str, Any] = {}
_a : Any = load_spm(self.spm_file ,self.sp_model_kwargs )
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ):
_a : List[str] = Path(_UpperCAmelCase )
if not save_dir.is_dir():
raise OSError(F"""{save_directory} should be a directory""" )
_a : int = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
_a : Tuple = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder ,_UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file ,_UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(_UpperCAmelCase ,'wb' ) as fi:
_a : Tuple = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (str(_UpperCAmelCase ), str(_UpperCAmelCase ))
def __lowercase ( self : List[str] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : str = "en" ,_UpperCAmelCase : Optional[List[str]] = None ,_UpperCAmelCase : str = "ro" ,**_UpperCAmelCase : List[Any] ,):
_a : int = src_lang
_a : List[str] = tgt_lang
self.set_src_lang_special_tokens(self.src_lang )
return super().prepare_seqaseq_batch(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase )
def __lowercase ( self : Dict ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[str] ,_UpperCAmelCase : Optional[str] ,**_UpperCAmelCase : List[Any] ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_a : List[str] = src_lang
_a : Optional[int] = self(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,**_UpperCAmelCase )
_a : List[str] = self.get_lang_id(_UpperCAmelCase )
_a : List[str] = tgt_lang_id
return inputs
def __lowercase ( self : List[str] ):
self.set_src_lang_special_tokens(self.src_lang )
def __lowercase ( self : Any ):
self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : str ):
_a : Tuple = self.get_lang_token(_UpperCAmelCase )
_a : Optional[Any] = self.lang_token_to_id[lang_token]
_a : Union[str, Any] = [self.cur_lang_id]
_a : Union[str, Any] = [self.eos_token_id]
def __lowercase ( self : List[str] ,_UpperCAmelCase : str ):
_a : int = self.get_lang_token(_UpperCAmelCase )
_a : Optional[Any] = self.lang_token_to_id[lang_token]
_a : Dict = [self.cur_lang_id]
_a : Optional[int] = [self.eos_token_id]
def __lowercase ( self : str ,_UpperCAmelCase : str ):
return self.lang_code_to_token[lang]
def __lowercase ( self : List[Any] ,_UpperCAmelCase : str ):
_a : Optional[int] = self.get_lang_token(_UpperCAmelCase )
return self.lang_token_to_id[lang_token]
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> sentencepiece.SentencePieceProcessor:
_a : int = sentencepiece.SentencePieceProcessor(**lowerCAmelCase_ )
spm.Load(str(lowerCAmelCase_ ) )
return spm
def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[Dict, List]:
with open(lowerCAmelCase_ , 'r' ) as f:
return json.load(lowerCAmelCase_ )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None:
with open(lowerCAmelCase_ , 'w' ) as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ , indent=2 )
| 89 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowerCAmelCase :Dict = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
lowerCAmelCase :str = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowerCAmelCase :Any = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys())
lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class _lowerCamelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_A )
__magic_name__ : List[str] = 0
__magic_name__ : Union[str, Any] = Path(self.hparams.output_dir )
__magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__magic_name__ : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , )
else:
__magic_name__ : PretrainedConfig = config
__magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , _A , _A ):
assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , _A , getattr(self.hparams , _A ) )
if tokenizer is None:
__magic_name__ : List[Any] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , )
else:
__magic_name__ : PreTrainedTokenizer = tokenizer
__magic_name__ : Optional[int] = MODEL_MODES[mode]
if model is None:
__magic_name__ : Tuple = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , )
else:
__magic_name__ : str = model
def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple:
__magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
__magic_name__ : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : Optional[Any] = self.model
__magic_name__ : int = ['bias', 'LayerNorm.weight']
__magic_name__ : Dict = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__magic_name__ : str = Adafactor(
_A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A )
else:
__magic_name__ : Tuple = AdamW(
_A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__magic_name__ : List[str] = optimizer
__magic_name__ : int = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]:
return self.validation_step(_A , _A )
def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any:
return self.validation_end(_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
__magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str:
if stage == "test":
__magic_name__ : Any = len(self.test_dataloader().dataset )
else:
__magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A )
__magic_name__ : int = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]:
raise NotImplementedError('You must implement this for your task' )
def __lowerCAmelCase ( self : int ) -> List[str]:
return self.train_loader
def __lowerCAmelCase ( self : Tuple ) -> int:
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str:
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
_A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None:
__magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' )
__magic_name__ : List[Any] = self.step_count
self.model.save_pretrained(_A )
self.tokenizer.save_pretrained(_A )
@staticmethod
def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple:
parser.add_argument(
'--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A )
parser.add_argument('--train_batch_size' , default=32 , type=_A )
parser.add_argument('--eval_batch_size' , default=32 , type=_A )
parser.add_argument('--adafactor' , action='store_true' )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_A )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]:
__magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler']
__magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_A )
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]:
rank_zero_info('***** Validation results *****' )
__magic_name__ : str = trainer.callback_metrics
# Log results
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]:
rank_zero_info('***** Test results *****' )
__magic_name__ : Optional[int] = trainer.callback_metrics
# Log and save results to file
__magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(_A , 'w' ) as writer:
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
parser.add_argument(
'--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__magic_name__ : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase )
if logging_callback is None:
__magic_name__ : Dict = LoggingCallback()
__magic_name__ : List[str] = {}
if args.fpaa:
__magic_name__ : Dict = 16
if args.gpus > 1:
__magic_name__ : Tuple = 'auto'
__magic_name__ : int = 'ddp'
__magic_name__ : str = args.accumulate_grad_batches
__magic_name__ : str = None
__magic_name__ : List[str] = 'auto'
__magic_name__ : List[Any] = pl.Trainer.from_argparse_args(
lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , )
if args.do_train:
trainer.fit(lowerCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer | 331 | 0 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--image_size",
default=5_12,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Any:
"""simple docstring"""
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"""could not parse string as bool {string}""" )
parser.add_argument(
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool
)
parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 90 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Dict = (DDPMScheduler,)
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str:
__magic_name__ : str = {
'num_train_timesteps': 1000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**_A )
return config
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_A )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> str:
self.check_over_configs(thresholding=_A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_A , prediction_type=_A , sample_max_value=_A , )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Dict = scheduler_class(**_A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def __lowerCAmelCase ( self : Tuple ) -> int:
__magic_name__ : Tuple = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : str = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Union[str, Any] = self.dummy_model()
__magic_name__ : List[Any] = self.dummy_sample_deter
__magic_name__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : Tuple = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : Dict = pred_prev_sample
__magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) )
__magic_name__ : Dict = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' )
__magic_name__ : Any = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Dict = self.dummy_model()
__magic_name__ : str = self.dummy_sample_deter
__magic_name__ : str = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : List[Any] = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : List[Any] = pred_prev_sample
__magic_name__ : int = torch.sum(torch.abs(_A ) )
__magic_name__ : Any = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def __lowerCAmelCase ( self : List[str] ) -> str:
__magic_name__ : Dict = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Optional[Any] = scheduler_class(**_A )
__magic_name__ : List[str] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_A )
__magic_name__ : List[str] = scheduler.timesteps
for i, timestep in enumerate(_A ):
if i == len(_A ) - 1:
__magic_name__ : Optional[int] = -1
else:
__magic_name__ : List[Any] = timesteps[i + 1]
__magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A )
__magic_name__ : Any = prev_t.item()
self.assertEqual(_A , _A )
def __lowerCAmelCase ( self : Tuple ) -> str:
__magic_name__ : str = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 1, 0]
__magic_name__ : Tuple = len(_A )
with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=_A ) | 331 | 0 |
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any]=sys.maxsize):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = '''bilinear'''
SCREAMING_SNAKE_CASE_ : Optional[int] = max_size
SCREAMING_SNAKE_CASE_ : Any = short_edge_length
def __call__( self : str , lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = []
for img in imgs:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
SCREAMING_SNAKE_CASE_ : Any = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1)
if size == 0:
return img
SCREAMING_SNAKE_CASE_ : Dict = size * 1.0 / min(lowercase_ , lowercase_)
if h < w:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = size, scale * w
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = scale * h, size
if max(lowercase_ , lowercase_) > self.max_size:
SCREAMING_SNAKE_CASE_ : List[str] = self.max_size * 1.0 / max(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = newh * scale
SCREAMING_SNAKE_CASE_ : str = neww * scale
SCREAMING_SNAKE_CASE_ : int = int(neww + 0.5)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(newh + 0.5)
if img.dtype == np.uinta:
SCREAMING_SNAKE_CASE_ : Tuple = Image.fromarray(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR)
SCREAMING_SNAKE_CASE_ : int = np.asarray(lowercase_)
else:
SCREAMING_SNAKE_CASE_ : int = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
SCREAMING_SNAKE_CASE_ : int = nn.functional.interpolate(
lowercase_ , (newh, neww) , mode=self.interp_method , align_corners=lowercase_).squeeze(0)
img_augs.append(lowercase_)
return img_augs
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST)
SCREAMING_SNAKE_CASE_ : Any = cfg.INPUT.FORMAT
SCREAMING_SNAKE_CASE_ : List[str] = cfg.SIZE_DIVISIBILITY
SCREAMING_SNAKE_CASE_ : List[str] = cfg.PAD_VALUE
SCREAMING_SNAKE_CASE_ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
SCREAMING_SNAKE_CASE_ : List[Any] = cfg.MODEL.DEVICE
SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
SCREAMING_SNAKE_CASE_ : Dict = lambda lowercase_: (x - self.pixel_mean) / self.pixel_std
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = tuple(max(lowercase_) for s in zip(*[img.shape for img in images]))
SCREAMING_SNAKE_CASE_ : List[str] = [im.shape[-2:] for im in images]
SCREAMING_SNAKE_CASE_ : int = [
nn.functional.pad(
lowercase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(lowercase_ , lowercase_)
]
return torch.stack(lowercase_), torch.tensor(lowercase_)
def __call__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : List[Any]=False):
'''simple docstring'''
with torch.no_grad():
if not isinstance(lowercase_ , lowercase_):
SCREAMING_SNAKE_CASE_ : Optional[Any] = [images]
if single_image:
assert len(lowercase_) == 1
for i in range(len(lowercase_)):
if isinstance(images[i] , torch.Tensor):
images.insert(lowercase_ , images.pop(lowercase_).to(self.device).float())
elif not isinstance(images[i] , torch.Tensor):
images.insert(
lowercase_ , torch.as_tensor(img_tensorize(images.pop(lowercase_) , input_format=self.input_format))
.to(self.device)
.float() , )
# resize smallest edge
SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([im.shape[:2] for im in images])
SCREAMING_SNAKE_CASE_ : Optional[int] = self.aug(lowercase_)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.normalizer(lowercase_) for x in images]
# now pad them to do the following operations
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.pad(lowercase_)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.true_divide(lowercase_ , lowercase_)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _A (__a , __a ) -> Dict:
"""simple docstring"""
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _A (__a , __a ) -> Any:
"""simple docstring"""
assert torch.isfinite(__a ).all(), "Box tensor contains infinite or NaN!"
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = box_size
tensor[:, 0].clamp_(min=0 , max=__a )
tensor[:, 1].clamp_(min=0 , max=__a )
tensor[:, 2].clamp_(min=0 , max=__a )
tensor[:, 3].clamp_(min=0 , max=__a )
| 91 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = IFInpaintingPipeline
A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
return self._get_dummy_components()
def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]:
if str(_A ).startswith('mps' ):
__magic_name__ : Optional[Any] = torch.manual_seed(_A )
else:
__magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
__magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Tuple = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __lowerCAmelCase ( self : List[Any] ) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def __lowerCAmelCase ( self : Dict ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __lowerCAmelCase ( self : Tuple ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
self._test_save_load_local()
def __lowerCAmelCase ( self : Any ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , ) | 331 | 0 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
UpperCamelCase__ = """bart"""
UpperCamelCase__ = True
@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE_ )
def _a ( ):
if LOAD_DENSE_INDEX:
__lowerCAmelCase = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" )
__lowerCAmelCase = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" )
__lowerCAmelCase = qar_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCAmelCase = AutoTokenizer.from_pretrained("yjernite/bart_eli5" )
__lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" )
__lowerCAmelCase = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" )
sas_model.load_state_dict(save_dict["model"] )
__lowerCAmelCase = sas_model.eval()
else:
__lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model(
model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE_ )
def _a ( ):
if LOAD_DENSE_INDEX:
__lowerCAmelCase = faiss.StandardGpuResources()
__lowerCAmelCase = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"]
__lowerCAmelCase = np.memmap(
"wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_28) , )
__lowerCAmelCase = faiss.IndexFlatIP(1_28 )
__lowerCAmelCase = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE_ , 1 , SCREAMING_SNAKE_CASE_ )
wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE_ ) # TODO fix for larger GPU
else:
__lowerCAmelCase , __lowerCAmelCase = (None, None)
__lowerCAmelCase = Elasticsearch([{"host": "localhost", "port": "9200"}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE_ )
def _a ( ):
__lowerCAmelCase = datasets.load_dataset("eli5" , name="LFQA_reddit" )
__lowerCAmelCase = elia["train_eli5"]
__lowerCAmelCase = np.memmap(
"eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_28) )
__lowerCAmelCase = faiss.IndexFlatIP(1_28 )
eli5_train_q_index.add(SCREAMING_SNAKE_CASE_ )
return (elia_train, eli5_train_q_index)
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_indexes()
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_models()
UpperCamelCase__ , UpperCamelCase__ = load_train_data()
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]=10 ):
__lowerCAmelCase = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = [elia_train[int(SCREAMING_SNAKE_CASE_ )] for i in I[0]]
return nn_examples
def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int="wiki40b" , SCREAMING_SNAKE_CASE_ : List[Any]="dense" , SCREAMING_SNAKE_CASE_ : int=10 ):
if source == "none":
__lowerCAmelCase , __lowerCAmelCase = (" <P> ".join(["" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
__lowerCAmelCase , __lowerCAmelCase = query_es_index(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index_name="english_wiki40b_snippets_100w" , n_results=SCREAMING_SNAKE_CASE_ , )
__lowerCAmelCase = [
(res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst
]
__lowerCAmelCase = "question: {} context: {}".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda SCREAMING_SNAKE_CASE_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE_ : None),
} )
def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any=64 , SCREAMING_SNAKE_CASE_ : Dict=2_56 , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.95 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.8 ):
with torch.no_grad():
__lowerCAmelCase = qa_sas_generate(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , temp=SCREAMING_SNAKE_CASE_ , top_p=SCREAMING_SNAKE_CASE_ , top_k=SCREAMING_SNAKE_CASE_ , max_input_length=10_24 , device="cuda:0" , )[0]
return (answer, support_list)
st.title("""Long Form Question Answering with ELI5""")
# Start sidebar
UpperCamelCase__ = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"""
UpperCamelCase__ = """
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class=\"img-container\"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
""" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
UpperCamelCase__ = """
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
"""
st.sidebar.markdown(description, unsafe_allow_html=True)
UpperCamelCase__ = [
"""Answer the question""",
"""View the retrieved document only""",
"""View the most similar ELI5 question and answer""",
"""Show me everything, please!""",
]
UpperCamelCase__ = st.sidebar.checkbox("""Demo options""")
if demo_options:
UpperCamelCase__ = st.sidebar.selectbox(
"""""",
action_list,
index=3,
)
UpperCamelCase__ = action_list.index(action_st)
UpperCamelCase__ = st.sidebar.selectbox(
"""""",
["""Show full text of passages""", """Show passage section titles"""],
index=0,
)
UpperCamelCase__ = show_type == """Show full text of passages"""
else:
UpperCamelCase__ = 3
UpperCamelCase__ = True
UpperCamelCase__ = st.sidebar.checkbox("""Retrieval options""")
if retrieval_options:
UpperCamelCase__ = """
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
"""
st.sidebar.markdown(retriever_info)
UpperCamelCase__ = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""])
UpperCamelCase__ = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""])
else:
UpperCamelCase__ = """wiki40b"""
UpperCamelCase__ = """dense"""
UpperCamelCase__ = """beam"""
UpperCamelCase__ = 2
UpperCamelCase__ = 64
UpperCamelCase__ = 256
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = st.sidebar.checkbox("""Generation options""")
if generate_options:
UpperCamelCase__ = """
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder's output probabilities.
"""
st.sidebar.markdown(generate_info)
UpperCamelCase__ = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""])
UpperCamelCase__ = st.sidebar.slider(
"""Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
UpperCamelCase__ = st.sidebar.slider(
"""Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
UpperCamelCase__ = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
UpperCamelCase__ = st.sidebar.slider(
"""Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
UpperCamelCase__ = st.sidebar.slider(
"""Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
UpperCamelCase__ = None
# start main text
UpperCamelCase__ = [
"""<MY QUESTION>""",
"""How do people make chocolate?""",
"""Why do we get a fever when we are sick?""",
"""How can different animals perceive different colors?""",
"""What is natural language processing?""",
"""What's the best way to treat a sunburn?""",
"""What exactly are vitamins ?""",
"""How does nuclear energy provide electricity?""",
"""What's the difference between viruses and bacteria?""",
"""Why are flutes classified as woodwinds when most of them are made out of metal ?""",
"""Why do people like drinking coffee even though it tastes so bad?""",
"""What happens when wine ages? How does it make the wine taste better?""",
"""If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""",
"""How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""",
"""How does New Zealand have so many large bird predators?""",
]
UpperCamelCase__ = st.selectbox(
"""What would you like to ask? ---- select <MY QUESTION> to enter a new query""",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
UpperCamelCase__ = st.text_input("""Enter your question here:""", """""")
else:
UpperCamelCase__ = question_s
if st.button("""Show me!"""):
if action in [0, 1, 3]:
if index_type == "mixed":
UpperCamelCase__ , UpperCamelCase__ = make_support(question, source=wiki_source, method="""dense""", n_results=10)
UpperCamelCase__ , UpperCamelCase__ = make_support(question, source=wiki_source, method="""sparse""", n_results=10)
UpperCamelCase__ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
UpperCamelCase__ = support_list[:10]
UpperCamelCase__ = """<P> """ + """ <P> """.join([res[-1] for res in support_list])
else:
UpperCamelCase__ , UpperCamelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
UpperCamelCase__ , UpperCamelCase__ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == """sampled"""),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("""### The model generated answer is:""")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""")
for i, res in enumerate(support_list):
UpperCamelCase__ = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_"""))
UpperCamelCase__ = res[1].strip()
if sec_titles == "":
UpperCamelCase__ = """[{}]({})""".format(res[0], wiki_url)
else:
UpperCamelCase__ = sec_titles.split(""" & """)
UpperCamelCase__ = """ & """.join(
["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list]
)
st.markdown(
"""{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"""> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True
)
if action in [2, 3]:
UpperCamelCase__ = find_nearest_training(question)
UpperCamelCase__ = nn_train_list[0]
st.markdown(
"""--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""])
)
UpperCamelCase__ = [
"""{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""]))
for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""]))
if i == 0 or sc > 2
]
st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st)))
UpperCamelCase__ = """
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
"""
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 92 |
'''simple docstring'''
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Optional[int] = seq_length
__magic_name__ : List[str] = is_training
__magic_name__ : Optional[Any] = use_input_mask
__magic_name__ : Dict = use_token_type_ids
__magic_name__ : str = use_labels
__magic_name__ : int = vocab_size
__magic_name__ : List[Any] = hidden_size
__magic_name__ : Dict = num_hidden_layers
__magic_name__ : Dict = num_attention_heads
__magic_name__ : Tuple = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : Union[str, Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = max_position_embeddings
__magic_name__ : Any = type_vocab_size
__magic_name__ : Union[str, Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = initializer_range
__magic_name__ : str = num_labels
__magic_name__ : Tuple = num_choices
__magic_name__ : Any = relative_attention
__magic_name__ : str = position_biased_input
__magic_name__ : str = pos_att_type
__magic_name__ : Union[str, Any] = scope
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : List[Any] = None
if self.use_input_mask:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__magic_name__ : int = None
if self.use_token_type_ids:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : List[str] = None
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.get_config()
__magic_name__ : Union[str, Any] = 300
return config
def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]:
__magic_name__ : Dict = DebertaModel(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0]
__magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0]
__magic_name__ : List[str] = model(_A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict:
__magic_name__ : List[str] = DebertaForMaskedLM(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]:
__magic_name__ : Optional[int] = self.num_labels
__magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A )
model.to(_A )
model.eval()
__magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(_A )
def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]:
__magic_name__ : str = self.num_labels
__magic_name__ : int = DebertaForTokenClassification(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]:
__magic_name__ : int = DebertaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[int] = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : int = config_and_inputs
__magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Tuple = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Union[str, Any] = True
A_ : Any = False
A_ : Dict = False
A_ : str = False
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : List[str] = DebertaModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : Any ) -> str:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A )
def __lowerCAmelCase ( self : str ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : int = DebertaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='Model not available yet' )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
pass
@slow
def __lowerCAmelCase ( self : Dict ) -> Tuple:
__magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' )
__magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
__magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0]
# compare the actual values for a slice.
__magic_name__ : Tuple = torch.tensor(
[[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' ) | 331 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict=None ):
"""simple docstring"""
lowercase_ : Any = argparse.ArgumentParser(add_help=__SCREAMING_SNAKE_CASE , allow_abbrev=__SCREAMING_SNAKE_CASE )
# The main config parser
lowercase_ : List[Any] = config_command_parser(__SCREAMING_SNAKE_CASE )
# The subparser to add commands to
lowercase_ : int = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' )
# Then add other parsers with the parent parser
default_command_parser(__SCREAMING_SNAKE_CASE , parents=[parent_parser] )
update_command_parser(__SCREAMING_SNAKE_CASE , parents=[parent_parser] )
return config_parser
def snake_case_ ( ):
"""simple docstring"""
lowercase_ : int = get_config_parser()
lowercase_ : List[Any] = config_parser.parse_args()
if not hasattr(__SCREAMING_SNAKE_CASE , '''func''' ):
config_parser.print_help()
exit(1 )
# Run
args.func(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 93 |
'''simple docstring'''
class _lowerCamelCase : # Public class to implement a graph
'''simple docstring'''
def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
__magic_name__ : Tuple = row
__magic_name__ : str = col
__magic_name__ : Optional[Any] = graph
def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
# Checking all 8 elements surrounding nth element
__magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1]
__magic_name__ : Optional[int] = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A )
def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands.
__magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )]
__magic_name__ : Any = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(_A , _A , _A )
count += 1
return count | 331 | 0 |
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = ['image_processor']
SCREAMING_SNAKE_CASE__ = 'SamImageProcessor'
def __init__( self , _lowerCamelCase ):
super().__init__(_lowerCamelCase )
a :Dict = self.image_processor
a :str = -10
a :List[str] = self.image_processor.size['''longest_edge''']
def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , **_lowerCamelCase , ):
a :List[Any] = self.image_processor(
_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , )
# pop arguments that are not used in the foward but used nevertheless
a :Any = encoding_image_processor['''original_sizes''']
if hasattr(_lowerCamelCase , '''numpy''' ): # Checks if Torch or TF tensor
a :Union[str, Any] = original_sizes.numpy()
a , a , a :Optional[Any] = self._check_and_preprocess_points(
input_points=_lowerCamelCase , input_labels=_lowerCamelCase , input_boxes=_lowerCamelCase , )
a :Optional[Any] = self._normalize_and_convert(
_lowerCamelCase , _lowerCamelCase , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , input_boxes=_lowerCamelCase , return_tensors=_lowerCamelCase , )
return encoding_image_processor
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="pt" , ):
if input_points is not None:
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
a :Tuple = [
self._normalize_coordinates(self.target_size , _lowerCamelCase , original_sizes[0] ) for point in input_points
]
else:
a :str = [
self._normalize_coordinates(self.target_size , _lowerCamelCase , _lowerCamelCase )
for point, original_size in zip(_lowerCamelCase , _lowerCamelCase )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
a , a :Tuple = self._pad_points_and_labels(_lowerCamelCase , _lowerCamelCase )
a :List[str] = np.array(_lowerCamelCase )
if input_labels is not None:
a :Tuple = np.array(_lowerCamelCase )
if input_boxes is not None:
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
a :Dict = [
self._normalize_coordinates(self.target_size , _lowerCamelCase , original_sizes[0] , is_bounding_box=_lowerCamelCase )
for box in input_boxes
]
else:
a :str = [
self._normalize_coordinates(self.target_size , _lowerCamelCase , _lowerCamelCase , is_bounding_box=_lowerCamelCase )
for box, original_size in zip(_lowerCamelCase , _lowerCamelCase )
]
a :Union[str, Any] = np.array(_lowerCamelCase )
if input_boxes is not None:
if return_tensors == "pt":
a :Optional[Any] = torch.from_numpy(_lowerCamelCase )
# boxes batch size of 1 by default
a :Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
a :Dict = tf.convert_to_tensor(_lowerCamelCase )
# boxes batch size of 1 by default
a :Tuple = tf.expand_dims(_lowerCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({'''input_boxes''': input_boxes} )
if input_points is not None:
if return_tensors == "pt":
a :List[Any] = torch.from_numpy(_lowerCamelCase )
# point batch size of 1 by default
a :Any = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
a :Tuple = tf.convert_to_tensor(_lowerCamelCase )
# point batch size of 1 by default
a :int = tf.expand_dims(_lowerCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({'''input_points''': input_points} )
if input_labels is not None:
if return_tensors == "pt":
a :Dict = torch.from_numpy(_lowerCamelCase )
# point batch size of 1 by default
a :int = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
a :Union[str, Any] = tf.convert_to_tensor(_lowerCamelCase )
# point batch size of 1 by default
a :Dict = tf.expand_dims(_lowerCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({'''input_labels''': input_labels} )
return encoding_image_processor
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
a :List[Any] = max([point.shape[0] for point in input_points] )
a :Union[str, Any] = []
for i, point in enumerate(_lowerCamelCase ):
if point.shape[0] != expected_nb_points:
a :int = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
a :Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(_lowerCamelCase )
a :Any = processed_input_points
return input_points, input_labels
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ):
a , a :str = original_size
a , a :Optional[Any] = self.image_processor._get_preprocess_shape(_lowerCamelCase , longest_edge=_lowerCamelCase )
a :List[Any] = deepcopy(_lowerCamelCase ).astype(_lowerCamelCase )
if is_bounding_box:
a :Dict = coords.reshape(-1 , 2 , 2 )
a :Tuple = coords[..., 0] * (new_w / old_w)
a :Dict = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
a :Any = coords.reshape(-1 , 4 )
return coords
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ):
if input_points is not None:
if hasattr(_lowerCamelCase , '''numpy''' ): # Checks for TF or Torch tensor
a :int = input_points.numpy().tolist()
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(input_points[0] , _lowerCamelCase ):
raise ValueError('''Input points must be a list of list of floating points.''' )
a :Dict = [np.array(_lowerCamelCase ) for input_point in input_points]
else:
a :List[str] = None
if input_labels is not None:
if hasattr(_lowerCamelCase , '''numpy''' ):
a :Optional[int] = input_labels.numpy().tolist()
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(input_labels[0] , _lowerCamelCase ):
raise ValueError('''Input labels must be a list of list integers.''' )
a :List[Any] = [np.array(_lowerCamelCase ) for label in input_labels]
else:
a :Optional[Any] = None
if input_boxes is not None:
if hasattr(_lowerCamelCase , '''numpy''' ):
a :int = input_boxes.numpy().tolist()
if (
not isinstance(_lowerCamelCase , _lowerCamelCase )
or not isinstance(input_boxes[0] , _lowerCamelCase )
or not isinstance(input_boxes[0][0] , _lowerCamelCase )
):
raise ValueError('''Input boxes must be a list of list of list of floating points.''' )
a :Optional[int] = [np.array(_lowerCamelCase ).astype(np.floataa ) for box in input_boxes]
else:
a :Optional[int] = None
return input_points, input_labels, input_boxes
@property
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(_lowerCamelCase ) )
def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ):
return self.image_processor.post_process_masks(*_lowerCamelCase , **_lowerCamelCase )
| 94 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
import functools
def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ):
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ):
raise ValueError("The parameter days should be a list of integers" )
if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ):
raise ValueError("The parameter costs should be a list of three integers" )
if len(SCREAMING_SNAKE_CASE ) == 0:
return 0
if min(SCREAMING_SNAKE_CASE ) <= 0:
raise ValueError("All days elements should be greater than 0" )
if max(SCREAMING_SNAKE_CASE ) >= 366:
raise ValueError("All days elements should be less than 366" )
a__ : Any =set(SCREAMING_SNAKE_CASE )
@functools.cache
def dynamic_programming(SCREAMING_SNAKE_CASE : int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 95 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ):
"""simple docstring"""
__magic_name__ : list[int] = [0]
__magic_name__ : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
__magic_name__ : int = 0
# the area corresponding to the grid that gives the product closest to target
__magic_name__ : int = 0
# an estimate of b, using the quadratic formula
__magic_name__ : float
# the largest integer less than b_estimate
__magic_name__ : int
# the largest integer less than b_estimate
__magic_name__ : int
# the triangle number corresponding to b_floor
__magic_name__ : int
# the triangle number corresponding to b_ceil
__magic_name__ : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
__magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
__magic_name__ : List[Any] = floor(lowerCAmelCase )
__magic_name__ : Dict = ceil(lowerCAmelCase )
__magic_name__ : Any = triangle_numbers[b_floor]
__magic_name__ : Optional[int] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : Any = triangle_b_first_guess * triangle_a
__magic_name__ : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : List[str] = triangle_b_second_guess * triangle_a
__magic_name__ : Optional[int] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F'{solution() = }') | 331 | 0 |
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ = logging.get_logger(__name__)
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : List[Any] = RobertaPreLayerNormConfig.from_pretrained(
lowercase__ , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
_lowerCamelCase : str = torch.load(hf_hub_download(repo_id=lowercase__ , filename='pytorch_model.bin' ) )
_lowerCamelCase : Dict = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
_lowerCamelCase : Any = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
_lowerCamelCase : Dict = tensor_value
_lowerCamelCase : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowercase__ , config=lowercase__ , state_dict=lowercase__ )
model.save_pretrained(lowercase__ )
# convert tokenizer
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(lowercase__ )
tokenizer.save_pretrained(lowercase__ )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint-repo""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowercase__ = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 96 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Dict = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Tuple = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Any = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure) | 331 | 0 |
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
__snake_case = logging.getLogger()
def a ( ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase__ :List[Any] = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCamelCase__ :List[Any] = parser.parse_args()
return args.f
class lowercase ( A__ ):
"""simple docstring"""
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(UpperCamelCase_ )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
UpperCamelCase__ :Union[str, Any] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ):
UpperCamelCase__ :Tuple = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(UpperCamelCase_ , 0.666 )
@slow
@require_torch_non_multi_gpu
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Union[str, Any] = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(UpperCamelCase_ )
UpperCamelCase__ :Union[str, Any] = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(UpperCamelCase_ )
UpperCamelCase__ :str = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(UpperCamelCase_ ) | 97 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase :Optional[int] = logging.get_logger(__name__)
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Tuple = ["""pixel_values"""]
def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None:
super().__init__(**_A )
__magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384}
__magic_name__ : Dict = get_size_dict(_A , default_to_square=_A )
__magic_name__ : List[Any] = do_resize
__magic_name__ : str = size
# Default value set here for backwards compatibility where the value in config is None
__magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256
__magic_name__ : int = resample
__magic_name__ : List[str] = do_rescale
__magic_name__ : List[Any] = rescale_factor
__magic_name__ : str = do_normalize
__magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
__magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
__magic_name__ : Dict = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__magic_name__ : Dict = int(shortest_edge / crop_pct )
__magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
__magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int:
return rescale(_A , scale=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray:
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image:
__magic_name__ : int = do_resize if do_resize is not None else self.do_resize
__magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct
__magic_name__ : Optional[Any] = resample if resample is not None else self.resample
__magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : str = image_mean if image_mean is not None else self.image_mean
__magic_name__ : Dict = image_std if image_std is not None else self.image_std
__magic_name__ : Dict = size if size is not None else self.size
__magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A )
__magic_name__ : int = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
__magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images]
if do_rescale:
__magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
__magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
__magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images]
__magic_name__ : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A ) | 331 | 0 |
"""simple docstring"""
from __future__ import annotations
def a_ ( lowerCamelCase , lowerCamelCase ):
if b == 0:
return (1, 0)
((UpperCAmelCase__) , (UpperCAmelCase__)) = extended_euclid(lowerCamelCase , a % b )
UpperCAmelCase__ = a // b
return (y, x - k * y)
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
((UpperCAmelCase__) , (UpperCAmelCase__)) = extended_euclid(lowerCamelCase , lowerCamelCase )
UpperCAmelCase__ = na * na
UpperCAmelCase__ = ra * x * na + ra * y * na
return (n % m + m) % m
def a_ ( lowerCamelCase , lowerCamelCase ):
((UpperCAmelCase__) , (UpperCAmelCase__)) = extended_euclid(lowerCamelCase , lowerCamelCase )
if b < 0:
UpperCAmelCase__ = (b % n + n) % n
return b
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ , UpperCAmelCase__ = invert_modulo(lowerCamelCase , lowerCamelCase ), invert_modulo(lowerCamelCase , lowerCamelCase )
UpperCAmelCase__ = na * na
UpperCAmelCase__ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='chinese_remainder_theorem', verbose=True)
testmod(name='chinese_remainder_theorem2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_euclid', verbose=True)
| 98 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s
lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1
def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ):
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
__magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__magic_name__ : Union[str, Any] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod() | 331 | 0 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
lowercase : Union[str, Any] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE)
lowercase : Union[str, Any] = None
def A_ ( ) -> Dict:
a__ : Dict = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' )
parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' )
parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' )
parser.add_argument(
'--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' )
parser.add_argument(
'--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' )
parser.add_argument(
'--na-prob-thresh' , '-t' , type=A__ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , )
parser.add_argument(
'--out-image-dir' , '-p' , metavar='out_images' , default=A__ , help='Save precision-recall curves to directory.' )
parser.add_argument('--verbose' , '-v' , action='store_true' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def A_ ( A__ ) -> int:
a__ : Any = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
a__ : Optional[int] = bool(qa['answers']['text'] )
return qid_to_has_ans
def A_ ( A__ ) -> List[Any]:
def remove_articles(A__ ):
return ARTICLES_REGEX.sub(' ' , A__ )
def white_space_fix(A__ ):
return " ".join(text.split() )
def remove_punc(A__ ):
a__ : Optional[Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(A__ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) )
def A_ ( A__ ) -> Union[str, Any]:
if not s:
return []
return normalize_answer(A__ ).split()
def A_ ( A__ , A__ ) -> Optional[Any]:
return int(normalize_answer(A__ ) == normalize_answer(A__ ) )
def A_ ( A__ , A__ ) -> Any:
a__ : Tuple = get_tokens(A__ )
a__ : Optional[int] = get_tokens(A__ )
a__ : int = collections.Counter(A__ ) & collections.Counter(A__ )
a__ : Optional[Any] = sum(common.values() )
if len(A__ ) == 0 or len(A__ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
a__ : int = 1.0 * num_same / len(A__ )
a__ : List[Any] = 1.0 * num_same / len(A__ )
a__ : Tuple = (2 * precision * recall) / (precision + recall)
return fa
def A_ ( A__ , A__ ) -> Any:
a__ : Tuple = {}
a__ : int = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
a__ : Optional[int] = qa['id']
a__ : Any = [t for t in qa['answers']['text'] if normalize_answer(A__ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
a__ : List[str] = ['']
if qid not in preds:
print(F'Missing prediction for {qid}' )
continue
a__ : Union[str, Any] = preds[qid]
# Take max over all gold answers
a__ : Tuple = max(compute_exact(A__ , A__ ) for a in gold_answers )
a__ : List[Any] = max(compute_fa(A__ , A__ ) for a in gold_answers )
return exact_scores, fa_scores
def A_ ( A__ , A__ , A__ , A__ ) -> Tuple:
a__ : List[Any] = {}
for qid, s in scores.items():
a__ : Tuple = na_probs[qid] > na_prob_thresh
if pred_na:
a__ : str = float(not qid_to_has_ans[qid] )
else:
a__ : int = s
return new_scores
def A_ ( A__ , A__ , A__=None ) -> List[Any]:
if not qid_list:
a__ : str = len(A__ )
return collections.OrderedDict(
[
('exact', 1_00.0 * sum(exact_scores.values() ) / total),
('f1', 1_00.0 * sum(fa_scores.values() ) / total),
('total', total),
] )
else:
a__ : int = len(A__ )
return collections.OrderedDict(
[
('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total),
('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total),
('total', total),
] )
def A_ ( A__ , A__ , A__ ) -> Optional[int]:
for k in new_eval:
a__ : Optional[int] = new_eval[k]
def A_ ( A__ , A__ , A__ , A__ ) -> Union[str, Any]:
plt.step(A__ , A__ , color='b' , alpha=0.2 , where='post' )
plt.fill_between(A__ , A__ , step='post' , alpha=0.2 , color='b' )
plt.xlabel('Recall' )
plt.ylabel('Precision' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(A__ )
plt.savefig(A__ )
plt.clf()
def A_ ( A__ , A__ , A__ , A__ , A__=None , A__=None ) -> Any:
a__ : str = sorted(A__ , key=lambda A__ : na_probs[k] )
a__ : Tuple = 0.0
a__ : List[str] = 1.0
a__ : Optional[int] = 0.0
a__ : Any = [1.0]
a__ : Optional[int] = [0.0]
a__ : Tuple = 0.0
for i, qid in enumerate(A__ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
a__ : Union[str, Any] = true_pos / float(i + 1 )
a__ : List[Any] = true_pos / float(A__ )
if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(A__ )
recalls.append(A__ )
if out_image:
plot_pr_curve(A__ , A__ , A__ , A__ )
return {"ap": 1_00.0 * avg_prec}
def A_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> str:
if out_image_dir and not os.path.exists(A__ ):
os.makedirs(A__ )
a__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
a__ : Optional[int] = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , )
a__ : Optional[int] = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , )
a__ : int = {k: float(A__ ) for k, v in qid_to_has_ans.items()}
a__ : Optional[Any] = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , )
merge_eval(A__ , A__ , 'pr_exact' )
merge_eval(A__ , A__ , 'pr_f1' )
merge_eval(A__ , A__ , 'pr_oracle' )
def A_ ( A__ , A__ , A__ , A__ ) -> List[Any]:
if not qid_list:
return
a__ : List[str] = [na_probs[k] for k in qid_list]
a__ : Dict = np.ones_like(A__ ) / float(len(A__ ) )
plt.hist(A__ , weights=A__ , bins=20 , range=(0.0, 1.0) )
plt.xlabel('Model probability of no-answer' )
plt.ylabel('Proportion of dataset' )
plt.title(F'Histogram of no-answer probability: {name}' )
plt.savefig(os.path.join(A__ , F'na_prob_hist_{name}.png' ) )
plt.clf()
def A_ ( A__ , A__ , A__ , A__ ) -> Optional[int]:
a__ : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
a__ : List[str] = num_no_ans
a__ : Tuple = cur_score
a__ : Tuple = 0.0
a__ : str = sorted(A__ , key=lambda A__ : na_probs[k] )
for i, qid in enumerate(A__ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
a__ : str = scores[qid]
else:
if preds[qid]:
a__ : int = -1
else:
a__ : Tuple = 0
cur_score += diff
if cur_score > best_score:
a__ : Dict = cur_score
a__ : Tuple = na_probs[qid]
return 1_00.0 * best_score / len(A__ ), best_thresh
def A_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]:
a__ , a__ : str = find_best_thresh(A__ , A__ , A__ , A__ )
a__ , a__ : Tuple = find_best_thresh(A__ , A__ , A__ , A__ )
a__ : Optional[Any] = best_exact
a__ : Optional[Any] = exact_thresh
a__ : Tuple = best_fa
a__ : int = fa_thresh
def A_ ( ) -> Union[str, Any]:
with open(OPTS.data_file ) as f:
a__ : Optional[int] = json.load(A__ )
a__ : Any = dataset_json['data']
with open(OPTS.pred_file ) as f:
a__ : Optional[Any] = json.load(A__ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
a__ : int = json.load(A__ )
else:
a__ : Union[str, Any] = {k: 0.0 for k in preds}
a__ : str = make_qid_to_has_ans(A__ ) # maps qid to True/False
a__ : int = [k for k, v in qid_to_has_ans.items() if v]
a__ : Tuple = [k for k, v in qid_to_has_ans.items() if not v]
a__ , a__ : str = get_raw_scores(A__ , A__ )
a__ : str = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
a__ : Union[str, Any] = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
a__ : List[Any] = make_eval_dict(A__ , A__ )
if has_ans_qids:
a__ : str = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , 'HasAns' )
if no_ans_qids:
a__ : int = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , 'NoAns' )
if OPTS.na_prob_file:
find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , 'hasAns' )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , 'noAns' )
if OPTS.out_file:
with open(OPTS.out_file , 'w' ) as f:
json.dump(A__ , A__ )
else:
print(json.dumps(A__ , indent=2 ) )
if __name__ == "__main__":
lowercase : List[Any] = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("""Agg""")
import matplotlib.pyplot as plt
main()
| 99 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCAmelCase :Tuple = (
'''4S 3H 2C 7S 5H''',
'''9D 8H 2C 6S 7H''',
'''2D 6D 9D TH 7D''',
'''TC 8C 2S JH 6C''',
'''JH 8S TH AH QH''',
'''TS KS 5S 9S AC''',
'''KD 6S 9D TH AD''',
'''KS 8D 4D 9S 4S''', # pair
'''8C 4S KH JS 4D''', # pair
'''QH 8H KD JH 8S''', # pair
'''KC 4H KS 2H 8D''', # pair
'''KD 4S KC 3H 8S''', # pair
'''AH 8S AS KC JH''', # pair
'''3H 4C 4H 3S 2H''', # 2 pairs
'''5S 5D 2C KH KH''', # 2 pairs
'''3C KH 5D 5S KH''', # 2 pairs
'''AS 3C KH AD KH''', # 2 pairs
'''7C 7S 3S 7H 5S''', # 3 of a kind
'''7C 7S KH 2H 7H''', # 3 of a kind
'''AC KH QH AH AS''', # 3 of a kind
'''2H 4D 3C AS 5S''', # straight (low ace)
'''3C 5C 4C 2C 6H''', # straight
'''6S 8S 7S 5H 9H''', # straight
'''JS QS 9H TS KH''', # straight
'''QC KH TS JS AH''', # straight (high ace)
'''8C 9C 5C 3C TC''', # flush
'''3S 8S 9S 5S KS''', # flush
'''4C 5C 9C 8C KC''', # flush
'''JH 8H AH KH QH''', # flush
'''3D 2H 3H 2C 2D''', # full house
'''2H 2C 3S 3H 3D''', # full house
'''KH KC 3S 3H 3D''', # full house
'''JC 6H JS JD JH''', # 4 of a kind
'''JC 7H JS JD JH''', # 4 of a kind
'''JC KH JS JD JH''', # 4 of a kind
'''2S AS 4S 5S 3S''', # straight flush (low ace)
'''2D 6D 3D 4D 5D''', # straight flush
'''5C 6C 3C 7C 4C''', # straight flush
'''JH 9H TH KH QH''', # straight flush
'''JH AH TH KH QH''', # royal flush (high ace straight flush)
)
lowerCAmelCase :List[Any] = (
('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''),
('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''),
('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''),
('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''),
('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''),
('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''),
('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''),
('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''),
('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''),
('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''),
('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''),
('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''),
('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''),
('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''),
('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''),
('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''),
('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''),
('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''),
('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''),
('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''),
('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''),
('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''),
('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''),
('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''),
('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''),
('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''),
('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', True),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', False),
('''AS 3S 4S 8S 2S''', True),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', False),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', True),
)
lowerCAmelCase :Optional[Any] = (
('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]),
('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]),
('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]),
('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]),
)
lowerCAmelCase :Union[str, Any] = (
('''JH AH TH KH QH''', 0),
('''JH 9H TH KH QH''', 0),
('''JC KH JS JD JH''', 7),
('''KH KC 3S 3H 3D''', 6),
('''8C 9C 5C 3C TC''', 0),
('''JS QS 9H TS KH''', 0),
('''7C 7S KH 2H 7H''', 3),
('''3C KH 5D 5S KH''', 2),
('''QH 8H KD JH 8S''', 1),
('''2D 6D 9D TH 7D''', 0),
)
lowerCAmelCase :Tuple = (
('''JH AH TH KH QH''', 2_3),
('''JH 9H TH KH QH''', 2_2),
('''JC KH JS JD JH''', 2_1),
('''KH KC 3S 3H 3D''', 2_0),
('''8C 9C 5C 3C TC''', 1_9),
('''JS QS 9H TS KH''', 1_8),
('''7C 7S KH 2H 7H''', 1_7),
('''3C KH 5D 5S KH''', 1_6),
('''QH 8H KD JH 8S''', 1_5),
('''2D 6D 9D TH 7D''', 1_4),
)
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) )
__magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)]
__magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCamelCase ( lowerCAmelCase : int = 100 ):
"""simple docstring"""
return (generate_random_hand() for _ in range(lowerCAmelCase ))
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_flush() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_straight() == expected
@pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : Any = PokerHand(lowerCAmelCase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_same_kind() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._hand_type == expected
@pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
@pytest.mark.parametrize('hand, other, expected' , generate_random_hands() )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS]
__magic_name__ : Tuple = poker_hands.copy()
shuffle(lowerCAmelCase )
__magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) )
for index, hand in enumerate(lowerCAmelCase ):
assert hand == poker_hands[index]
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )]
pokerhands.sort(reverse=lowerCAmelCase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' )
__magic_name__ : Optional[Any] = True
__magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = 0
__magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) )
__magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' )
with open(lowerCAmelCase ) as file_hand:
for line in file_hand:
__magic_name__ : Optional[int] = line[:14].strip()
__magic_name__ : List[Any] = line[15:].strip()
__magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase )
__magic_name__ : List[Any] = player.compare_with(lowerCAmelCase )
if output == "Win":
answer += 1
assert answer == 376 | 331 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
__lowercase : Optional[int] = '''dpr'''
def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__ = 0 , **lowerCAmelCase__ , ):
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = projection_dim
__SCREAMING_SNAKE_CASE = position_embedding_type
| 100 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase :Union[str, Any] = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
lowercase__ :List[Any] = logging.getLogger(__name__)
class lowercase ( SCREAMING_SNAKE_CASE__ ):
lowercase_ : Any ='''summarization'''
lowercase_ : Optional[Any] =['''loss''']
lowercase_ : Union[str, Any] =ROUGE_KEYS
lowercase_ : Optional[int] ='''rouge2'''
def __init__( self ,A__ ,**A__):
if hparams.sortish_sampler and hparams.gpus > 1:
lowercase = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''')
if hparams.sortish_sampler:
raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''')
super().__init__(A__ ,num_labels=A__ ,mode=self.mode ,**A__)
use_task_specific_params(self.model ,'''summarization''')
save_git_info(self.hparams.output_dir)
lowercase = Path(self.output_dir) / '''metrics.json'''
lowercase = Path(self.output_dir) / '''hparams.pkl'''
pickle_save(self.hparams ,self.hparams_save_path)
lowercase = 0
lowercase = defaultdict(A__)
lowercase = self.config.model_type
lowercase = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size
lowercase = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
lowercase = {
'''train''': self.hparams.n_train,
'''val''': self.hparams.n_val,
'''test''': self.hparams.n_test,
}
lowercase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
lowercase = {
'''train''': self.hparams.max_target_length,
'''val''': self.hparams.val_max_target_length,
'''test''': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}'
assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}'
if self.hparams.freeze_embeds:
freeze_embeds(self.model)
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder())
assert_all_frozen(self.model.get_encoder())
lowercase = get_git_info()['''repo_sha''']
lowercase = hparams.num_workers
lowercase = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,A__):
lowercase = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
lowercase = self.decoder_start_token_id
lowercase = (
SeqaSeqDataset if hasattr(self.tokenizer ,'''prepare_seq2seq_batch''') else LegacySeqaSeqDataset
)
lowercase = False
lowercase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
lowercase = self.hparams.eval_max_gen_length
else:
lowercase = self.model.config.max_length
lowercase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def A__ ( self ,A__):
lowercase = {
k: self.tokenizer.batch_decode(v.tolist()) if '''mask''' not in k else v.shape for k, v in batch.items()
}
save_json(A__ ,Path(self.output_dir) / '''text_batch.json''')
save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir) / '''tok_batch.json''')
lowercase = True
return readable_batch
def A__ ( self ,A__ ,**A__):
return self.model(A__ ,**A__)
def A__ ( self ,A__):
lowercase = self.tokenizer.batch_decode(
A__ ,skip_special_tokens=A__ ,clean_up_tokenization_spaces=A__)
return lmap(str.strip ,A__)
def A__ ( self ,A__):
lowercase = self.tokenizer.pad_token_id
lowercase , lowercase = batch['''input_ids'''], batch['''attention_mask''']
lowercase = batch['''labels''']
if isinstance(self.model ,A__):
lowercase = self.model._shift_right(A__)
else:
lowercase = shift_tokens_right(A__ ,A__)
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
lowercase = decoder_input_ids
self.save_readable_batch(A__)
lowercase = self(A__ ,attention_mask=A__ ,decoder_input_ids=A__ ,use_cache=A__)
lowercase = outputs['''logits''']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
lowercase = nn.CrossEntropyLoss(ignore_index=A__)
assert lm_logits.shape[-1] == self.vocab_size
lowercase = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1]) ,tgt_ids.view(-1))
else:
lowercase = nn.functional.log_softmax(A__ ,dim=-1)
lowercase , lowercase = label_smoothed_nll_loss(
A__ ,A__ ,self.hparams.label_smoothing ,ignore_index=A__)
return (loss,)
@property
def A__ ( self):
return self.tokenizer.pad_token_id
def A__ ( self ,A__ ,A__):
lowercase = self._step(A__)
lowercase = dict(zip(self.loss_names ,A__))
# tokens per batch
lowercase = batch['''input_ids'''].ne(self.pad).sum() + batch['''labels'''].ne(self.pad).sum()
lowercase = batch['''input_ids'''].shape[0]
lowercase = batch['''input_ids'''].eq(self.pad).sum()
lowercase = batch['''input_ids'''].eq(self.pad).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def A__ ( self ,A__ ,A__):
return self._generative_step(A__)
def A__ ( self ,A__ ,A__="val"):
self.step_count += 1
lowercase = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
lowercase = losses['''loss''']
lowercase = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ['''gen_time''', '''gen_len''']
}
lowercase = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
lowercase = torch.tensor(A__).type_as(A__)
generative_metrics.update({k: v.item() for k, v in losses.items()})
losses.update(A__)
lowercase = {f'{prefix}_avg_{k}': x for k, x in losses.items()}
lowercase = self.step_count
self.metrics[prefix].append(A__) # callback writes this to self.metrics_save_path
lowercase = flatten_list([x['''preds'''] for x in outputs])
return {
"log": all_metrics,
"preds": preds,
f'{prefix}_loss': loss,
f'{prefix}_{self.val_metric}': metric_tensor,
}
def A__ ( self ,A__ ,A__):
return calculate_rouge(A__ ,A__)
def A__ ( self ,A__):
lowercase = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
lowercase = self.model.generate(
batch['''input_ids'''] ,attention_mask=batch['''attention_mask'''] ,use_cache=A__ ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,)
lowercase = (time.time() - ta) / batch['''input_ids'''].shape[0]
lowercase = self.ids_to_clean_text(A__)
lowercase = self.ids_to_clean_text(batch['''labels'''])
lowercase = self._step(A__)
lowercase = dict(zip(self.loss_names ,A__))
lowercase = self.calc_generative_metrics(A__ ,A__)
lowercase = np.mean(lmap(A__ ,A__))
base_metrics.update(gen_time=A__ ,gen_len=A__ ,preds=A__ ,target=A__ ,**A__)
return base_metrics
def A__ ( self ,A__ ,A__):
return self._generative_step(A__)
def A__ ( self ,A__):
return self.validation_epoch_end(A__ ,prefix='''test''')
def A__ ( self ,A__):
lowercase = self.n_obs[type_path]
lowercase = self.target_lens[type_path]
lowercase = self.dataset_class(
self.tokenizer ,type_path=A__ ,n_obs=A__ ,max_target_length=A__ ,**self.dataset_kwargs ,)
return dataset
def A__ ( self ,A__ ,A__ ,A__ = False):
lowercase = self.get_dataset(A__)
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
lowercase = dataset.make_sortish_sampler(A__ ,distributed=self.hparams.gpus > 1)
return DataLoader(
A__ ,batch_size=A__ ,collate_fn=dataset.collate_fn ,shuffle=A__ ,num_workers=self.num_workers ,sampler=A__ ,)
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
lowercase = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1)
return DataLoader(
A__ ,batch_sampler=A__ ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,)
else:
return DataLoader(
A__ ,batch_size=A__ ,collate_fn=dataset.collate_fn ,shuffle=A__ ,num_workers=self.num_workers ,sampler=A__ ,)
def A__ ( self):
lowercase = self.get_dataloader('''train''' ,batch_size=self.hparams.train_batch_size ,shuffle=A__)
return dataloader
def A__ ( self):
return self.get_dataloader('''val''' ,batch_size=self.hparams.eval_batch_size)
def A__ ( self):
return self.get_dataloader('''test''' ,batch_size=self.hparams.eval_batch_size)
@staticmethod
def A__ ( A__ ,A__):
BaseTransformer.add_model_specific_args(A__ ,A__)
add_generic_args(A__ ,A__)
parser.add_argument(
'''--max_source_length''' ,default=1_0_2_4 ,type=A__ ,help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) ,)
parser.add_argument(
'''--max_target_length''' ,default=5_6 ,type=A__ ,help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) ,)
parser.add_argument(
'''--val_max_target_length''' ,default=1_4_2 ,type=A__ ,help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) ,)
parser.add_argument(
'''--test_max_target_length''' ,default=1_4_2 ,type=A__ ,help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) ,)
parser.add_argument('''--freeze_encoder''' ,action='''store_true''')
parser.add_argument('''--freeze_embeds''' ,action='''store_true''')
parser.add_argument('''--sortish_sampler''' ,action='''store_true''' ,default=A__)
parser.add_argument('''--overwrite_output_dir''' ,action='''store_true''' ,default=A__)
parser.add_argument('''--max_tokens_per_batch''' ,type=A__ ,default=A__)
parser.add_argument('''--logger_name''' ,type=A__ ,choices=['''default''', '''wandb''', '''wandb_shared'''] ,default='''default''')
parser.add_argument('''--n_train''' ,type=A__ ,default=-1 ,required=A__ ,help='''# examples. -1 means use all.''')
parser.add_argument('''--n_val''' ,type=A__ ,default=5_0_0 ,required=A__ ,help='''# examples. -1 means use all.''')
parser.add_argument('''--n_test''' ,type=A__ ,default=-1 ,required=A__ ,help='''# examples. -1 means use all.''')
parser.add_argument(
'''--task''' ,type=A__ ,default='''summarization''' ,required=A__ ,help='''# examples. -1 means use all.''')
parser.add_argument('''--label_smoothing''' ,type=A__ ,default=0.0 ,required=A__)
parser.add_argument('''--src_lang''' ,type=A__ ,default='''''' ,required=A__)
parser.add_argument('''--tgt_lang''' ,type=A__ ,default='''''' ,required=A__)
parser.add_argument('''--eval_beams''' ,type=A__ ,default=A__ ,required=A__)
parser.add_argument(
'''--val_metric''' ,type=A__ ,default=A__ ,required=A__ ,choices=['''bleu''', '''rouge2''', '''loss''', None])
parser.add_argument('''--eval_max_gen_length''' ,type=A__ ,default=A__ ,help='''never generate more than n tokens''')
parser.add_argument('''--save_top_k''' ,type=A__ ,default=1 ,required=A__ ,help='''How many checkpoints to save''')
parser.add_argument(
'''--early_stopping_patience''' ,type=A__ ,default=-1 ,required=A__ ,help=(
'''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So'''
''' val_check_interval will effect it.'''
) ,)
return parser
class lowercase ( SCREAMING_SNAKE_CASE__ ):
lowercase_ : Optional[int] ='''translation'''
lowercase_ : int =['''loss''']
lowercase_ : Optional[Any] =['''bleu''']
lowercase_ : Tuple ='''bleu'''
def __init__( self ,A__ ,**A__):
super().__init__(A__ ,**A__)
lowercase = hparams.src_lang
lowercase = hparams.tgt_lang
def A__ ( self ,A__ ,A__):
return calculate_bleu(A__ ,A__)
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=None ):
'''simple docstring'''
Path(args.output_dir ).mkdir(exist_ok=lowerCAmelCase__ )
check_output_dir(lowerCAmelCase__ , expected_items=3 )
if model is None:
if "summarization" in args.task:
lowercase = SummarizationModule(lowerCAmelCase__ )
else:
lowercase = TranslationModule(lowerCAmelCase__ )
lowercase = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith('''/tmp''' )
or str(args.output_dir ).startswith('''/var''' )
):
lowercase = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
lowercase = os.environ.get('''WANDB_PROJECT''' , lowerCAmelCase__ )
lowercase = WandbLogger(name=model.output_dir.name , project=lowerCAmelCase__ )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
lowercase = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' )
if args.early_stopping_patience >= 0:
lowercase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
lowercase = False
lowercase = args.val_metric == '''loss'''
lowercase = generic_train(
lowerCAmelCase__ , lowerCAmelCase__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , lowerCAmelCase__ ) , early_stopping_callback=lowerCAmelCase__ , logger=lowerCAmelCase__ , )
pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' )
if not args.do_predict:
return model
lowercase = ''''''
lowercase = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=lowerCAmelCase__ ) )
if checkpoints:
lowercase = checkpoints[-1]
lowercase = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
lowercase__ :int = argparse.ArgumentParser()
lowercase__ :Union[str, Any] = pl.Trainer.add_argparse_args(parser)
lowercase__ :Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd())
lowercase__ :Union[str, Any] = parser.parse_args()
main(args)
| 101 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase :Any = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple:
super().__init__(**_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]:
__magic_name__ : str = {}
if "candidate_labels" in kwargs:
__magic_name__ : str = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__magic_name__ : Tuple = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int:
__magic_name__ : Dict = load_image(_A )
__magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
__magic_name__ : Optional[Any] = candidate_labels
__magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels]
__magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A )
__magic_name__ : Optional[Any] = [text_inputs]
return inputs
def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str:
__magic_name__ : str = model_inputs.pop('candidate_labels' )
__magic_name__ : str = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , _A ):
__magic_name__ : Dict = text_inputs[0]
else:
# Batching case.
__magic_name__ : Optional[Any] = text_inputs[0][0]
__magic_name__ : List[Any] = self.model(**_A , **_A )
__magic_name__ : str = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]:
__magic_name__ : Tuple = model_outputs.pop('candidate_labels' )
__magic_name__ : Union[str, Any] = model_outputs['logits'][0]
if self.framework == "pt":
__magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 )
__magic_name__ : Tuple = probs.tolist()
if not isinstance(_A , _A ):
__magic_name__ : Any = [scores]
elif self.framework == "tf":
__magic_name__ : Any = stable_softmax(_A , axis=-1 )
__magic_name__ : Dict = probs.numpy().tolist()
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
__magic_name__ : Union[str, Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] )
]
return result | 331 | 0 |
"""simple docstring"""
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
SCREAMING_SNAKE_CASE : str = 2_9979_2458
# Symbols
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = symbols("""ct x y z""")
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return 1 / sqrt(1 - beta(_snake_case ) ** 2 )
def lowercase ( _snake_case : float ) ->np.ndarray:
"""simple docstring"""
return np.array(
[
[gamma(_snake_case ), -gamma(_snake_case ) * beta(_snake_case ), 0, 0],
[-gamma(_snake_case ) * beta(_snake_case ), gamma(_snake_case ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowercase ( _snake_case : float , _snake_case : np.ndarray | None = None ) ->np.ndarray:
"""simple docstring"""
if event is None:
__snake_case : Optional[int] = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(_snake_case ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
SCREAMING_SNAKE_CASE : str = transform(2997_9245)
print("""Example of four vector: """)
print(F'ct\' = {four_vector[0]}')
print(F'x\' = {four_vector[1]}')
print(F'y\' = {four_vector[2]}')
print(F'z\' = {four_vector[3]}')
# Substitute symbols with numerical values
SCREAMING_SNAKE_CASE : str = {ct: c, x: 1, y: 1, z: 1}
SCREAMING_SNAKE_CASE : str = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F'\n{numerical_vector}')
| 102 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase :int = '''pt'''
elif is_tf_available():
lowerCAmelCase :Optional[Any] = '''tf'''
else:
lowerCAmelCase :Optional[Any] = '''jax'''
class _lowerCamelCase ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = ByTaTokenizer
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
super().setUp()
__magic_name__ : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__magic_name__ : Optional[Any] = []
for i in range(len(_A ) ):
try:
__magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) )
__magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) )
if max_length is not None and len(_A ) > max_length:
__magic_name__ : Optional[int] = toks[:max_length]
if min_length is not None and len(_A ) < min_length and len(_A ) > 0:
while len(_A ) < min_length:
__magic_name__ : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__magic_name__ : List[str] = [t[0] for t in toks]
# Ensure consistency
__magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A )
if " " not in output_txt and len(_A ) > 1:
__magic_name__ : int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A )
)
if with_prefix_space:
__magic_name__ : Union[str, Any] = ' ' + output_txt
__magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A )
return output_txt, output_ids
def __lowerCAmelCase ( self : int ) -> str:
__magic_name__ : Any = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
__magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __lowerCAmelCase ( self : int ) -> Tuple:
__magic_name__ : Optional[int] = self.ta_base_tokenizer
__magic_name__ : Optional[int] = 'Unicode €.'
__magic_name__ : Optional[Any] = tokenizer(_A )
__magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : Any = tokenizer.decode(_A )
self.assertEqual(_A , 'Unicode €.</s>' )
__magic_name__ : Any = tokenizer('e è é ê ë' )
__magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : List[str] = tokenizer.decode(_A )
self.assertEqual(_A , 'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' )
def __lowerCAmelCase ( self : Any ) -> int:
__magic_name__ : List[Any] = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
__magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A )
self.assertIsInstance(_A , _A )
if FRAMEWORK != "jax":
__magic_name__ : str = list(batch.input_ids.numpy()[0] )
else:
__magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_A , _A )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _A )
self.assertIn('attention_mask' , _A )
self.assertNotIn('decoder_input_ids' , _A )
self.assertNotIn('decoder_attention_mask' , _A )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
__magic_name__ : Union[str, Any] = self.ta_base_tokenizer
__magic_name__ : Tuple = [
'Summary of the text.',
'Another summary.',
]
__magic_name__ : Dict = tokenizer(
text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : Any = ['A long paragraph for summarization. </s>']
__magic_name__ : List[str] = ['Summary of the text. </s>']
# fmt: off
__magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
__magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
__magic_name__ : str = tokenizer(_A , text_target=_A )
self.assertEqual(_A , batch['input_ids'][0] )
self.assertEqual(_A , batch['labels'][0] )
def __lowerCAmelCase ( self : Any ) -> str:
# safety check on max_len default value so we are sure the test works
__magic_name__ : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__magic_name__ : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : str = tempfile.mkdtemp()
__magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running'
__magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
shutil.rmtree(_A )
__magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : Optional[Any] = tempfile.mkdtemp()
__magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : Any = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_A )
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
__magic_name__ : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Union[str, Any] = json.load(_A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Optional[Any] = json.load(_A )
__magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )]
__magic_name__ : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
__magic_name__ : Tuple = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__magic_name__ : str = tokenizer_class.from_pretrained(
_A , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )]
__magic_name__ : Optional[Any] = tokenizer_class.from_pretrained(
_A , additional_special_tokens=_A , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
__magic_name__ : int = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
__magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
pass
def __lowerCAmelCase ( self : List[str] ) -> int:
pass
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
pass
def __lowerCAmelCase ( self : List[Any] ) -> int:
pass
def __lowerCAmelCase ( self : str ) -> Tuple:
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
__magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
__magic_name__ : int = tokenizer.convert_tokens_to_string(_A )
self.assertIsInstance(_A , _A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : List[str] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
__magic_name__ : List[str] = 0
__magic_name__ : str = tokenizer.convert_ids_to_tokens(
_A , skip_special_tokens=_A )
for attr in attributes_list:
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] )
setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] ) | 331 | 0 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
A__ : List[str] = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
A__ : List[str] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class __snake_case :
def __init__( self : List[Any]):
lowerCAmelCase_ : Tuple = WATERMARK_BITS
lowerCAmelCase_ : int = WatermarkEncoder()
self.encoder.set_watermark('''bits''' , self.watermark)
def UpperCAmelCase__ ( self : Optional[Any] , A_ : torch.FloatTensor):
# can't encode images that are smaller than 256
if images.shape[-1] < 2_5_6:
return images
lowerCAmelCase_ : Optional[Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy()
lowerCAmelCase_ : Any = [self.encoder.encode(A_ , '''dwtDct''') for image in images]
lowerCAmelCase_ : Optional[Any] = torch.from_numpy(np.array(A_)).permute(0 , 3 , 1 , 2)
lowerCAmelCase_ : Optional[Any] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0)
return images
| 103 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]]
__magic_name__ : Dict = DisjunctiveConstraint(_A )
self.assertTrue(isinstance(dc.token_ids , _A ) )
with self.assertRaises(_A ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_A ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_A ):
DisjunctiveConstraint(_A ) # fails here
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
__magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]]
__magic_name__ : List[Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 )
__magic_name__ : Optional[int] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 )
__magic_name__ : List[Any] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 )
__magic_name__ : Any = stepped is True and completed is True and reset is False
self.assertTrue(_A )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] ) | 331 | 0 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _A ( A__ ):
"""simple docstring"""
__lowercase , __lowercase = image.size
__lowercase , __lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__lowercase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__lowercase = np.array(A__ ).astype(np.floataa ) / 2_5_5.0
__lowercase = image[None].transpose(0 , 3 , 1 , 2 )
__lowercase = torch.from_numpy(A__ )
return 2.0 * image - 1.0
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] ,lowercase__ : VQModel ,lowercase__ : UNetaDModel ,lowercase__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] ,):
super().__init__()
self.register_modules(vqvae=lowercase__ ,unet=lowercase__ ,scheduler=lowercase__ )
@torch.no_grad()
def __call__( self : Dict ,lowercase__ : Union[torch.Tensor, PIL.Image.Image] = None ,lowercase__ : Optional[int] = 1 ,lowercase__ : Optional[int] = 1_0_0 ,lowercase__ : Optional[float] = 0.0 ,lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowercase__ : Optional[str] = "pil" ,lowercase__ : bool = True ,):
if isinstance(lowercase__ ,PIL.Image.Image ):
__lowercase = 1
elif isinstance(lowercase__ ,torch.Tensor ):
__lowercase = image.shape[0]
else:
raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase__ )}" )
if isinstance(lowercase__ ,PIL.Image.Image ):
__lowercase = preprocess(lowercase__ )
__lowercase , __lowercase = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__lowercase = (batch_size, self.unet.config.in_channels // 2, height, width)
__lowercase = next(self.unet.parameters() ).dtype
__lowercase = randn_tensor(lowercase__ ,generator=lowercase__ ,device=self.device ,dtype=lowercase__ )
__lowercase = image.to(device=self.device ,dtype=lowercase__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(lowercase__ ,device=self.device )
__lowercase = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
for t in self.progress_bar(lowercase__ ):
# concat latents and low resolution image in the channel dimension.
__lowercase = torch.cat([latents, image] ,dim=1 )
__lowercase = self.scheduler.scale_model_input(lowercase__ ,lowercase__ )
# predict the noise residual
__lowercase = self.unet(lowercase__ ,lowercase__ ).sample
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample
# decode the image latents with the VQVAE
__lowercase = self.vqvae.decode(lowercase__ ).sample
__lowercase = torch.clamp(lowercase__ ,-1.0 ,1.0 )
__lowercase = image / 2 + 0.5
__lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(lowercase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__ )
| 104 |
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
lowerCAmelCase :List[str] = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
lowerCAmelCase :List[Any] = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Union[str, Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Tuple = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Optional[Any] = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[int] = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
lowerCAmelCase :Tuple = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Union[str, Any] = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
lowerCAmelCase :Dict = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
lowerCAmelCase :Optional[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Any = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
lowerCAmelCase :Any = ''''''
lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
__magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : str = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
__magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Any = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) | 331 | 0 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
a : Dict = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->Any:
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowercase )
def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[Any]:
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_terminal_summary_main
a : int = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(_lowercase , id=_lowercase )
| 105 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int:
__magic_name__ : str = parent
__magic_name__ : List[Any] = 13
__magic_name__ : Union[str, Any] = 7
__magic_name__ : Tuple = True
__magic_name__ : Dict = True
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = True
__magic_name__ : int = 99
__magic_name__ : List[str] = 384
__magic_name__ : Optional[int] = 2
__magic_name__ : List[Any] = 4
__magic_name__ : int = 37
__magic_name__ : Union[str, Any] = 'gelu'
__magic_name__ : Optional[int] = 0.1
__magic_name__ : str = 0.1
__magic_name__ : Optional[Any] = 512
__magic_name__ : Any = 16
__magic_name__ : Union[str, Any] = 2
__magic_name__ : Any = 0.02
__magic_name__ : List[str] = 3
__magic_name__ : Tuple = 4
__magic_name__ : List[Any] = 128
__magic_name__ : Optional[Any] = 2
__magic_name__ : List[str] = 9
__magic_name__ : str = 1
__magic_name__ : List[str] = None
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Optional[Any] = None
if self.use_input_mask:
__magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : List[str] = None
if self.use_token_type_ids:
__magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : int = None
if self.use_labels:
__magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Optional[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any:
__magic_name__ : Dict = TFConvBertModel(config=_A )
__magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__magic_name__ : Any = [input_ids, input_mask]
__magic_name__ : Tuple = model(_A )
__magic_name__ : List[Any] = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]:
__magic_name__ : Dict = TFConvBertForMaskedLM(config=_A )
__magic_name__ : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Dict = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple:
__magic_name__ : Any = self.num_labels
__magic_name__ : str = TFConvBertForSequenceClassification(config=_A )
__magic_name__ : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = self.num_choices
__magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A )
__magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Optional[int] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]:
__magic_name__ : List[Any] = self.num_labels
__magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A )
__magic_name__ : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int:
__magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A )
__magic_name__ : int = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[str] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : str = config_and_inputs
__magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
A_ : List[str] = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A_ : Tuple = False
A_ : Any = False
A_ : List[Any] = False
def __lowerCAmelCase ( self : List[Any] ) -> int:
__magic_name__ : Optional[Any] = TFConvBertModelTester(self )
__magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : str ) -> Dict:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : int ) -> Any:
__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : Dict ) -> List[str]:
__magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
__magic_name__ : Any = True
if hasattr(_A , 'use_cache' ):
__magic_name__ : List[Any] = True
__magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A )
for model_class in self.all_model_classes:
__magic_name__ : List[str] = self._prepare_for_class(_A , _A )
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Tuple = len(model(_A ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
__magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' )
__magic_name__ : Optional[int] = tf.keras.models.load_model(_A )
__magic_name__ : Optional[Any] = model(_A )
if self.is_encoder_decoder:
__magic_name__ : Optional[int] = outputs['encoder_hidden_states']
__magic_name__ : Tuple = outputs['encoder_attentions']
else:
__magic_name__ : Union[str, Any] = outputs['hidden_states']
__magic_name__ : Optional[Any] = outputs['attentions']
self.assertEqual(len(_A ) , _A )
__magic_name__ : Optional[Any] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_A ) , _A )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
__magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_A )
def __lowerCAmelCase ( self : List[str] ) -> Any:
__magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : str = True
__magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A )
__magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A )
def check_decoder_attentions_output(_A : List[Any] ):
__magic_name__ : Tuple = len(_A )
self.assertEqual(out_len % 2 , 0 )
__magic_name__ : Any = outputs.decoder_attentions
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_A : int ):
__magic_name__ : Dict = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = False
__magic_name__ : List[str] = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
__magic_name__ : Tuple = len(_A )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
if self.is_encoder_decoder:
__magic_name__ : Any = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_decoder_attentions_output(_A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[int] = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : str = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : str = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) )
self.assertEqual(model.config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : int ) -> int:
__magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ : Tuple = model(_A )[0]
__magic_name__ : str = [1, 6, 768]
self.assertEqual(output.shape , _A )
__magic_name__ : Tuple = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 ) | 331 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__UpperCamelCase : Optional[Any] = {'''tokenization_bertweet''': ['''BertweetTokenizer''']}
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 106 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
lowerCAmelCase :Dict = pytest.mark.integration
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
__magic_name__ : Union[str, Any] = dset.map(
lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A )
__magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
__magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def __lowerCAmelCase ( self : Any ) -> str:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Tuple ) -> int:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
from elasticsearch import Elasticsearch
__magic_name__ : Dataset = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : int = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
__magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
__magic_name__ : Union[str, Any] = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_A )
__magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
import faiss
__magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__magic_name__ : str = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Optional[int] = 1
__magic_name__ , __magic_name__ : str = index.search(_A )
self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1]
__magic_name__ , __magic_name__ : str = index.search_batch(_A )
self.assertRaises(_A , index.search_batch , queries[0] )
__magic_name__ : List[Any] = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _A )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
import faiss
__magic_name__ : str = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__magic_name__ : str = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_A ):
__magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
import faiss
__magic_name__ : Any = faiss.IndexFlat(5 )
__magic_name__ : Optional[Any] = FaissIndex(custom_index=_A )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : Dict ) -> Tuple:
import faiss
__magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
index.save(tmp_file.name )
__magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ : Dict = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Tuple = 1
__magic_name__ , __magic_name__ : Optional[Any] = index.search(_A )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
import faiss
__magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__magic_name__ : Dict = 'index.faiss'
__magic_name__ : Optional[Any] = f'mock://{index_name}'
index.save(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa )
__magic_name__ : List[str] = 1
__magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> Dict:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : Any = Elasticsearch()
__magic_name__ : Union[str, Any] = {'acknowledged': True}
__magic_name__ : Tuple = ElasticSearchIndex(es_client=_A )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
__magic_name__ : str = 'foo'
__magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__magic_name__ : str = 'foo'
__magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A )
__magic_name__ : Tuple = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A )
# batched queries with timeout
__magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 )
__magic_name__ : Optional[int] = [scores[0] for scores in total_scores]
__magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A ) | 331 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class snake_case__ (_UpperCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = ["""image_processor""", """tokenizer"""]
SCREAMING_SNAKE_CASE_ : List[str] = """CLIPImageProcessor"""
SCREAMING_SNAKE_CASE_ : Tuple = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self : Optional[int] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any=None , **__lowerCamelCase : Any ) -> str:
a = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
a = kwargs.pop("feature_extractor" )
a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__lowerCamelCase , __lowerCamelCase )
def __call__( self : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : str ) -> Any:
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
a = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if images is not None:
a = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if text is not None and images is not None:
a = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase )
def __UpperCAmelCase ( self : Dict , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def __UpperCAmelCase ( self : List[str] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ) -> List[str]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
def __UpperCAmelCase ( self : Any ) -> str:
a = self.tokenizer.model_input_names
a = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def __UpperCAmelCase ( self : Any ) -> Optional[int]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor
| 107 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() )
__magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__)
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ):
"""simple docstring"""
if metric == "rouge2":
__magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
__magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
__magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
__magic_name__ : int = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
' function.' )
__magic_name__ : List[Any] = ModelCheckpoint(
dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return EarlyStopping(
monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int:
__magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_A )
@rank_zero_only
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None:
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
__magic_name__ : List[str] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
__magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
__magic_name__ : List[Any] = od / 'test_results.txt'
__magic_name__ : Dict = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
__magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_A )
generations_file.parent.mkdir(exist_ok=_A )
with open(_A , 'a+' ) as writer:
for key in sorted(_A ):
if key in ["log", "progress_bar", "preds"]:
continue
__magic_name__ : Optional[Any] = metrics[key]
if isinstance(_A , torch.Tensor ):
__magic_name__ : Tuple = val.item()
__magic_name__ : int = F'{key}: {val:.6f}\n'
writer.write(_A )
if not save_generations:
return
if "preds" in metrics:
__magic_name__ : str = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(_A )
@rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple:
try:
__magic_name__ : str = pl_module.model.model.num_parameters()
except AttributeError:
__magic_name__ : List[str] = pl_module.model.num_parameters()
__magic_name__ : List[Any] = count_trainable_parameters(_A )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_A , _A , 'test' )
@rank_zero_only
def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid") | 331 | 0 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
lowerCAmelCase__ = get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a : Optional[Any] ="dummy_data"
a : int ="datasets"
a : Tuple =False
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , snake_case__ = True , snake_case__ = None , ):
"""simple docstring"""
lowerCAmelCase : Tuple = 0
lowerCAmelCase : int = dataset_name
lowerCAmelCase : List[Any] = cache_dir
lowerCAmelCase : List[str] = use_local_dummy_data
lowerCAmelCase : List[str] = config
# download_callbacks take a single url as input
lowerCAmelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
lowerCAmelCase : Tuple = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
lowerCAmelCase : Union[str, Any] = str(snake_case__ )
# to be downloaded
lowerCAmelCase : List[Any] = None
lowerCAmelCase : List[Any] = None
@property
def lowercase__ ( self ):
"""simple docstring"""
if self._dummy_file is None:
lowerCAmelCase : Any = self.download_dummy_data()
return self._dummy_file
@property
def lowercase__ ( self ):
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" , self.version_name )
@property
def lowercase__ ( self ):
"""simple docstring"""
return os.path.join(self.dummy_data_folder , "dummy_data.zip" )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Optional[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
lowerCAmelCase : str = cached_path(
snake_case__ , cache_dir=self.cache_dir , extract_compressed_file=snake_case__ , force_extract=snake_case__ )
return os.path.join(snake_case__ , self.dummy_file_name )
@property
def lowercase__ ( self ):
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowercase__ ( self ):
"""simple docstring"""
if self._bucket_url is None:
lowerCAmelCase : Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) )
return self._bucket_url
@property
def lowercase__ ( self ):
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] )
def lowercase__ ( self , snake_case__ , *snake_case__ ):
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
lowerCAmelCase : int = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
lowerCAmelCase : List[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(snake_case__ , snake_case__ ):
return self.create_dummy_data_dict(snake_case__ , snake_case__ )
elif isinstance(snake_case__ , (list, tuple) ):
return self.create_dummy_data_list(snake_case__ , snake_case__ )
else:
return self.create_dummy_data_single(snake_case__ , snake_case__ )
def lowercase__ ( self , snake_case__ , *snake_case__ ):
"""simple docstring"""
return self.download_and_extract(snake_case__ )
def lowercase__ ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
return self.download_and_extract(snake_case__ )
def lowercase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ):
"""simple docstring"""
return path
def lowercase__ ( self ):
"""simple docstring"""
return {}
def lowercase__ ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : List[Any] = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(snake_case__ , snake_case__ ):
for single_url in single_urls:
download_callback(snake_case__ )
else:
lowerCAmelCase : List[str] = single_urls
download_callback(snake_case__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase : Tuple = [os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) for x in single_urls]
else:
lowerCAmelCase : int = single_urls
lowerCAmelCase : Any = os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) )
lowerCAmelCase : Union[str, Any] = value
# make sure that values are unique
if all(isinstance(snake_case__ , snake_case__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
lowerCAmelCase : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowercase__ ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
lowerCAmelCase : Optional[Any] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , snake_case__ ) ) for url in data_url )
lowerCAmelCase : Any = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
lowerCAmelCase : int = [data_url[0]] * len(snake_case__ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(snake_case__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
lowerCAmelCase : Dict = os.path.join(snake_case__ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(snake_case__ )
return dummy_data_list
def lowercase__ ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(snake_case__ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
lowerCAmelCase : Tuple = os.path.join(snake_case__ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(snake_case__ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
def _iter_archive_members(snake_case__ ):
# this preserves the order of the members inside the ZIP archive
lowerCAmelCase : str = Path(self.dummy_file ).parent
lowerCAmelCase : Optional[Any] = path.relative_to(snake_case__ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
lowerCAmelCase : List[Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(snake_case__ )
lowerCAmelCase : List[Any] = Path(snake_case__ )
lowerCAmelCase : str = _iter_archive_members(snake_case__ ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(snake_case__ ).as_posix(), file_path.open("rb" )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(snake_case__ ):
if os.path.basename(snake_case__ ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(snake_case__ ):
if os.path.basename(snake_case__ ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(snake_case__ ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(snake_case__ , snake_case__ )
| 108 |
'''simple docstring'''
def lowerCamelCase ( ):
"""simple docstring"""
return 1
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int = 200 ):
"""simple docstring"""
return two_pound(lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 331 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" )
UpperCAmelCase : Any = {
"""input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute"
"""attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ),
}
UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""]
UpperCAmelCase : List[Any] = tf.TensorShape((1, 6, 768) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
UpperCAmelCase : Optional[int] = tf.convert_to_tensor(
[
[
[0.068_1762, 0.1089_4451, 0.0677_2504],
[-0.0642_3668, 0.0236_6615, 0.0432_9344],
[-0.0605_7295, 0.0997_4135, -0.0007_0584],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 109 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Union[str, Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Dict = ["""flax""", """transformers"""]
def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[int] = ["""flax""", """transformers"""]
def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] ) | 331 | 0 |
"""simple docstring"""
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE_ ( lowercase__ ):
"""simple docstring"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__="None" , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ):
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_input_mask
__SCREAMING_SNAKE_CASE = use_token_type_ids
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = num_choices
__SCREAMING_SNAKE_CASE = relative_attention
__SCREAMING_SNAKE_CASE = position_biased_input
__SCREAMING_SNAKE_CASE = pos_att_type
__SCREAMING_SNAKE_CASE = scope
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__SCREAMING_SNAKE_CASE = None
if self.use_input_mask:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
__SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices)
__SCREAMING_SNAKE_CASE = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case_ ( self):
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.get_config()
__SCREAMING_SNAKE_CASE = 3_0_0
return config
def snake_case_ ( self , lowerCAmelCase__):
self.parent.assertListEqual(list(result.loss.size()) , [])
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = DebertaModel(config=_A)
model.to(_A)
model.eval()
__SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A)[0]
__SCREAMING_SNAKE_CASE = model(_A , token_type_ids=_A)[0]
__SCREAMING_SNAKE_CASE = model(_A)[0]
self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size])
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=_A)
model.to(_A)
model.eval()
__SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(_A)
model.to(_A)
model.eval()
__SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A)
self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels])
self.check_loss_output(_A)
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=_A)
model.to(_A)
model.eval()
__SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=_A)
model.to(_A)
model.eval()
__SCREAMING_SNAKE_CASE = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
__SCREAMING_SNAKE_CASE
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
__lowercase : List[Any] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase : Tuple = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase : Union[str, Any] = True
__lowercase : Any = False
__lowercase : Dict = False
__lowercase : str = False
__lowercase : Dict = False
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = DebertaModelTester(self)
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A , hidden_size=3_7)
def snake_case_ ( self):
self.config_tester.run_common_tests()
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A)
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A)
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A)
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A)
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A)
@slow
def snake_case_ ( self):
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(_A)
self.assertIsNotNone(_A)
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip(reason="""Model not available yet""")
def snake_case_ ( self):
pass
@slow
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""")
__SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]])
__SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A)[0]
# compare the actual values for a slice.
__SCREAMING_SNAKE_CASE = torch.tensor(
[[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4) , f"{output[:, 1:4, 1:4]}")
| 100 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase :Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any:
super().__init__(*_A , **_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]:
__magic_name__ : Union[str, Any] = {}
__magic_name__ : Optional[Any] = {}
if prompt is not None:
__magic_name__ : Union[str, Any] = prompt
if generate_kwargs is not None:
__magic_name__ : str = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__magic_name__ : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
__magic_name__ : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict:
__magic_name__ : List[Any] = load_image(_A )
if prompt is not None:
if not isinstance(_A , _A ):
raise ValueError(
F'Received an invalid text input, got - {type(_A )} - but expected a single string. '
'Note also that one single text can be provided for conditional image to text generation.' )
__magic_name__ : Any = self.model.config.model_type
if model_type == "git":
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids
__magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids
__magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
__magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework )
model_inputs.update(_A )
else:
raise ValueError(F'Model type {model_type} does not support conditional text generation' )
else:
__magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__magic_name__ : int = None
return model_inputs
def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _A )
and all(x is None for x in model_inputs['input_ids'] )
):
__magic_name__ : str = None
if generate_kwargs is None:
__magic_name__ : Optional[int] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name )
__magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A )
return model_outputs
def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]:
__magic_name__ : Optional[Any] = []
for output_ids in model_outputs:
__magic_name__ : Union[str, Any] = {
'generated_text': self.tokenizer.decode(
_A , skip_special_tokens=_A , )
}
records.append(_A )
return records | 331 | 0 |
"""simple docstring"""
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , lowercase_ : list):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = set_counts
SCREAMING_SNAKE_CASE_ : Tuple = max(_A)
SCREAMING_SNAKE_CASE_ : List[str] = len(_A)
SCREAMING_SNAKE_CASE_ : Optional[Any] = [1] * num_sets
SCREAMING_SNAKE_CASE_ : Tuple = list(range(_A))
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : int , lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_parent(_A)
SCREAMING_SNAKE_CASE_ : int = self.get_parent(_A)
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE_ : List[Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
SCREAMING_SNAKE_CASE_ : Any = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE_ : Tuple = src_parent
SCREAMING_SNAKE_CASE_ : List[str] = self.set_counts[src_parent]
SCREAMING_SNAKE_CASE_ : List[str] = max(self.max_set , _A)
return True
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : int):
'''simple docstring'''
if self.parents[disj_set] == disj_set:
return disj_set
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_parent(self.parents[disj_set])
return self.parents[disj_set]
| 91 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowerCAmelCase :Dict = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
lowerCAmelCase :str = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowerCAmelCase :Any = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys())
lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class _lowerCamelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_A )
__magic_name__ : List[str] = 0
__magic_name__ : Union[str, Any] = Path(self.hparams.output_dir )
__magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__magic_name__ : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , )
else:
__magic_name__ : PretrainedConfig = config
__magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , _A , _A ):
assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , _A , getattr(self.hparams , _A ) )
if tokenizer is None:
__magic_name__ : List[Any] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , )
else:
__magic_name__ : PreTrainedTokenizer = tokenizer
__magic_name__ : Optional[int] = MODEL_MODES[mode]
if model is None:
__magic_name__ : Tuple = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , )
else:
__magic_name__ : str = model
def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple:
__magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
__magic_name__ : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : Optional[Any] = self.model
__magic_name__ : int = ['bias', 'LayerNorm.weight']
__magic_name__ : Dict = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__magic_name__ : str = Adafactor(
_A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A )
else:
__magic_name__ : Tuple = AdamW(
_A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__magic_name__ : List[str] = optimizer
__magic_name__ : int = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]:
return self.validation_step(_A , _A )
def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any:
return self.validation_end(_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
__magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str:
if stage == "test":
__magic_name__ : Any = len(self.test_dataloader().dataset )
else:
__magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A )
__magic_name__ : int = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]:
raise NotImplementedError('You must implement this for your task' )
def __lowerCAmelCase ( self : int ) -> List[str]:
return self.train_loader
def __lowerCAmelCase ( self : Tuple ) -> int:
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str:
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
_A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None:
__magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' )
__magic_name__ : List[Any] = self.step_count
self.model.save_pretrained(_A )
self.tokenizer.save_pretrained(_A )
@staticmethod
def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple:
parser.add_argument(
'--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A )
parser.add_argument('--train_batch_size' , default=32 , type=_A )
parser.add_argument('--eval_batch_size' , default=32 , type=_A )
parser.add_argument('--adafactor' , action='store_true' )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_A )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]:
__magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler']
__magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_A )
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]:
rank_zero_info('***** Validation results *****' )
__magic_name__ : str = trainer.callback_metrics
# Log results
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]:
rank_zero_info('***** Test results *****' )
__magic_name__ : Optional[int] = trainer.callback_metrics
# Log and save results to file
__magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(_A , 'w' ) as writer:
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
parser.add_argument(
'--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__magic_name__ : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase )
if logging_callback is None:
__magic_name__ : Dict = LoggingCallback()
__magic_name__ : List[str] = {}
if args.fpaa:
__magic_name__ : Dict = 16
if args.gpus > 1:
__magic_name__ : Tuple = 'auto'
__magic_name__ : int = 'ddp'
__magic_name__ : str = args.accumulate_grad_batches
__magic_name__ : str = None
__magic_name__ : List[str] = 'auto'
__magic_name__ : List[Any] = pl.Trainer.from_argparse_args(
lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , )
if args.do_train:
trainer.fit(lowerCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer | 331 | 0 |
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
lowercase__ : Union[str, Any] = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class UpperCAmelCase :
'''simple docstring'''
lowerCAmelCase_ = 42
lowerCAmelCase_ = None
lowerCAmelCase_ = None
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def snake_case__ ( self : List[str] ):
"""simple docstring"""
snake_case_ = _str_to_version_tuple(self.version_str )
def __repr__( self : List[str] ):
"""simple docstring"""
return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"
@property
def snake_case__ ( self : Tuple ):
"""simple docstring"""
return self.major, self.minor, self.patch
def snake_case__ ( self : List[Any] , __lowercase : Tuple ):
"""simple docstring"""
if isinstance(_A , _A ):
return Version(_A )
elif isinstance(_A , _A ):
return other
raise TypeError(f"{other} (type {type(_A )}) cannot be compared to version." )
def __eq__( self : List[Any] , __lowercase : Any ):
"""simple docstring"""
try:
snake_case_ = self._validate_operand(_A )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : List[Any] , __lowercase : Union[str, Any] ):
"""simple docstring"""
snake_case_ = self._validate_operand(_A )
return self.tuple < other.tuple
def __hash__( self : int ):
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def snake_case__ ( cls : Optional[int] , __lowercase : List[Any] ):
"""simple docstring"""
snake_case_ = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def snake_case__ ( self : Optional[int] ):
"""simple docstring"""
return self.version_str
def lowerCamelCase__ ( _A ):
'''simple docstring'''
snake_case_ = _VERSION_REG.match(_A )
if not res:
raise ValueError(f"Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits." )
return tuple(int(_A ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] )
def lowerCamelCase__ ( _A ):
'''simple docstring'''
return ".".join(str(_A ) for v in version_tuple )
| 187 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Dict = (DDPMScheduler,)
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str:
__magic_name__ : str = {
'num_train_timesteps': 1000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**_A )
return config
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_A )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> str:
self.check_over_configs(thresholding=_A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_A , prediction_type=_A , sample_max_value=_A , )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Dict = scheduler_class(**_A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def __lowerCAmelCase ( self : Tuple ) -> int:
__magic_name__ : Tuple = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : str = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Union[str, Any] = self.dummy_model()
__magic_name__ : List[Any] = self.dummy_sample_deter
__magic_name__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : Tuple = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : Dict = pred_prev_sample
__magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) )
__magic_name__ : Dict = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' )
__magic_name__ : Any = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Dict = self.dummy_model()
__magic_name__ : str = self.dummy_sample_deter
__magic_name__ : str = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : List[Any] = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : List[Any] = pred_prev_sample
__magic_name__ : int = torch.sum(torch.abs(_A ) )
__magic_name__ : Any = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def __lowerCAmelCase ( self : List[str] ) -> str:
__magic_name__ : Dict = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Optional[Any] = scheduler_class(**_A )
__magic_name__ : List[str] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_A )
__magic_name__ : List[str] = scheduler.timesteps
for i, timestep in enumerate(_A ):
if i == len(_A ) - 1:
__magic_name__ : Optional[int] = -1
else:
__magic_name__ : List[Any] = timesteps[i + 1]
__magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A )
__magic_name__ : Any = prev_t.item()
self.assertEqual(_A , _A )
def __lowerCAmelCase ( self : Tuple ) -> str:
__magic_name__ : str = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 1, 0]
__magic_name__ : Tuple = len(_A )
with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=_A ) | 331 | 0 |
def lowerCamelCase__ ( a__ : Optional[int] , a__ : Union[str, Any] , a__ : int , a__ : Any , a__ : Dict , a__ : List[str] ) -> Optional[Any]:
if index == r:
for j in range(a__ ):
print(data[j] , end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
UpperCamelCase_ = arr[i]
combination_util(a__ , a__ , a__ , index + 1 , a__ , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(a__ , a__ , a__ , a__ , a__ , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCamelCase__ ( a__ : List[Any] , a__ : int , a__ : Tuple ) -> List[Any]:
UpperCamelCase_ = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(a__ , a__ , a__ , 0 , a__ , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_A = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 122 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = IFInpaintingPipeline
A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
return self._get_dummy_components()
def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]:
if str(_A ).startswith('mps' ):
__magic_name__ : Optional[Any] = torch.manual_seed(_A )
else:
__magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
__magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Tuple = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __lowerCAmelCase ( self : List[Any] ) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def __lowerCAmelCase ( self : Dict ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __lowerCAmelCase ( self : Tuple ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
self._test_save_load_local()
def __lowerCAmelCase ( self : Any ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , ) | 331 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase__ : List[Any] = {
'''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''],
'''tokenization_electra''': ['''ElectraTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = ['''ElectraTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[str] = [
'''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ElectraForCausalLM''',
'''ElectraForMaskedLM''',
'''ElectraForMultipleChoice''',
'''ElectraForPreTraining''',
'''ElectraForQuestionAnswering''',
'''ElectraForSequenceClassification''',
'''ElectraForTokenClassification''',
'''ElectraModel''',
'''ElectraPreTrainedModel''',
'''load_tf_weights_in_electra''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : int = [
'''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFElectraForMaskedLM''',
'''TFElectraForMultipleChoice''',
'''TFElectraForPreTraining''',
'''TFElectraForQuestionAnswering''',
'''TFElectraForSequenceClassification''',
'''TFElectraForTokenClassification''',
'''TFElectraModel''',
'''TFElectraPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Dict = [
'''FlaxElectraForCausalLM''',
'''FlaxElectraForMaskedLM''',
'''FlaxElectraForMultipleChoice''',
'''FlaxElectraForPreTraining''',
'''FlaxElectraForQuestionAnswering''',
'''FlaxElectraForSequenceClassification''',
'''FlaxElectraForTokenClassification''',
'''FlaxElectraModel''',
'''FlaxElectraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 |
'''simple docstring'''
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Optional[int] = seq_length
__magic_name__ : List[str] = is_training
__magic_name__ : Optional[Any] = use_input_mask
__magic_name__ : Dict = use_token_type_ids
__magic_name__ : str = use_labels
__magic_name__ : int = vocab_size
__magic_name__ : List[Any] = hidden_size
__magic_name__ : Dict = num_hidden_layers
__magic_name__ : Dict = num_attention_heads
__magic_name__ : Tuple = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : Union[str, Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = max_position_embeddings
__magic_name__ : Any = type_vocab_size
__magic_name__ : Union[str, Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = initializer_range
__magic_name__ : str = num_labels
__magic_name__ : Tuple = num_choices
__magic_name__ : Any = relative_attention
__magic_name__ : str = position_biased_input
__magic_name__ : str = pos_att_type
__magic_name__ : Union[str, Any] = scope
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : List[Any] = None
if self.use_input_mask:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__magic_name__ : int = None
if self.use_token_type_ids:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : List[str] = None
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.get_config()
__magic_name__ : Union[str, Any] = 300
return config
def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]:
__magic_name__ : Dict = DebertaModel(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0]
__magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0]
__magic_name__ : List[str] = model(_A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict:
__magic_name__ : List[str] = DebertaForMaskedLM(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]:
__magic_name__ : Optional[int] = self.num_labels
__magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A )
model.to(_A )
model.eval()
__magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(_A )
def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]:
__magic_name__ : str = self.num_labels
__magic_name__ : int = DebertaForTokenClassification(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]:
__magic_name__ : int = DebertaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[int] = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : int = config_and_inputs
__magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Tuple = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Union[str, Any] = True
A_ : Any = False
A_ : Dict = False
A_ : str = False
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : List[str] = DebertaModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : Any ) -> str:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A )
def __lowerCAmelCase ( self : str ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : int = DebertaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='Model not available yet' )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
pass
@slow
def __lowerCAmelCase ( self : Dict ) -> Tuple:
__magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' )
__magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
__magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0]
# compare the actual values for a slice.
__magic_name__ : Tuple = torch.tensor(
[[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' ) | 331 | 0 |
import os
def __lowerCamelCase ( ):
"""simple docstring"""
a :int = os.path.join(os.path.dirname(UpperCAmelCase_ ) , '''num.txt''' )
with open(UpperCAmelCase_ ) as file_hand:
return str(sum(int(UpperCAmelCase_ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 94 |
'''simple docstring'''
class _lowerCamelCase : # Public class to implement a graph
'''simple docstring'''
def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
__magic_name__ : Tuple = row
__magic_name__ : str = col
__magic_name__ : Optional[Any] = graph
def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
# Checking all 8 elements surrounding nth element
__magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1]
__magic_name__ : Optional[int] = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A )
def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands.
__magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )]
__magic_name__ : Any = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(_A , _A , _A )
count += 1
return count | 331 | 0 |
'''simple docstring'''
import argparse
import struct
import unittest
class lowercase__ :
def __init__( self : int ,lowerCamelCase__ : bytes ):
'''simple docstring'''
_UpperCamelCase : Dict = data
# Initialize hash values
_UpperCamelCase : Optional[int] = [
0x6a09_e667,
0xbb67_ae85,
0x3c6e_f372,
0xa54f_f53a,
0x510e_527f,
0x9b05_688c,
0x1f83_d9ab,
0x5be0_cd19,
]
# Initialize round constants
_UpperCamelCase : Dict = [
0x428a_2f98,
0x7137_4491,
0xb5c0_fbcf,
0xe9b5_dba5,
0x3956_c25b,
0x59f1_11f1,
0x923f_82a4,
0xab1c_5ed5,
0xd807_aa98,
0x1283_5b01,
0x2431_85be,
0x550c_7dc3,
0x72be_5d74,
0x80de_b1fe,
0x9bdc_06a7,
0xc19b_f174,
0xe49b_69c1,
0xefbe_4786,
0x0fc1_9dc6,
0x240c_a1cc,
0x2de9_2c6f,
0x4a74_84aa,
0x5cb0_a9dc,
0x76f9_88da,
0x983e_5152,
0xa831_c66d,
0xb003_27c8,
0xbf59_7fc7,
0xc6e0_0bf3,
0xd5a7_9147,
0x06ca_6351,
0x1429_2967,
0x27b7_0a85,
0x2e1b_2138,
0x4d2c_6dfc,
0x5338_0d13,
0x650a_7354,
0x766a_0abb,
0x81c2_c92e,
0x9272_2c85,
0xa2bf_e8a1,
0xa81a_664b,
0xc24b_8b70,
0xc76c_51a3,
0xd192_e819,
0xd699_0624,
0xf40e_3585,
0x106a_a070,
0x19a4_c116,
0x1e37_6c08,
0x2748_774c,
0x34b0_bcb5,
0x391c_0cb3,
0x4ed8_aa4a,
0x5b9c_ca4f,
0x682e_6ff3,
0x748f_82ee,
0x78a5_636f,
0x84c8_7814,
0x8cc7_0208,
0x90be_fffa,
0xa450_6ceb,
0xbef9_a3f7,
0xc671_78f2,
]
_UpperCamelCase : str = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase_ ( lowerCamelCase__ : bytes ):
'''simple docstring'''
_UpperCamelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64))
_UpperCamelCase : Optional[int] = struct.pack('>Q' ,(len(_A ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
# Convert into blocks of 64 bytes
_UpperCamelCase : str = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_UpperCamelCase : Optional[int] = list(struct.unpack('>16L' ,_A ) )
# add 48 0-ed integers
words += [0] * 48
_UpperCamelCase : Optional[int] = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_UpperCamelCase : Optional[int] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
_UpperCamelCase : Any = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
_UpperCamelCase : List[Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0000_0000
# Compression
_UpperCamelCase : List[str] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 )
_UpperCamelCase : Tuple = (e & f) ^ ((~e & 0xffff_ffff) & g)
_UpperCamelCase : Optional[int] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0000_0000
_UpperCamelCase : Tuple = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 )
_UpperCamelCase : Optional[Any] = (a & b) ^ (a & c) ^ (b & c)
_UpperCamelCase : Optional[int] = (sa + maj) % 0x1_0000_0000
_UpperCamelCase : str = (
g,
f,
e,
((d + tempa) % 0x1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0x1_0000_0000),
)
_UpperCamelCase : Tuple = [a, b, c, d, e, f, g, h]
# Modify final values
_UpperCamelCase : List[str] = [
((element + mutated_hash_values[index]) % 0x1_0000_0000)
for index, element in enumerate(self.hashes )
]
_UpperCamelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase_ ( self : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int ):
'''simple docstring'''
return 0xffff_ffff & (value << (32 - rotations)) | (value >> rotations)
class lowercase__ ( unittest.TestCase ):
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
import hashlib
_UpperCamelCase : int = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() )
def A__ ( ):
import doctest
doctest.testmod()
_UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_UpperCamelCase : Tuple = parser.parse_args()
_UpperCamelCase : Optional[Any] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_UpperCamelCase : List[Any] = f.read()
else:
_UpperCamelCase : Dict = bytes(UpperCAmelCase_ , 'utf-8' )
print(SHAaaa(UpperCAmelCase_ ).hash )
if __name__ == "__main__":
main()
| 83 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
__lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
__lowercase : Optional[Any] = set()
__lowercase : List[Any] = []
def parse_line(__lowerCAmelCase ):
for line in fp:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowercase : Union[str, Any] = line.decode('''UTF-8''' )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(''' ''' ):
# process a single warning and move it to `selected_warnings`.
if len(__lowerCAmelCase ) > 0:
__lowercase : int = '\n'.join(__lowerCAmelCase )
# Only keep the warnings specified in `targets`
if any(F': {x}: ' in warning for x in targets ):
selected_warnings.add(__lowerCAmelCase )
buffer.clear()
continue
else:
__lowercase : Optional[int] = line.strip()
buffer.append(__lowerCAmelCase )
if from_gh:
for filename in os.listdir(__lowerCAmelCase ):
__lowercase : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not os.path.isdir(__lowerCAmelCase ):
# read the file
if filename != "warnings.txt":
continue
with open(__lowerCAmelCase ) as fp:
parse_line(__lowerCAmelCase )
else:
try:
with zipfile.ZipFile(__lowerCAmelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(__lowerCAmelCase ):
# read the file
if filename != "warnings.txt":
continue
with z.open(__lowerCAmelCase ) as fp:
parse_line(__lowerCAmelCase )
except Exception:
logger.warning(
F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' )
return selected_warnings
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
__lowercase : List[Any] = set()
__lowercase : Dict = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for p in os.listdir(__lowerCAmelCase ) if (p.endswith('''.zip''' ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(__lowerCAmelCase , __lowerCAmelCase ) )
return selected_warnings
if __name__ == "__main__":
def UpperCAmelCase_ ( __lowerCAmelCase ) -> str:
return values.split(''',''' )
__lowerCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
# optional parameters
parser.add_argument(
"--targets",
default="DeprecationWarning,UserWarning,FutureWarning",
type=list_str,
help="Comma-separated list of target warning(s) which we want to extract.",
)
parser.add_argument(
"--from_gh",
action="store_true",
help="If running from a GitHub action workflow and collecting warnings from its artifacts.",
)
__lowerCAmelCase : Optional[Any] = parser.parse_args()
__lowerCAmelCase : Tuple = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
__lowerCAmelCase : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("=" * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
__lowerCAmelCase : int = extract_warnings(args.output_dir, args.targets)
__lowerCAmelCase : Optional[Any] = sorted(selected_warnings)
with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 156 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ):
"""simple docstring"""
__magic_name__ : list[int] = [0]
__magic_name__ : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
__magic_name__ : int = 0
# the area corresponding to the grid that gives the product closest to target
__magic_name__ : int = 0
# an estimate of b, using the quadratic formula
__magic_name__ : float
# the largest integer less than b_estimate
__magic_name__ : int
# the largest integer less than b_estimate
__magic_name__ : int
# the triangle number corresponding to b_floor
__magic_name__ : int
# the triangle number corresponding to b_ceil
__magic_name__ : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
__magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
__magic_name__ : List[Any] = floor(lowerCAmelCase )
__magic_name__ : Dict = ceil(lowerCAmelCase )
__magic_name__ : Any = triangle_numbers[b_floor]
__magic_name__ : Optional[int] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : Any = triangle_b_first_guess * triangle_a
__magic_name__ : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : List[str] = triangle_b_second_guess * triangle_a
__magic_name__ : Optional[int] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F'{solution() = }') | 331 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class lowerCAmelCase_ ( lowercase__ ):
__lowerCamelCase : Union[str, Any] = """SpeechT5FeatureExtractor"""
__lowerCamelCase : Tuple = """SpeechT5Tokenizer"""
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
super().__init__(_A , _A )
def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = kwargs.pop("audio" , _A )
_lowerCAmelCase = kwargs.pop("text" , _A )
_lowerCAmelCase = kwargs.pop("text_target" , _A )
_lowerCAmelCase = kwargs.pop("audio_target" , _A )
_lowerCAmelCase = kwargs.pop("sampling_rate" , _A )
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" )
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." )
if audio is not None:
_lowerCAmelCase = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A )
elif text is not None:
_lowerCAmelCase = self.tokenizer(_A , **_A )
else:
_lowerCAmelCase = None
if audio_target is not None:
_lowerCAmelCase = self.feature_extractor(audio_target=_A , *_A , sampling_rate=_A , **_A )
_lowerCAmelCase = targets['input_values']
elif text_target is not None:
_lowerCAmelCase = self.tokenizer(_A , **_A )
_lowerCAmelCase = targets['input_ids']
else:
_lowerCAmelCase = None
if inputs is None:
return targets
if targets is not None:
_lowerCAmelCase = labels
_lowerCAmelCase = targets.get("attention_mask" )
if decoder_attention_mask is not None:
_lowerCAmelCase = decoder_attention_mask
return inputs
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = kwargs.pop("input_values" , _A )
_lowerCAmelCase = kwargs.pop("input_ids" , _A )
_lowerCAmelCase = kwargs.pop("labels" , _A )
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs." )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." )
if input_values is not None:
_lowerCAmelCase = self.feature_extractor.pad(_A , *_A , **_A )
elif input_ids is not None:
_lowerCAmelCase = self.tokenizer.pad(_A , **_A )
else:
_lowerCAmelCase = None
if labels is not None:
if "input_ids" in labels or (isinstance(_A , _A ) and "input_ids" in labels[0]):
_lowerCAmelCase = self.tokenizer.pad(_A , **_A )
_lowerCAmelCase = targets['input_ids']
else:
_lowerCAmelCase = self.feature_extractor.feature_size
_lowerCAmelCase = self.feature_extractor.num_mel_bins
_lowerCAmelCase = self.feature_extractor.pad(_A , *_A , **_A )
_lowerCAmelCase = feature_size_hack
_lowerCAmelCase = targets['input_values']
else:
_lowerCAmelCase = None
if inputs is None:
return targets
if targets is not None:
_lowerCAmelCase = labels
_lowerCAmelCase = targets.get("attention_mask" )
if decoder_attention_mask is not None:
_lowerCAmelCase = decoder_attention_mask
return inputs
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
return self.tokenizer.batch_decode(*_A , **_A )
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
return self.tokenizer.decode(*_A , **_A )
| 158 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Dict = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Tuple = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Any = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure) | 331 | 0 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _A ( unittest.TestCase):
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
self.assertEqual(len(_A ) , len(_A ) )
for a, b in zip(_A , _A ):
self.assertAlmostEqual(_A , _A , delta=_A )
def UpperCAmelCase ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_A ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def UpperCAmelCase ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = None
ops.enable_eager_execution_internal()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.config.list_physical_devices('CPU' )
if len(_A ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.config.list_logical_devices(device_type='CPU' )
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
SCREAMING_SNAKE_CASE_ : Dict = GradientAccumulator()
SCREAMING_SNAKE_CASE_ : int = tf.Variable([4.0, 3.0] )
SCREAMING_SNAKE_CASE_ : str = create_optimizer(5e-5 , 10 , 5 )
SCREAMING_SNAKE_CASE_ : Tuple = tf.Variable([0.0, 0.0] , trainable=_A )
def accumulate_on_replica(_SCREAMING_SNAKE_CASE ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
with strategy.scope():
SCREAMING_SNAKE_CASE_ : Optional[Any] = strategy.experimental_local_results(_A )
local_variables[0].assign(_A )
local_variables[1].assign(_A )
strategy.run(_A , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_A )
def _check_local_values(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE_ : List[str] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _A , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , _A , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 253 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase :Optional[int] = logging.get_logger(__name__)
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Tuple = ["""pixel_values"""]
def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None:
super().__init__(**_A )
__magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384}
__magic_name__ : Dict = get_size_dict(_A , default_to_square=_A )
__magic_name__ : List[Any] = do_resize
__magic_name__ : str = size
# Default value set here for backwards compatibility where the value in config is None
__magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256
__magic_name__ : int = resample
__magic_name__ : List[str] = do_rescale
__magic_name__ : List[Any] = rescale_factor
__magic_name__ : str = do_normalize
__magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
__magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
__magic_name__ : Dict = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__magic_name__ : Dict = int(shortest_edge / crop_pct )
__magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
__magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int:
return rescale(_A , scale=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray:
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image:
__magic_name__ : int = do_resize if do_resize is not None else self.do_resize
__magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct
__magic_name__ : Optional[Any] = resample if resample is not None else self.resample
__magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : str = image_mean if image_mean is not None else self.image_mean
__magic_name__ : Dict = image_std if image_std is not None else self.image_std
__magic_name__ : Dict = size if size is not None else self.size
__magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A )
__magic_name__ : int = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
__magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images]
if do_rescale:
__magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
__magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
__magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images]
__magic_name__ : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A ) | 331 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
A : int = logging.get_logger(__name__)
A : Dict = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class __A( lowercase__ ):
snake_case_ = """dpt"""
def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=384 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=True , _snake_case=[2, 5, 8, 11] , _snake_case="project" , _snake_case=[4, 2, 1, 0.5] , _snake_case=[96, 192, 384, 768] , _snake_case=256 , _snake_case=-1 , _snake_case=False , _snake_case=True , _snake_case=0.4 , _snake_case=255 , _snake_case=0.1 , _snake_case=[1, 1_024, 24, 24] , _snake_case=[0, 1] , _snake_case=None , **_snake_case , ) -> Tuple:
'''simple docstring'''
super().__init__(**_A )
__a = hidden_size
__a = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
__a = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
}
__a = BitConfig(**_A )
elif isinstance(_A , _A ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
__a = BitConfig(**_A )
elif isinstance(_A , _A ):
__a = backbone_config
else:
raise ValueError(
F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" )
__a = backbone_featmap_shape
__a = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
__a = None
__a = None
__a = []
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = initializer_range
__a = layer_norm_eps
__a = image_size
__a = patch_size
__a = num_channels
__a = qkv_bias
__a = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
__a = readout_type
__a = reassemble_factors
__a = neck_hidden_sizes
__a = fusion_hidden_size
__a = head_in_index
__a = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
__a = use_auxiliary_head
__a = auxiliary_loss_weight
__a = semantic_loss_ignore_index
__a = semantic_classifier_dropout
def SCREAMING_SNAKE_CASE_ ( self ) -> Any:
'''simple docstring'''
__a = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__a = self.backbone_config.to_dict()
__a = self.__class__.model_type
return output | 6 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s
lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1
def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ):
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
__magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__magic_name__ : Union[str, Any] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod() | 331 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
__lowercase : Dict = MBartConfig
__lowercase : Any = {}
__lowercase : str = """gelu"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ):
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size)
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1)
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1)
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(_A , _A , _A)
return config, inputs_dict
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = TFMBartModel(config=_A).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict['input_ids']
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['head_mask']
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A)
__SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , ):
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class SCREAMING_SNAKE_CASE_ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
__lowercase : Optional[int] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
__lowercase : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
__lowercase : List[str] = (
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Tuple = True
__lowercase : str = False
__lowercase : Dict = False
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self)
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A)
def snake_case_ ( self):
self.config_tester.run_common_tests()
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_A)
@require_sentencepiece
@require_tokenizers
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
__lowercase : Optional[int] = [
""" UN Chief Says There Is No Military Solution in Syria""",
]
__lowercase : List[str] = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
__lowercase : int = """facebook/mbart-large-en-ro"""
@cached_property
def snake_case_ ( self):
return AutoTokenizer.from_pretrained(self.model_name)
@cached_property
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name)
return model
def snake_case_ ( self , **lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = self.translate_src_text(**_A)
self.assertListEqual(self.expected_text , _A)
def snake_case_ ( self , **lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **_A , return_tensors="""tf""")
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2)
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(_A , skip_special_tokens=_A)
return generated_words
@slow
def snake_case_ ( self):
self._assert_generated_batch_equal_expected()
| 100 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCAmelCase :Tuple = (
'''4S 3H 2C 7S 5H''',
'''9D 8H 2C 6S 7H''',
'''2D 6D 9D TH 7D''',
'''TC 8C 2S JH 6C''',
'''JH 8S TH AH QH''',
'''TS KS 5S 9S AC''',
'''KD 6S 9D TH AD''',
'''KS 8D 4D 9S 4S''', # pair
'''8C 4S KH JS 4D''', # pair
'''QH 8H KD JH 8S''', # pair
'''KC 4H KS 2H 8D''', # pair
'''KD 4S KC 3H 8S''', # pair
'''AH 8S AS KC JH''', # pair
'''3H 4C 4H 3S 2H''', # 2 pairs
'''5S 5D 2C KH KH''', # 2 pairs
'''3C KH 5D 5S KH''', # 2 pairs
'''AS 3C KH AD KH''', # 2 pairs
'''7C 7S 3S 7H 5S''', # 3 of a kind
'''7C 7S KH 2H 7H''', # 3 of a kind
'''AC KH QH AH AS''', # 3 of a kind
'''2H 4D 3C AS 5S''', # straight (low ace)
'''3C 5C 4C 2C 6H''', # straight
'''6S 8S 7S 5H 9H''', # straight
'''JS QS 9H TS KH''', # straight
'''QC KH TS JS AH''', # straight (high ace)
'''8C 9C 5C 3C TC''', # flush
'''3S 8S 9S 5S KS''', # flush
'''4C 5C 9C 8C KC''', # flush
'''JH 8H AH KH QH''', # flush
'''3D 2H 3H 2C 2D''', # full house
'''2H 2C 3S 3H 3D''', # full house
'''KH KC 3S 3H 3D''', # full house
'''JC 6H JS JD JH''', # 4 of a kind
'''JC 7H JS JD JH''', # 4 of a kind
'''JC KH JS JD JH''', # 4 of a kind
'''2S AS 4S 5S 3S''', # straight flush (low ace)
'''2D 6D 3D 4D 5D''', # straight flush
'''5C 6C 3C 7C 4C''', # straight flush
'''JH 9H TH KH QH''', # straight flush
'''JH AH TH KH QH''', # royal flush (high ace straight flush)
)
lowerCAmelCase :List[Any] = (
('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''),
('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''),
('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''),
('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''),
('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''),
('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''),
('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''),
('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''),
('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''),
('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''),
('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''),
('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''),
('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''),
('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''),
('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''),
('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''),
('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''),
('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''),
('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''),
('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''),
('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''),
('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''),
('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''),
('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''),
('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''),
('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''),
('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''),
('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''),
('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''),
('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', True),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', False),
('''AS 3S 4S 8S 2S''', True),
)
lowerCAmelCase :str = (
('''2H 3H 4H 5H 6H''', True),
('''AS AH 2H AD AC''', False),
('''2H 3H 5H 6H 7H''', False),
('''KS AS TS QS JS''', True),
('''8H 9H QS JS TH''', True),
)
lowerCAmelCase :Optional[Any] = (
('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]),
('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]),
('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]),
('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]),
)
lowerCAmelCase :Union[str, Any] = (
('''JH AH TH KH QH''', 0),
('''JH 9H TH KH QH''', 0),
('''JC KH JS JD JH''', 7),
('''KH KC 3S 3H 3D''', 6),
('''8C 9C 5C 3C TC''', 0),
('''JS QS 9H TS KH''', 0),
('''7C 7S KH 2H 7H''', 3),
('''3C KH 5D 5S KH''', 2),
('''QH 8H KD JH 8S''', 1),
('''2D 6D 9D TH 7D''', 0),
)
lowerCAmelCase :Tuple = (
('''JH AH TH KH QH''', 2_3),
('''JH 9H TH KH QH''', 2_2),
('''JC KH JS JD JH''', 2_1),
('''KH KC 3S 3H 3D''', 2_0),
('''8C 9C 5C 3C TC''', 1_9),
('''JS QS 9H TS KH''', 1_8),
('''7C 7S KH 2H 7H''', 1_7),
('''3C KH 5D 5S KH''', 1_6),
('''QH 8H KD JH 8S''', 1_5),
('''2D 6D 9D TH 7D''', 1_4),
)
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) )
__magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)]
__magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCamelCase ( lowerCAmelCase : int = 100 ):
"""simple docstring"""
return (generate_random_hand() for _ in range(lowerCAmelCase ))
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_flush() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_straight() == expected
@pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : Any = PokerHand(lowerCAmelCase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._is_same_kind() == expected
@pytest.mark.parametrize('hand, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase )._hand_type == expected
@pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
@pytest.mark.parametrize('hand, other, expected' , generate_random_hands() )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ):
"""simple docstring"""
assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS]
__magic_name__ : Tuple = poker_hands.copy()
shuffle(lowerCAmelCase )
__magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) )
for index, hand in enumerate(lowerCAmelCase ):
assert hand == poker_hands[index]
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )]
pokerhands.sort(reverse=lowerCAmelCase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' )
__magic_name__ : Optional[Any] = True
__magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = 0
__magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) )
__magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' )
with open(lowerCAmelCase ) as file_hand:
for line in file_hand:
__magic_name__ : Optional[int] = line[:14].strip()
__magic_name__ : List[Any] = line[15:].strip()
__magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase )
__magic_name__ : List[Any] = player.compare_with(lowerCAmelCase )
if output == "Win":
answer += 1
assert answer == 376 | 331 | 0 |
"""simple docstring"""
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def _A (__a ) -> Dict:
"""simple docstring"""
if isinstance(__a , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : str , lowercase_ : Any):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple=None , **lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFVisionTextDualEncoderModel(_A)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A)
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim))
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim))
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Any=None , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.get_vision_text_model(_A , _A)
SCREAMING_SNAKE_CASE_ : List[Any] = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A)
SCREAMING_SNAKE_CASE_ : Dict = model(input_ids=_A , pixel_values=_A , attention_mask=_A)
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim))
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim))
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Optional[Any]=None , **lowercase_ : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.get_vision_text_model(_A , _A)
SCREAMING_SNAKE_CASE_ : Optional[int] = {'vision_model': vision_model, 'text_model': text_model}
SCREAMING_SNAKE_CASE_ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_A)
SCREAMING_SNAKE_CASE_ : Optional[int] = model(input_ids=_A , pixel_values=_A , attention_mask=_A)
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim))
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim))
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Union[str, Any]=None , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_vision_text_model(_A , _A)
SCREAMING_SNAKE_CASE_ : int = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A)
SCREAMING_SNAKE_CASE_ : str = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A)
SCREAMING_SNAKE_CASE_ : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(_A)
SCREAMING_SNAKE_CASE_ : Tuple = model(input_ids=_A , pixel_values=_A , attention_mask=_A)
SCREAMING_SNAKE_CASE_ : int = after_output[0].numpy()
SCREAMING_SNAKE_CASE_ : Tuple = np.amax(np.abs(out_a - out_a))
self.assertLessEqual(_A , 1e-5)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=None , **lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_vision_text_model(_A , _A)
SCREAMING_SNAKE_CASE_ : Any = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A)
SCREAMING_SNAKE_CASE_ : Any = model(
input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A)
SCREAMING_SNAKE_CASE_ : List[str] = output.vision_model_output.attentions
self.assertEqual(len(_A) , vision_config.num_hidden_layers)
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE_ : Tuple = to_atuple(vision_model.config.image_size)
SCREAMING_SNAKE_CASE_ : Optional[Any] = to_atuple(vision_model.config.patch_size)
SCREAMING_SNAKE_CASE_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
SCREAMING_SNAKE_CASE_ : List[str] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len))
SCREAMING_SNAKE_CASE_ : Any = output.text_model_output.attentions
self.assertEqual(len(_A) , text_config.num_hidden_layers)
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.abs((a - b)).max()
self.assertLessEqual(_A , _A , F'Difference between torch and flax is {diff} (>= {tol}).')
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**_A)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_A)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_A)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs()
self.check_save_load(**_A)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_A)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.get_pretrained_model_and_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = model_a(**_A)
SCREAMING_SNAKE_CASE_ : str = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_A)
SCREAMING_SNAKE_CASE_ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(_A)
SCREAMING_SNAKE_CASE_ : List[str] = model_a(**_A)
SCREAMING_SNAKE_CASE_ : Any = after_outputs[0].numpy()
SCREAMING_SNAKE_CASE_ : Tuple = np.amax(np.abs(out_a - out_a))
self.assertLessEqual(_A , 1e-5)
@require_tf
class lowerCAmelCase__ ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''')
SCREAMING_SNAKE_CASE_ : List[str] = 13
SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
])
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size)
SCREAMING_SNAKE_CASE_ : Tuple = random_attention_mask([batch_size, 4])
SCREAMING_SNAKE_CASE_ : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : int , lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = TFViTModel(_A , name='''vision_model''')
SCREAMING_SNAKE_CASE_ : int = TFBertModel(_A , name='''text_model''')
return vision_model, text_model
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = TFViTModelTester(self)
SCREAMING_SNAKE_CASE_ : str = TFBertModelTester(self)
SCREAMING_SNAKE_CASE_ : int = vit_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ : List[Any] = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ : str = vision_config_and_inputs
(
SCREAMING_SNAKE_CASE_
) : Optional[Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class lowerCAmelCase__ ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''')
SCREAMING_SNAKE_CASE_ : Any = 13
SCREAMING_SNAKE_CASE_ : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
])
SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size)
SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([batch_size, 4])
SCREAMING_SNAKE_CASE_ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str=None , **lowercase_ : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_vision_text_model(_A , _A)
SCREAMING_SNAKE_CASE_ : Dict = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A)
SCREAMING_SNAKE_CASE_ : List[str] = model(
input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A)
SCREAMING_SNAKE_CASE_ : List[str] = output.vision_model_output.attentions
self.assertEqual(len(_A) , vision_config.num_hidden_layers)
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
SCREAMING_SNAKE_CASE_ : str = to_atuple(vision_model.config.image_size)
SCREAMING_SNAKE_CASE_ : Optional[Any] = to_atuple(vision_model.config.patch_size)
SCREAMING_SNAKE_CASE_ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
SCREAMING_SNAKE_CASE_ : Dict = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len))
SCREAMING_SNAKE_CASE_ : Optional[Any] = output.text_model_output.attentions
self.assertEqual(len(_A) , text_config.num_hidden_layers)
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = TFDeiTModel(_A , name='''vision_model''')
SCREAMING_SNAKE_CASE_ : str = TFRobertaModel(_A , name='''text_model''')
return vision_model, text_model
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = TFDeiTModelTester(self)
SCREAMING_SNAKE_CASE_ : List[Any] = TFRobertaModelTester(self)
SCREAMING_SNAKE_CASE_ : Any = vit_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = vision_config_and_inputs
(
SCREAMING_SNAKE_CASE_
) : List[Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class lowerCAmelCase__ ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''')
SCREAMING_SNAKE_CASE_ : Tuple = 13
SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
])
SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size)
SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([batch_size, 4])
SCREAMING_SNAKE_CASE_ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[str] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = TFCLIPVisionModel(_A , name='''vision_model''')
SCREAMING_SNAKE_CASE_ : Dict = TFBertModel(_A , name='''text_model''')
return vision_model, text_model
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = TFCLIPVisionModelTester(self)
SCREAMING_SNAKE_CASE_ : Dict = TFBertModelTester(self)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ : int = vision_config_and_inputs
(
SCREAMING_SNAKE_CASE_
) : Any = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = TFVisionTextDualEncoderModel.from_pretrained(
'''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=_A)
SCREAMING_SNAKE_CASE_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''')
SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
SCREAMING_SNAKE_CASE_ : str = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_A , padding=_A , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : int = model(**_A)
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]))
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([[1.2_28_47_27, 0.3_10_41_22]])
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _A , atol=1e-3))
| 91 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase :Union[str, Any] = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
def lowerCamelCase__ ( _A , _A ):
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def lowerCamelCase__ ( ):
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 187 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase :Any = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple:
super().__init__(**_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]:
__magic_name__ : str = {}
if "candidate_labels" in kwargs:
__magic_name__ : str = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__magic_name__ : Tuple = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int:
__magic_name__ : Dict = load_image(_A )
__magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
__magic_name__ : Optional[Any] = candidate_labels
__magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels]
__magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A )
__magic_name__ : Optional[Any] = [text_inputs]
return inputs
def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str:
__magic_name__ : str = model_inputs.pop('candidate_labels' )
__magic_name__ : str = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , _A ):
__magic_name__ : Dict = text_inputs[0]
else:
# Batching case.
__magic_name__ : Optional[Any] = text_inputs[0][0]
__magic_name__ : List[Any] = self.model(**_A , **_A )
__magic_name__ : str = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]:
__magic_name__ : Tuple = model_outputs.pop('candidate_labels' )
__magic_name__ : Union[str, Any] = model_outputs['logits'][0]
if self.framework == "pt":
__magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 )
__magic_name__ : Tuple = probs.tolist()
if not isinstance(_A , _A ):
__magic_name__ : Any = [scores]
elif self.framework == "tf":
__magic_name__ : Any = stable_softmax(_A , axis=-1 )
__magic_name__ : Dict = probs.numpy().tolist()
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
__magic_name__ : Union[str, Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] )
]
return result | 331 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_A = {
'''configuration_time_series_transformer''': [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TimeSeriesTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimeSeriesTransformerForPrediction''',
'''TimeSeriesTransformerModel''',
'''TimeSeriesTransformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 122 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase :int = '''pt'''
elif is_tf_available():
lowerCAmelCase :Optional[Any] = '''tf'''
else:
lowerCAmelCase :Optional[Any] = '''jax'''
class _lowerCamelCase ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = ByTaTokenizer
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
super().setUp()
__magic_name__ : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__magic_name__ : Optional[Any] = []
for i in range(len(_A ) ):
try:
__magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) )
__magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) )
if max_length is not None and len(_A ) > max_length:
__magic_name__ : Optional[int] = toks[:max_length]
if min_length is not None and len(_A ) < min_length and len(_A ) > 0:
while len(_A ) < min_length:
__magic_name__ : Optional[int] = toks + toks
# toks_str = [t[1] for t in toks]
__magic_name__ : List[str] = [t[0] for t in toks]
# Ensure consistency
__magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A )
if " " not in output_txt and len(_A ) > 1:
__magic_name__ : int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A )
)
if with_prefix_space:
__magic_name__ : Union[str, Any] = ' ' + output_txt
__magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A )
return output_txt, output_ids
def __lowerCAmelCase ( self : int ) -> str:
__magic_name__ : Any = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
__magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __lowerCAmelCase ( self : int ) -> Tuple:
__magic_name__ : Optional[int] = self.ta_base_tokenizer
__magic_name__ : Optional[int] = 'Unicode €.'
__magic_name__ : Optional[Any] = tokenizer(_A )
__magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : Any = tokenizer.decode(_A )
self.assertEqual(_A , 'Unicode €.</s>' )
__magic_name__ : Any = tokenizer('e è é ê ë' )
__magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , _A )
# decoding
__magic_name__ : List[str] = tokenizer.decode(_A )
self.assertEqual(_A , 'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' )
def __lowerCAmelCase ( self : Any ) -> int:
__magic_name__ : List[Any] = self.ta_base_tokenizer
__magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
__magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A )
self.assertIsInstance(_A , _A )
if FRAMEWORK != "jax":
__magic_name__ : str = list(batch.input_ids.numpy()[0] )
else:
__magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_A , _A )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _A )
self.assertIn('attention_mask' , _A )
self.assertNotIn('decoder_input_ids' , _A )
self.assertNotIn('decoder_attention_mask' , _A )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
__magic_name__ : Union[str, Any] = self.ta_base_tokenizer
__magic_name__ : Tuple = [
'Summary of the text.',
'Another summary.',
]
__magic_name__ : Dict = tokenizer(
text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
__magic_name__ : str = self.ta_base_tokenizer
__magic_name__ : Any = ['A long paragraph for summarization. </s>']
__magic_name__ : List[str] = ['Summary of the text. </s>']
# fmt: off
__magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
__magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
__magic_name__ : str = tokenizer(_A , text_target=_A )
self.assertEqual(_A , batch['input_ids'][0] )
self.assertEqual(_A , batch['labels'][0] )
def __lowerCAmelCase ( self : Any ) -> str:
# safety check on max_len default value so we are sure the test works
__magic_name__ : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__magic_name__ : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : str = tempfile.mkdtemp()
__magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running'
__magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
shutil.rmtree(_A )
__magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ : Optional[Any] = tempfile.mkdtemp()
__magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A )
tokenizer.save_pretrained(_A )
__magic_name__ : Any = tokenizer.__class__.from_pretrained(_A )
__magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_A )
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
__magic_name__ : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Union[str, Any] = json.load(_A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
__magic_name__ : Optional[Any] = json.load(_A )
__magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )]
__magic_name__ : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
__magic_name__ : Tuple = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_A , _A )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__magic_name__ : str = tokenizer_class.from_pretrained(
_A , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )]
__magic_name__ : Optional[Any] = tokenizer_class.from_pretrained(
_A , additional_special_tokens=_A , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
__magic_name__ : int = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
__magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
pass
def __lowerCAmelCase ( self : List[str] ) -> int:
pass
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
pass
def __lowerCAmelCase ( self : List[Any] ) -> int:
pass
def __lowerCAmelCase ( self : str ) -> Tuple:
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
__magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
__magic_name__ : int = tokenizer.convert_tokens_to_string(_A )
self.assertIsInstance(_A , _A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : List[str] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
__magic_name__ : List[str] = 0
__magic_name__ : str = tokenizer.convert_ids_to_tokens(
_A , skip_special_tokens=_A )
for attr in attributes_list:
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , attr + '_id' , _A )
self.assertEqual(getattr(_A , _A ) , _A )
self.assertEqual(getattr(_A , attr + '_id' ) , _A )
setattr(_A , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] )
setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] ) | 331 | 0 |
'''simple docstring'''
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
_UpperCamelCase = size
_UpperCamelCase = [0] * size
_UpperCamelCase = [0] * size
@staticmethod
def snake_case__ ( lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
return index | (index + 1)
@staticmethod
def snake_case__ ( lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
return (index & (index + 1)) - 1
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
_UpperCamelCase = value
while index < self.size:
_UpperCamelCase = self.get_prev(_A ) + 1
if current_left_border == index:
_UpperCamelCase = value
else:
_UpperCamelCase = max(_A , _A , _A )
_UpperCamelCase = self.get_next(_A )
def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
right -= 1 # Because of right is exclusive
_UpperCamelCase = 0
while left <= right:
_UpperCamelCase = self.get_prev(_A )
if left <= current_left:
_UpperCamelCase = max(_A , self.tree[right] )
_UpperCamelCase = current_left
else:
_UpperCamelCase = max(_A , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]]
__magic_name__ : Dict = DisjunctiveConstraint(_A )
self.assertTrue(isinstance(dc.token_ids , _A ) )
with self.assertRaises(_A ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_A ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_A ):
DisjunctiveConstraint(_A ) # fails here
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
__magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]]
__magic_name__ : List[Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 )
__magic_name__ : Optional[int] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 )
__magic_name__ : List[Any] = stepped is True and completed is False and reset is False
self.assertTrue(_A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 )
__magic_name__ : Any = stepped is True and completed is True and reset is False
self.assertTrue(_A )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] ) | 331 | 0 |
def __lowerCamelCase ( UpperCAmelCase_ : Dict ):
"""simple docstring"""
a :int = len(UpperCAmelCase_ )
while cur > 1:
# Find the maximum number in arr
a :int = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
a :Union[str, Any] = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase_ )]
# Reverse whole list
a :List[str] = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase_ )]
cur -= 1
return arr
if __name__ == "__main__":
snake_case : List[str] = input('''Enter numbers separated by a comma:\n''').strip()
snake_case : List[Any] = [int(item) for item in user_input.split(''',''')]
print(pancake_sort(unsorted))
| 94 |
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
lowerCAmelCase :List[str] = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
lowerCAmelCase :List[Any] = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Union[str, Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Tuple = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase :Optional[Any] = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[int] = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
lowerCAmelCase :Tuple = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Union[str, Any] = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
lowerCAmelCase :Dict = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
lowerCAmelCase :Optional[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
lowerCAmelCase :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Any = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
lowerCAmelCase :Tuple = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
lowerCAmelCase :Any = ''''''
lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
lowerCAmelCase :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
__magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : str = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
__magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
__magic_name__ : Any = expected_error.format(path=lowerCAmelCase )
with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ):
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md'
with open(lowerCAmelCase , 'w+' ) as readme_file:
readme_file.write(lowerCAmelCase )
ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) | 331 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
snake_case_ : Tuple = {
'''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Any = [
'''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FalconForCausalLM''',
'''FalconModel''',
'''FalconPreTrainedModel''',
'''FalconForSequenceClassification''',
'''FalconForTokenClassification''',
'''FalconForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
snake_case_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 83 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int:
__magic_name__ : str = parent
__magic_name__ : List[Any] = 13
__magic_name__ : Union[str, Any] = 7
__magic_name__ : Tuple = True
__magic_name__ : Dict = True
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = True
__magic_name__ : int = 99
__magic_name__ : List[str] = 384
__magic_name__ : Optional[int] = 2
__magic_name__ : List[Any] = 4
__magic_name__ : int = 37
__magic_name__ : Union[str, Any] = 'gelu'
__magic_name__ : Optional[int] = 0.1
__magic_name__ : str = 0.1
__magic_name__ : Optional[Any] = 512
__magic_name__ : Any = 16
__magic_name__ : Union[str, Any] = 2
__magic_name__ : Any = 0.02
__magic_name__ : List[str] = 3
__magic_name__ : Tuple = 4
__magic_name__ : List[Any] = 128
__magic_name__ : Optional[Any] = 2
__magic_name__ : List[str] = 9
__magic_name__ : str = 1
__magic_name__ : List[str] = None
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
__magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Optional[Any] = None
if self.use_input_mask:
__magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : List[str] = None
if self.use_token_type_ids:
__magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : int = None
if self.use_labels:
__magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Optional[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any:
__magic_name__ : Dict = TFConvBertModel(config=_A )
__magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__magic_name__ : Any = [input_ids, input_mask]
__magic_name__ : Tuple = model(_A )
__magic_name__ : List[Any] = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]:
__magic_name__ : Dict = TFConvBertForMaskedLM(config=_A )
__magic_name__ : Union[str, Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Dict = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple:
__magic_name__ : Any = self.num_labels
__magic_name__ : str = TFConvBertForSequenceClassification(config=_A )
__magic_name__ : List[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = self.num_choices
__magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A )
__magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : Optional[int] = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]:
__magic_name__ : List[Any] = self.num_labels
__magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A )
__magic_name__ : Dict = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Any = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int:
__magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A )
__magic_name__ : int = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__magic_name__ : Union[str, Any] = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[str] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : str = config_and_inputs
__magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
A_ : List[str] = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A_ : Tuple = False
A_ : Any = False
A_ : List[Any] = False
def __lowerCAmelCase ( self : List[Any] ) -> int:
__magic_name__ : Optional[Any] = TFConvBertModelTester(self )
__magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : str ) -> Dict:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : int ) -> Any:
__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : Dict ) -> List[str]:
__magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
__magic_name__ : Any = True
if hasattr(_A , 'use_cache' ):
__magic_name__ : List[Any] = True
__magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A )
for model_class in self.all_model_classes:
__magic_name__ : List[str] = self._prepare_for_class(_A , _A )
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Tuple = len(model(_A ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
__magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' )
__magic_name__ : Optional[int] = tf.keras.models.load_model(_A )
__magic_name__ : Optional[Any] = model(_A )
if self.is_encoder_decoder:
__magic_name__ : Optional[int] = outputs['encoder_hidden_states']
__magic_name__ : Tuple = outputs['encoder_attentions']
else:
__magic_name__ : Union[str, Any] = outputs['hidden_states']
__magic_name__ : Optional[Any] = outputs['attentions']
self.assertEqual(len(_A ) , _A )
__magic_name__ : Optional[Any] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_A ) , _A )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
__magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_A )
def __lowerCAmelCase ( self : List[str] ) -> Any:
__magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : str = True
__magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A )
__magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A )
def check_decoder_attentions_output(_A : List[Any] ):
__magic_name__ : Tuple = len(_A )
self.assertEqual(out_len % 2 , 0 )
__magic_name__ : Any = outputs.decoder_attentions
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_A : int ):
__magic_name__ : Dict = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__magic_name__ : Union[str, Any] = True
__magic_name__ : Tuple = False
__magic_name__ : List[str] = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
__magic_name__ : Tuple = len(_A )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
if self.is_encoder_decoder:
__magic_name__ : Any = model_class(_A )
__magic_name__ : Any = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_decoder_attentions_output(_A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[int] = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : str = True
__magic_name__ : Optional[int] = model_class(_A )
__magic_name__ : str = model(self._prepare_for_class(_A , _A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) )
self.assertEqual(model.config.output_hidden_states , _A )
check_encoder_attentions_output(_A )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : int ) -> int:
__magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ : Tuple = model(_A )[0]
__magic_name__ : str = [1, 6, 768]
self.assertEqual(output.shape , _A )
__magic_name__ : Tuple = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 ) | 331 | 0 |
import os
def UpperCAmelCase_ ( ) -> Any:
__lowercase : Any = os.path.dirname(os.path.realpath(__lowerCAmelCase ) )
__lowercase : str = os.path.join(__lowerCAmelCase , '''triangle.txt''' )
with open(__lowerCAmelCase ) as f:
__lowercase : int = f.readlines()
__lowercase : Union[str, Any] = []
for line in triangle:
__lowercase : List[str] = []
for number in line.strip().split(''' ''' ):
numbers_from_line.append(int(__lowerCAmelCase ) )
a.append(__lowerCAmelCase )
for i in range(1 , len(__lowerCAmelCase ) ):
for j in range(len(a[i] ) ):
__lowercase : Tuple = a[i - 1][j] if j != len(a[i - 1] ) else 0
__lowercase : Union[str, Any] = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(__lowerCAmelCase , __lowerCAmelCase )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 156 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
lowerCAmelCase :Dict = pytest.mark.integration
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
__magic_name__ : Union[str, Any] = dset.map(
lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A )
__magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
__magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
dset.drop_index('vecs' )
def __lowerCAmelCase ( self : Any ) -> str:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Tuple ) -> int:
import faiss
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name )
dset.load_faiss_index('vecs2' , tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
from elasticsearch import Elasticsearch
__magic_name__ : Dataset = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : int = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
__magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
__magic_name__ : Union[str, Any] = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=_A )
__magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' )
self.assertEqual(examples['filename'][0] , 'my_name-train_29' )
@require_faiss
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
import faiss
__magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__magic_name__ : str = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Optional[int] = 1
__magic_name__ , __magic_name__ : str = index.search(_A )
self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1]
__magic_name__ , __magic_name__ : str = index.search_batch(_A )
self.assertRaises(_A , index.search_batch , queries[0] )
__magic_name__ : List[Any] = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _A )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
import faiss
__magic_name__ : str = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__magic_name__ : str = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_A ):
__magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
import faiss
__magic_name__ : Any = faiss.IndexFlat(5 )
__magic_name__ : Optional[Any] = FaissIndex(custom_index=_A )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self : Dict ) -> Tuple:
import faiss
__magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file:
index.save(tmp_file.name )
__magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__magic_name__ : Dict = np.zeros(5 , dtype=np.floataa )
__magic_name__ : Tuple = 1
__magic_name__ , __magic_name__ : Optional[Any] = index.search(_A )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
import faiss
__magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__magic_name__ : Dict = 'index.faiss'
__magic_name__ : Optional[Any] = f'mock://{index_name}'
index.save(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options )
__magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa )
__magic_name__ : List[str] = 1
__magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> Dict:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
__magic_name__ : Any = Elasticsearch()
__magic_name__ : Union[str, Any] = {'acknowledged': True}
__magic_name__ : Tuple = ElasticSearchIndex(es_client=_A )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
__magic_name__ : str = 'foo'
__magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__magic_name__ : str = 'foo'
__magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A )
__magic_name__ : Tuple = [scores[0] for scores in total_scores]
__magic_name__ : List[str] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A )
# batched queries with timeout
__magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar']
__magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 )
__magic_name__ : Optional[int] = [scores[0] for scores in total_scores]
__magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_A ) , 0 )
self.assertListEqual([1, 1, 1] , _A ) | 331 | 0 |
'''simple docstring'''
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
_SCREAMING_SNAKE_CASE = TypeVar("T")
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return (position - 1) // 2
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return (2 * position) + 1
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return (2 * position) + 2
class lowerCAmelCase_ ( Generic[T] ):
def __init__( self ) -> None:
_lowerCAmelCase = []
_lowerCAmelCase = {}
_lowerCAmelCase = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _snake_case ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
_lowerCAmelCase = self.elements
self.elements += 1
self._bubble_up(_A )
def _snake_case ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
_lowerCAmelCase = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
_lowerCAmelCase = self.heap[0]
self._bubble_down(_A )
return elem
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None:
# Update the weight of the given key
_lowerCAmelCase = self.position_map[elem]
_lowerCAmelCase = (elem, weight)
if position > 0:
_lowerCAmelCase = get_parent_position(_A )
_lowerCAmelCase = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_A )
else:
self._bubble_down(_A )
else:
self._bubble_down(_A )
def _snake_case ( self , _lowerCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
_lowerCAmelCase = self.position_map[elem]
if curr_pos == 0:
return None
_lowerCAmelCase = get_parent_position(_A )
_lowerCAmelCase = self.heap[curr_pos]
_lowerCAmelCase = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_A , _A )
return self._bubble_up(_A )
return None
def _snake_case ( self , _lowerCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
_lowerCAmelCase = self.position_map[elem]
_lowerCAmelCase = self.heap[curr_pos]
_lowerCAmelCase = get_child_left_position(_A )
_lowerCAmelCase = get_child_right_position(_A )
if child_left_position < self.elements and child_right_position < self.elements:
_lowerCAmelCase = self.heap[child_left_position]
_lowerCAmelCase = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_A , _A )
return self._bubble_down(_A )
if child_left_position < self.elements:
_lowerCAmelCase = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_A , _A )
return self._bubble_down(_A )
else:
return None
if child_right_position < self.elements:
_lowerCAmelCase = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_A , _A )
return self._bubble_down(_A )
return None
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None:
# Swap the nodes at the given positions
_lowerCAmelCase = self.heap[nodea_pos][0]
_lowerCAmelCase = self.heap[nodea_pos][0]
_lowerCAmelCase = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
_lowerCAmelCase = nodea_pos
_lowerCAmelCase = nodea_pos
class lowerCAmelCase_ ( Generic[T] ):
def __init__( self ) -> None:
_lowerCAmelCase = {}
_lowerCAmelCase = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _snake_case ( self , _lowerCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
_lowerCAmelCase = {}
self.nodes += 1
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(_A )
self.add_node(_A )
_lowerCAmelCase = weight
_lowerCAmelCase = weight
def __a(SCREAMING_SNAKE_CASE_ : GraphUndirectedWeighted[T] , ):
'''simple docstring'''
_lowerCAmelCase = {node: maxsize for node in graph.connections}
_lowerCAmelCase = {node: None for node in graph.connections}
_lowerCAmelCase = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if priority_queue.is_empty():
return dist, parent
# initialization
_lowerCAmelCase = priority_queue.extract_min()
_lowerCAmelCase = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_lowerCAmelCase = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(SCREAMING_SNAKE_CASE_ , dist[neighbour] )
_lowerCAmelCase = node
# running prim's algorithm
while not priority_queue.is_empty():
_lowerCAmelCase = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_lowerCAmelCase = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(SCREAMING_SNAKE_CASE_ , dist[neighbour] )
_lowerCAmelCase = node
return dist, parent
| 158 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCamelCase ( lowerCAmelCase : Tuple ):
"""simple docstring"""
__magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() )
__magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__)
def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ):
"""simple docstring"""
if metric == "rouge2":
__magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
__magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
__magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
__magic_name__ : int = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
' function.' )
__magic_name__ : List[Any] = ModelCheckpoint(
dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return EarlyStopping(
monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int:
__magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_A )
@rank_zero_only
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None:
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
__magic_name__ : List[str] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
__magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
__magic_name__ : List[Any] = od / 'test_results.txt'
__magic_name__ : Dict = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
__magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_A )
generations_file.parent.mkdir(exist_ok=_A )
with open(_A , 'a+' ) as writer:
for key in sorted(_A ):
if key in ["log", "progress_bar", "preds"]:
continue
__magic_name__ : Optional[Any] = metrics[key]
if isinstance(_A , torch.Tensor ):
__magic_name__ : Tuple = val.item()
__magic_name__ : int = F'{key}: {val:.6f}\n'
writer.write(_A )
if not save_generations:
return
if "preds" in metrics:
__magic_name__ : str = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(_A )
@rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple:
try:
__magic_name__ : str = pl_module.model.model.num_parameters()
except AttributeError:
__magic_name__ : List[str] = pl_module.model.num_parameters()
__magic_name__ : List[Any] = count_trainable_parameters(_A )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_A , _A , 'test' )
@rank_zero_only
def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid") | 331 | 0 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class _A ( tf.keras.layers.Layer):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE_ : str = pad_token_id
SCREAMING_SNAKE_CASE_ : Any = max_length
SCREAMING_SNAKE_CASE_ : Tuple = vocab
SCREAMING_SNAKE_CASE_ : List[Any] = merges
SCREAMING_SNAKE_CASE_ : str = BytePairTokenizer(_A , _A , sequence_length=_A )
@classmethod
def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = [' '.join(_A ) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.get_vocab()
return cls(_A , _A , *_A , **_A )
@classmethod
def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(_A , *_A , **_A )
return cls.from_tokenizer(_A , *_A , **_A )
@classmethod
def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return cls(**_A )
def UpperCAmelCase ( self ):
"""simple docstring"""
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = self.tf_tokenizer(_A )
SCREAMING_SNAKE_CASE_ : Any = tf.ones_like(_A )
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = pad_model_inputs(
_A , max_seq_length=_A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 253 |
'''simple docstring'''
def lowerCamelCase ( ):
"""simple docstring"""
return 1
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int ):
"""simple docstring"""
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase )
def lowerCamelCase ( lowerCAmelCase : int = 200 ):
"""simple docstring"""
return two_pound(lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 331 | 0 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
A : List[Any] = logging.getLogger(__name__)
class __A( lowercase__ ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None ) -> int:
'''simple docstring'''
super().__init__(
_A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , )
__a = None
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
__a = self._infer_socket_ifname()
# avoid clash with the NCCL port
__a = str(distributed_port + 1 )
__a = dist.new_group(ranks=_A , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
return dist.get_rank(group=self.process_group ) == 0
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=torch.floataa ) -> str:
'''simple docstring'''
__a = torch.empty(_A , dtype=_A )
dist.scatter(_A , src=0 , scatter_list=_A , group=self.process_group )
return target_tensor
def SCREAMING_SNAKE_CASE_ ( self ) -> Any:
'''simple docstring'''
__a = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__a = next((addr for addr in addrs if addr.startswith('''e''' )) , _A )
return ifname
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple[np.ndarray, List[dict]]:
'''simple docstring'''
if not dist.is_initialized():
__a = self._main_retrieve(_A , _A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A )
# distributed training
__a = dist.get_world_size(group=self.process_group )
# gather logic
__a = None
if self._is_main():
__a = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_A )]
dist.gather(torch.tensor(_A ) , dst=0 , gather_list=_A , group=self.process_group )
# scatter logic
__a = question_hidden_states.shape[0]
__a = []
__a = []
if self._is_main():
assert len(_A ) == world_size
__a = self._main_retrieve(torch.cat(_A ).numpy() , _A )
__a = torch.tensor(_A ), torch.tensor(_A )
__a = self._chunk_tensor(_A , _A )
__a = self._chunk_tensor(_A , _A )
__a = self._scattered(_A , [n_queries, n_docs] , target_type=torch.intaa )
__a = self._scattered(_A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_A ) | 6 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Union[str, Any] = ["""flax""", """transformers"""]
def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Dict = ["""flax""", """transformers"""]
def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] )
class _lowerCamelCase ( metaclass=lowercase__ ):
'''simple docstring'''
A_ : Optional[int] = ["""flax""", """transformers"""]
def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] ) | 331 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__ = {
'''configuration_blip_2''': [
'''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Blip2Config''',
'''Blip2QFormerConfig''',
'''Blip2VisionConfig''',
],
'''processing_blip_2''': ['''Blip2Processor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Blip2Model''',
'''Blip2QFormerModel''',
'''Blip2PreTrainedModel''',
'''Blip2ForConditionalGeneration''',
'''Blip2VisionModel''',
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 100 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase :Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowercase__ )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any:
super().__init__(*_A , **_A )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]:
__magic_name__ : Union[str, Any] = {}
__magic_name__ : Optional[Any] = {}
if prompt is not None:
__magic_name__ : Union[str, Any] = prompt
if generate_kwargs is not None:
__magic_name__ : str = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__magic_name__ : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
__magic_name__ : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int:
return super().__call__(_A , **_A )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict:
__magic_name__ : List[Any] = load_image(_A )
if prompt is not None:
if not isinstance(_A , _A ):
raise ValueError(
F'Received an invalid text input, got - {type(_A )} - but expected a single string. '
'Note also that one single text can be provided for conditional image to text generation.' )
__magic_name__ : Any = self.model.config.model_type
if model_type == "git":
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids
__magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids
__magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
__magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework )
__magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework )
model_inputs.update(_A )
else:
raise ValueError(F'Model type {model_type} does not support conditional text generation' )
else:
__magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__magic_name__ : int = None
return model_inputs
def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _A )
and all(x is None for x in model_inputs['input_ids'] )
):
__magic_name__ : str = None
if generate_kwargs is None:
__magic_name__ : Optional[int] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name )
__magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A )
return model_outputs
def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]:
__magic_name__ : Optional[Any] = []
for output_ids in model_outputs:
__magic_name__ : Union[str, Any] = {
'generated_text': self.tokenizer.decode(
_A , skip_special_tokens=_A , )
}
records.append(_A )
return records | 331 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def _A (__a , __a , __a , __a , __a = None , __a = None , __a = None , ) -> Optional[Any]:
"""simple docstring"""
if config_name_or_path is None:
SCREAMING_SNAKE_CASE_ : Any = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base'
if generator_tokenizer_name_or_path is None:
SCREAMING_SNAKE_CASE_ : Optional[int] = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
SCREAMING_SNAKE_CASE_ : Dict = question_encoder_name_or_path
SCREAMING_SNAKE_CASE_ : Optional[int] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration
# Save model.
SCREAMING_SNAKE_CASE_ : Optional[int] = RagConfig.from_pretrained(__a )
SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = AutoConfig.from_pretrained(__a )
SCREAMING_SNAKE_CASE_ : List[str] = gen_config
SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config
SCREAMING_SNAKE_CASE_ : Tuple = model_class.from_pretrained_question_encoder_generator(
__a , __a , config=__a )
rag_model.save_pretrained(__a )
# Sanity check.
model_class.from_pretrained(__a )
# Save tokenizers.
SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(__a )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(__a )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
UpperCAmelCase_ : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""",
choices=["""rag_sequence""", """rag_token"""],
required=True,
type=str,
help="""RAG model type: rag_sequence, rag_token""",
)
parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""")
parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""")
parser.add_argument(
"""--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier"""
)
parser.add_argument(
"""--generator_tokenizer_name_or_path""",
type=str,
help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""",
)
parser.add_argument(
"""--question_encoder_tokenizer_name_or_path""",
type=str,
help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""",
)
parser.add_argument(
"""--config_name_or_path""",
type=str,
help=(
"""Identifier of the model config to use, if not provided, resolves to a base config for a given"""
""" ``model_type``"""
),
)
UpperCAmelCase_ : Any = parser.parse_args()
UpperCAmelCase_ : Any = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 91 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowerCAmelCase :Dict = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
lowerCAmelCase :str = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowerCAmelCase :Any = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys())
lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class _lowerCamelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_A )
__magic_name__ : List[str] = 0
__magic_name__ : Union[str, Any] = Path(self.hparams.output_dir )
__magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__magic_name__ : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , )
else:
__magic_name__ : PretrainedConfig = config
__magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , _A , _A ):
assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , _A , getattr(self.hparams , _A ) )
if tokenizer is None:
__magic_name__ : List[Any] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , )
else:
__magic_name__ : PreTrainedTokenizer = tokenizer
__magic_name__ : Optional[int] = MODEL_MODES[mode]
if model is None:
__magic_name__ : Tuple = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , )
else:
__magic_name__ : str = model
def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple:
__magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
__magic_name__ : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : Optional[Any] = self.model
__magic_name__ : int = ['bias', 'LayerNorm.weight']
__magic_name__ : Dict = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__magic_name__ : str = Adafactor(
_A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A )
else:
__magic_name__ : Tuple = AdamW(
_A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__magic_name__ : List[str] = optimizer
__magic_name__ : int = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]:
return self.validation_step(_A , _A )
def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any:
return self.validation_end(_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
__magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str:
if stage == "test":
__magic_name__ : Any = len(self.test_dataloader().dataset )
else:
__magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A )
__magic_name__ : int = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]:
raise NotImplementedError('You must implement this for your task' )
def __lowerCAmelCase ( self : int ) -> List[str]:
return self.train_loader
def __lowerCAmelCase ( self : Tuple ) -> int:
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A )
def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str:
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
_A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None:
__magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' )
__magic_name__ : List[Any] = self.step_count
self.model.save_pretrained(_A )
self.tokenizer.save_pretrained(_A )
@staticmethod
def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple:
parser.add_argument(
'--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A )
parser.add_argument('--train_batch_size' , default=32 , type=_A )
parser.add_argument('--eval_batch_size' , default=32 , type=_A )
parser.add_argument('--adafactor' , action='store_true' )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_A )
class _lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]:
__magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler']
__magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_A )
def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]:
rank_zero_info('***** Validation results *****' )
__magic_name__ : str = trainer.callback_metrics
# Log results
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]:
rank_zero_info('***** Test results *****' )
__magic_name__ : Optional[int] = trainer.callback_metrics
# Log and save results to file
__magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(_A , 'w' ) as writer:
for key in sorted(_A ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) )
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
parser.add_argument(
'--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__magic_name__ : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase )
if logging_callback is None:
__magic_name__ : Dict = LoggingCallback()
__magic_name__ : List[str] = {}
if args.fpaa:
__magic_name__ : Dict = 16
if args.gpus > 1:
__magic_name__ : Tuple = 'auto'
__magic_name__ : int = 'ddp'
__magic_name__ : str = args.accumulate_grad_batches
__magic_name__ : str = None
__magic_name__ : List[str] = 'auto'
__magic_name__ : List[Any] = pl.Trainer.from_argparse_args(
lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , )
if args.do_train:
trainer.fit(lowerCAmelCase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer | 331 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowercase__ : Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : int = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 187 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Dict = (DDPMScheduler,)
def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str:
__magic_name__ : str = {
'num_train_timesteps': 1000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**_A )
return config
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_A , beta_end=_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_A )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> str:
self.check_over_configs(thresholding=_A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_A , prediction_type=_A , sample_max_value=_A , )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_A )
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Dict = scheduler_class(**_A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def __lowerCAmelCase ( self : Tuple ) -> int:
__magic_name__ : Tuple = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : str = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Union[str, Any] = self.dummy_model()
__magic_name__ : List[Any] = self.dummy_sample_deter
__magic_name__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : Tuple = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : Dict = pred_prev_sample
__magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) )
__magic_name__ : Dict = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' )
__magic_name__ : Any = scheduler_class(**_A )
__magic_name__ : Any = len(_A )
__magic_name__ : Dict = self.dummy_model()
__magic_name__ : str = self.dummy_sample_deter
__magic_name__ : str = torch.manual_seed(0 )
for t in reversed(range(_A ) ):
# 1. predict noise residual
__magic_name__ : List[Any] = model(_A , _A )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__magic_name__ : List[Any] = pred_prev_sample
__magic_name__ : int = torch.sum(torch.abs(_A ) )
__magic_name__ : Any = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def __lowerCAmelCase ( self : List[str] ) -> str:
__magic_name__ : Dict = self.scheduler_classes[0]
__magic_name__ : Any = self.get_scheduler_config()
__magic_name__ : Optional[Any] = scheduler_class(**_A )
__magic_name__ : List[str] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_A )
__magic_name__ : List[str] = scheduler.timesteps
for i, timestep in enumerate(_A ):
if i == len(_A ) - 1:
__magic_name__ : Optional[int] = -1
else:
__magic_name__ : List[Any] = timesteps[i + 1]
__magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A )
__magic_name__ : Any = prev_t.item()
self.assertEqual(_A , _A )
def __lowerCAmelCase ( self : Tuple ) -> str:
__magic_name__ : str = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=_A )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : Union[str, Any] = self.scheduler_classes[0]
__magic_name__ : Union[str, Any] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Optional[int] = [100, 87, 50, 1, 0]
__magic_name__ : Tuple = len(_A )
with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.scheduler_classes[0]
__magic_name__ : List[str] = self.get_scheduler_config()
__magic_name__ : Union[str, Any] = scheduler_class(**_A )
__magic_name__ : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=_A ) | 331 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class lowercase_ :
def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=9_9 , __UpperCamelCase=3_2 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=3_7 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ):
"""simple docstring"""
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = seq_length
UpperCamelCase_ = is_training
UpperCamelCase_ = use_token_type_ids
UpperCamelCase_ = use_labels
UpperCamelCase_ = vocab_size
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_act
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = max_position_embeddings
UpperCamelCase_ = type_vocab_size
UpperCamelCase_ = type_sequence_label_size
UpperCamelCase_ = initializer_range
UpperCamelCase_ = num_labels
UpperCamelCase_ = num_choices
UpperCamelCase_ = scope
UpperCamelCase_ = self.vocab_size - 1
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ = None
if self.use_token_type_ids:
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase_ = None
UpperCamelCase_ = None
UpperCamelCase_ = None
if self.use_labels:
UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase_ = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
UpperCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = OpenAIGPTModel(config=_A )
model.to(_A )
model.eval()
UpperCamelCase_ = model(_A , token_type_ids=_A , head_mask=_A )
UpperCamelCase_ = model(_A , token_type_ids=_A )
UpperCamelCase_ = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = OpenAIGPTLMHeadModel(_A )
model.to(_A )
model.eval()
UpperCamelCase_ = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = OpenAIGPTDoubleHeadsModel(_A )
model.to(_A )
model.eval()
UpperCamelCase_ = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = self.num_labels
UpperCamelCase_ = OpenAIGPTForSequenceClassification(_A )
model.to(_A )
model.eval()
UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase_ = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.prepare_config_and_inputs()
(
UpperCamelCase_
) = config_and_inputs
UpperCamelCase_ = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class lowercase_ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
A__ : Any = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ : str = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ : Optional[Any] = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ):
"""simple docstring"""
UpperCamelCase_ = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
UpperCamelCase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , )
UpperCamelCase_ = inputs_dict['labels']
UpperCamelCase_ = inputs_dict['labels']
UpperCamelCase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , )
UpperCamelCase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = OpenAIGPTModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=_A , n_embd=3_7 )
def lowerCamelCase_ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_A )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_A )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_A )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A )
@slow
def lowerCamelCase_ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_ = OpenAIGPTModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
class lowercase_ ( unittest.TestCase ):
@slow
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(_A )
UpperCamelCase_ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=_A ) # the president is
UpperCamelCase_ = [
4_8_1,
4_7_3_5,
5_4_4,
2_4_6,
9_6_3,
8_7_0,
7_6_2,
2_3_9,
2_4_4,
4_0_4_7_7,
2_4_4,
2_4_9,
7_1_9,
8_8_1,
4_8_7,
5_4_4,
2_4_0,
2_4_4,
6_0_3,
4_8_1,
] # the president is a very good man. " \n " i\'m sure he is, " said the
UpperCamelCase_ = model.generate(_A , do_sample=_A )
self.assertListEqual(output_ids[0].tolist() , _A )
| 122 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = IFInpaintingPipeline
A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
return self._get_dummy_components()
def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]:
if str(_A ).startswith('mps' ):
__magic_name__ : Optional[Any] = torch.manual_seed(_A )
else:
__magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A )
__magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
__magic_name__ : Tuple = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __lowerCAmelCase ( self : List[Any] ) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def __lowerCAmelCase ( self : Dict ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __lowerCAmelCase ( self : Tuple ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
self._test_save_load_local()
def __lowerCAmelCase ( self : Any ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , ) | 331 | 0 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=13 , lowerCAmelCase__ : Any=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Optional[int]=37 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Any=None , ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = image_size
_UpperCamelCase = patch_size
_UpperCamelCase = num_channels
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = (image_size // patch_size) ** 2
_UpperCamelCase = num_patches + 1
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = TFViTModel(config=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
_UpperCamelCase = self.image_size // 2
_UpperCamelCase = pixel_values[:, :, :image_size, :image_size]
_UpperCamelCase = model(_A , interpolate_pos_encoding=_A , training=_A )
_UpperCamelCase = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.type_sequence_label_size
_UpperCamelCase = TFViTForImageClassification(_A )
_UpperCamelCase = model(_A , labels=_A , training=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
_UpperCamelCase = self.image_size // 2
_UpperCamelCase = pixel_values[:, :, :image_size, :image_size]
_UpperCamelCase = model(_A , interpolate_pos_encoding=_A , training=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCamelCase = 1
_UpperCamelCase = TFViTForImageClassification(_A )
_UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_and_inputs
_UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
_snake_case : Any = (
{"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification}
if is_tf_available()
else {}
)
_snake_case : Union[str, Any] = False
_snake_case : Optional[Any] = False
_snake_case : str = False
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = TFViTModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def snake_case__ ( self : Optional[int] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def snake_case__ ( self : List[str] ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
_UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def snake_case__ ( self : Dict ) -> int:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(_A )
_UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def snake_case__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(_A )
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : int ) -> Dict:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
_UpperCamelCase = self.default_image_processor
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=_A , return_tensors='''tf''' )
# forward pass
_UpperCamelCase = model(**_A )
# verify the logits
_UpperCamelCase = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _A )
_UpperCamelCase = tf.constant([-0.2744, 0.8215, -0.0836] )
tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1e-4 )
| 324 |
'''simple docstring'''
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Optional[int] = seq_length
__magic_name__ : List[str] = is_training
__magic_name__ : Optional[Any] = use_input_mask
__magic_name__ : Dict = use_token_type_ids
__magic_name__ : str = use_labels
__magic_name__ : int = vocab_size
__magic_name__ : List[Any] = hidden_size
__magic_name__ : Dict = num_hidden_layers
__magic_name__ : Dict = num_attention_heads
__magic_name__ : Tuple = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : Union[str, Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = max_position_embeddings
__magic_name__ : Any = type_vocab_size
__magic_name__ : Union[str, Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = initializer_range
__magic_name__ : str = num_labels
__magic_name__ : Tuple = num_choices
__magic_name__ : Any = relative_attention
__magic_name__ : str = position_biased_input
__magic_name__ : str = pos_att_type
__magic_name__ : Union[str, Any] = scope
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
__magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : List[Any] = None
if self.use_input_mask:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__magic_name__ : int = None
if self.use_token_type_ids:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : List[str] = None
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : List[Any] = self.get_config()
__magic_name__ : Union[str, Any] = 300
return config
def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]:
__magic_name__ : Dict = DebertaModel(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0]
__magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0]
__magic_name__ : List[str] = model(_A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict:
__magic_name__ : List[str] = DebertaForMaskedLM(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]:
__magic_name__ : Optional[int] = self.num_labels
__magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A )
model.to(_A )
model.eval()
__magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(_A )
def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]:
__magic_name__ : str = self.num_labels
__magic_name__ : int = DebertaForTokenClassification(config=_A )
model.to(_A )
model.eval()
__magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]:
__magic_name__ : int = DebertaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
__magic_name__ : Optional[int] = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : int = config_and_inputs
__magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
A_ : Tuple = (
{
"""feature-extraction""": DebertaModel,
"""fill-mask""": DebertaForMaskedLM,
"""question-answering""": DebertaForQuestionAnswering,
"""text-classification""": DebertaForSequenceClassification,
"""token-classification""": DebertaForTokenClassification,
"""zero-shot""": DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Union[str, Any] = True
A_ : Any = False
A_ : Dict = False
A_ : str = False
A_ : Dict = False
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
__magic_name__ : List[str] = DebertaModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 )
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A )
def __lowerCAmelCase ( self : Any ) -> str:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A )
def __lowerCAmelCase ( self : Any ) -> Tuple:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A )
def __lowerCAmelCase ( self : str ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A )
@slow
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : int = DebertaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='Model not available yet' )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
pass
@slow
def __lowerCAmelCase ( self : Dict ) -> Tuple:
__magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' )
__magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
__magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0]
# compare the actual values for a slice.
__magic_name__ : Tuple = torch.tensor(
[[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' ) | 331 | 0 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
snake_case : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class _snake_case ( lowercase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = True
def SCREAMING_SNAKE_CASE__ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
a :Optional[Any] = XLMProphetNetTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[Any] = '[PAD]'
a :Optional[Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_A ) , 1012 )
def SCREAMING_SNAKE_CASE__ ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = XLMProphetNetTokenizer(_A , keep_accents=_A )
a :List[str] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
a :List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
a :int = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
a :Optional[int] = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ):
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[Any] = 'Hello World!'
a :List[Any] = [3_5389, 6672, 49, 2]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
# fmt: off
a :Dict = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 94 |
'''simple docstring'''
class _lowerCamelCase : # Public class to implement a graph
'''simple docstring'''
def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
__magic_name__ : Tuple = row
__magic_name__ : str = col
__magic_name__ : Optional[Any] = graph
def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None:
# Checking all 8 elements surrounding nth element
__magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
__magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1]
__magic_name__ : Optional[int] = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A )
def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands.
__magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )]
__magic_name__ : Any = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(_A , _A , _A )
count += 1
return count | 331 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class lowercase__ :
lowercase__ = None
lowercase__ = None
lowercase__ = None # sigma(t_i)
@classmethod
def UpperCamelCase_ ( cls : Any ):
'''simple docstring'''
return cls()
@dataclass
class lowercase__ ( lowercase__ ):
lowercase__ = 42
lowercase__ = 42
lowercase__ = 42
class lowercase__ ( lowercase__ , lowercase__ ):
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Union[str, Any] ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : float = 100 ,lowerCamelCase__ : float = 1.0_0_7 ,lowerCamelCase__ : float = 80 ,lowerCamelCase__ : float = 0.0_5 ,lowerCamelCase__ : float = 50 ,):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
return KarrasVeSchedulerState.create()
def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : KarrasVeSchedulerState ,lowerCamelCase__ : int ,lowerCamelCase__ : Tuple = () ):
'''simple docstring'''
_UpperCamelCase : int = jnp.arange(0 ,_A )[::-1].copy()
_UpperCamelCase : Any = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=_A ,schedule=jnp.array(_A ,dtype=jnp.floataa ) ,timesteps=_A ,)
def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : KarrasVeSchedulerState ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : float ,lowerCamelCase__ : random.KeyArray ,):
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
_UpperCamelCase : Union[str, Any] = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 )
else:
_UpperCamelCase : Dict = 0
# sample eps ~ N(0, S_noise^2 * I)
_UpperCamelCase : Any = random.split(_A ,num=1 )
_UpperCamelCase : Optional[int] = self.config.s_noise * random.normal(key=_A ,shape=sample.shape )
_UpperCamelCase : Any = sigma + gamma * sigma
_UpperCamelCase : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : KarrasVeSchedulerState ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : float ,lowerCamelCase__ : float ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : bool = True ,):
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = sample_hat + sigma_hat * model_output
_UpperCamelCase : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
_UpperCamelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=_A ,derivative=_A ,state=_A )
def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : KarrasVeSchedulerState ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : float ,lowerCamelCase__ : float ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : jnp.ndarray ,lowerCamelCase__ : bool = True ,):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = sample_prev + sigma_prev * model_output
_UpperCamelCase : Tuple = (sample_prev - pred_original_sample) / sigma_prev
_UpperCamelCase : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=_A ,derivative=_A ,state=_A )
def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : KarrasVeSchedulerState ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : str ):
'''simple docstring'''
raise NotImplementedError()
| 83 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :str = ['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = ['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 331 | 0 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : str , _snake_case : List[str] , _snake_case : Optional[Any]=13 , _snake_case : List[Any]=32 , _snake_case : Union[str, Any]=3 , _snake_case : int=4 , _snake_case : Optional[Any]=[10, 20, 30, 40] , _snake_case : Optional[Any]=[2, 2, 3, 2] , _snake_case : int=True , _snake_case : Optional[int]=True , _snake_case : Union[str, Any]=37 , _snake_case : Optional[int]="gelu" , _snake_case : Any=10 , _snake_case : List[str]=0.02 , _snake_case : List[Any]=["stage2", "stage3", "stage4"] , _snake_case : List[Any]=3 , _snake_case : str=None , ):
__lowercase : Dict = parent
__lowercase : Union[str, Any] = batch_size
__lowercase : Tuple = image_size
__lowercase : Optional[int] = num_channels
__lowercase : int = num_stages
__lowercase : Tuple = hidden_sizes
__lowercase : List[Any] = depths
__lowercase : List[Any] = is_training
__lowercase : List[str] = use_labels
__lowercase : Dict = intermediate_size
__lowercase : int = hidden_act
__lowercase : Union[str, Any] = type_sequence_label_size
__lowercase : Union[str, Any] = initializer_range
__lowercase : Union[str, Any] = out_features
__lowercase : List[Any] = num_labels
__lowercase : Any = scope
__lowercase : Any = num_stages
def snake_case_ ( self : List[str] ):
__lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase : Union[str, Any] = None
if self.use_labels:
__lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase : Optional[int] = self.get_config()
return config, pixel_values, labels
def snake_case_ ( self : Dict ):
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def snake_case_ ( self : List[str] ):
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_A , loss_ignore_index=255 , num_labels=self.num_labels , )
def snake_case_ ( self : Optional[int] , _snake_case : int , _snake_case : Any , _snake_case : List[str] ):
__lowercase : Tuple = UperNetForSemanticSegmentation(config=_A )
model.to(_A )
model.eval()
__lowercase : str = model(_A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def snake_case_ ( self : Union[str, Any] ):
__lowercase : Union[str, Any] = self.prepare_config_and_inputs()
(
__lowercase
) : Dict = config_and_inputs
__lowercase : List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
A__ : List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
A__ : Optional[Any] = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {}
A__ : List[Any] = False
A__ : List[Any] = False
A__ : int = False
A__ : Optional[Any] = False
A__ : Optional[int] = False
A__ : str = False
def snake_case_ ( self : Any ):
__lowercase : List[str] = UperNetModelTester(self )
__lowercase : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def snake_case_ ( self : Optional[int] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case_ ( self : List[Any] ):
return
def snake_case_ ( self : Any ):
__lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase : Union[str, Any] = model_class(_A )
__lowercase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase : Tuple = [*signature.parameters.keys()]
__lowercase : Optional[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def snake_case_ ( self : Tuple ):
__lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_A )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def snake_case_ ( self : Any ):
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def snake_case_ ( self : Optional[Any] ):
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def snake_case_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def snake_case_ ( self : Dict ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def snake_case_ ( self : Any ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def snake_case_ ( self : Optional[Any] ):
pass
def snake_case_ ( self : str ):
def check_hidden_states_output(_snake_case : int , _snake_case : Union[str, Any] , _snake_case : int ):
__lowercase : str = model_class(_A )
model.to(_A )
model.eval()
with torch.no_grad():
__lowercase : Dict = model(**self._prepare_for_class(_A , _A ) )
__lowercase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__lowercase : str = self.model_tester.num_stages
self.assertEqual(len(_A ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__lowercase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase : str = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase : List[Any] = True
check_hidden_states_output(_A , _A , _A )
def snake_case_ ( self : List[Any] ):
__lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase : Any = _config_zero_init(_A )
__lowercase : str = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
__lowercase : Optional[Any] = model_class(config=_A )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def snake_case_ ( self : int ):
pass
@slow
def snake_case_ ( self : Union[str, Any] ):
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase : List[Any] = UperNetForSemanticSegmentation.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCAmelCase_ ( ) -> Tuple:
__lowercase : List[str] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
__lowercase : List[str] = Image.open(__lowerCAmelCase ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self : Optional[Any] ):
__lowercase : Optional[int] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
__lowercase : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_A )
__lowercase : Union[str, Any] = prepare_img()
__lowercase : List[Any] = processor(images=_A , return_tensors='''pt''' ).to(_A )
with torch.no_grad():
__lowercase : List[str] = model(**_A )
__lowercase : Any = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _A )
__lowercase : Optional[int] = torch.tensor(
[[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) )
def snake_case_ ( self : str ):
__lowercase : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
__lowercase : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_A )
__lowercase : Optional[int] = prepare_img()
__lowercase : List[str] = processor(images=_A , return_tensors='''pt''' ).to(_A )
with torch.no_grad():
__lowercase : Any = model(**_A )
__lowercase : int = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _A )
__lowercase : int = torch.tensor(
[[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(_A )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) )
| 156 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ):
"""simple docstring"""
__magic_name__ : list[int] = [0]
__magic_name__ : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
__magic_name__ : int = 0
# the area corresponding to the grid that gives the product closest to target
__magic_name__ : int = 0
# an estimate of b, using the quadratic formula
__magic_name__ : float
# the largest integer less than b_estimate
__magic_name__ : int
# the largest integer less than b_estimate
__magic_name__ : int
# the triangle number corresponding to b_floor
__magic_name__ : int
# the triangle number corresponding to b_ceil
__magic_name__ : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
__magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
__magic_name__ : List[Any] = floor(lowerCAmelCase )
__magic_name__ : Dict = ceil(lowerCAmelCase )
__magic_name__ : Any = triangle_numbers[b_floor]
__magic_name__ : Optional[int] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : Any = triangle_b_first_guess * triangle_a
__magic_name__ : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
__magic_name__ : List[str] = triangle_b_second_guess * triangle_a
__magic_name__ : Optional[int] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F'{solution() = }') | 331 | 0 |
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def __a(SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def __a():
'''simple docstring'''
_lowerCAmelCase = ArgumentParser(
"HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE_ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE_ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE_ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE_ )
# Parse args
_lowerCAmelCase = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ):
parser.print_help()
exit(1 )
_lowerCAmelCase = parse_unknown_args(SCREAMING_SNAKE_CASE_ )
# Run
_lowerCAmelCase = args.func(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
service.run()
if __name__ == "__main__":
main()
| 158 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Dict = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Tuple = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :int = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Any = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure) | 331 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.