code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase : Tuple = logging.get_logger(__name__) class _A ( lowercase__): SCREAMING_SNAKE_CASE : List[Any] = ["""pixel_values"""] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE=PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = do_resize SCREAMING_SNAKE_CASE_ : List[str] = do_rescale SCREAMING_SNAKE_CASE_ : str = size_divisor SCREAMING_SNAKE_CASE_ : Optional[Any] = resample super().__init__(**_A ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_image_size(_A ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE_ : Optional[int] = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE_ : Union[str, Any] = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE_ : Union[str, Any] = resize(_A , (new_h, new_w) , resample=_A , data_format=_A , **_A ) return image def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" return rescale(image=_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : List[Any] = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE_ : List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) SCREAMING_SNAKE_CASE_ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : List[str] = [to_numpy_array(_A ) for img in images] if do_resize: SCREAMING_SNAKE_CASE_ : Optional[int] = [self.resize(_A , size_divisor=_A , resample=_A ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : List[Any] = [self.rescale(_A , scale=1 / 255 ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
253
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
from __future__ import annotations from math import ceil, floor, sqrt def __lowerCAmelCase ( a__ = 200_0000 ) -> List[Any]: __a = [0] __a = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __a = 0 # the area corresponding to the grid that gives the product closest to target __a = 0 # an estimate of b, using the quadratic formula __a = 42 # the largest integer less than b_estimate __a = 42 # the largest integer less than b_estimate __a = 42 # the triangle number corresponding to b_floor __a = 42 # the triangle number corresponding to b_ceil __a = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __a = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __a = floor(a__ ) __a = ceil(a__ ) __a = triangle_numbers[b_floor] __a = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __a = triangle_b_first_guess * triangle_a __a = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __a = triangle_b_second_guess * triangle_a __a = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
6
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
0
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __init__( self , lowerCAmelCase__): super().__init__() __SCREAMING_SNAKE_CASE = nn.ModuleList(_A) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = True , ): for i, (image, scale, controlnet) in enumerate(zip(_A , _A , self.nets)): __SCREAMING_SNAKE_CASE = controlnet( _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , ) # merge samples if i == 0: __SCREAMING_SNAKE_CASE = down_samples, mid_sample else: __SCREAMING_SNAKE_CASE = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_A , _A) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = save_directory for controlnet in self.nets: controlnet.save_pretrained( _A , is_main_process=_A , save_function=_A , safe_serialization=_A , variant=_A , ) idx += 1 __SCREAMING_SNAKE_CASE = model_path_to_save + f"_{idx}" @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __SCREAMING_SNAKE_CASE = pretrained_model_path while os.path.isdir(_A): __SCREAMING_SNAKE_CASE = ControlNetModel.from_pretrained(_A , **_A) controlnets.append(_A) idx += 1 __SCREAMING_SNAKE_CASE = pretrained_model_path + f"_{idx}" logger.info(f"{len(_A)} controlnets loaded from {pretrained_model_path}.") if len(_A) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(_A)}. Expected at least {pretrained_model_path + '_0'}.") return cls(_A)
100
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase_ : str = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } UpperCAmelCase_ : str = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } UpperCAmelCase_ : List[Any] = '''▁''' # Segments (not really needed) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Optional[Any] = 4 class lowerCAmelCase__ ( lowercase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = """left""" __UpperCamelCase = XLNetTokenizer def __init__( self : Tuple , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=False , lowercase_ : int=True , lowercase_ : Optional[Any]=False , lowercase_ : Dict="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : List[str]="<unk>" , lowercase_ : int="<sep>" , lowercase_ : Dict="<pad>" , lowercase_ : List[str]="<cls>" , lowercase_ : Tuple="<mask>" , lowercase_ : int=["<eop>", "<eod>"] , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token super().__init__( vocab_file=_A , tokenizer_file=_A , do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , **_A , ) SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : Tuple = do_lower_case SCREAMING_SNAKE_CASE_ : Union[str, Any] = remove_space SCREAMING_SNAKE_CASE_ : List[Any] = keep_accents SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_file SCREAMING_SNAKE_CASE_ : int = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(_A): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A): copyfile(self.vocab_file , _A) return (out_vocab_file,)
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ : int = '''pt''' elif is_tf_available(): lowercase__ : Optional[Any] = '''tf''' else: lowercase__ : Optional[Any] = '''jax''' class UpperCAmelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ByTaTokenizer lowerCAmelCase_ = False def snake_case__ ( self : List[str] ): """simple docstring""" super().setUp() snake_case_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : Union[str, Any] ): """simple docstring""" return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self : Tuple , **__lowercase : Optional[int] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def snake_case__ ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : int=False , __lowercase : Union[str, Any]=20 , __lowercase : Optional[int]=5 ): """simple docstring""" snake_case_ = [] for i in range(len(_A ) ): try: snake_case_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case_ = list(filter(lambda __lowercase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , _A ) ) snake_case_ = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: snake_case_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: snake_case_ = toks + toks # toks_str = [t[1] for t in toks] snake_case_ = [t[0] for t in toks] # Ensure consistency snake_case_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: snake_case_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: snake_case_ = ' ' + output_txt snake_case_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.ta_base_tokenizer snake_case_ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) snake_case_ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.ta_base_tokenizer snake_case_ = 'Unicode €.' snake_case_ = tokenizer(_A ) snake_case_ = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["input_ids"] , _A ) # decoding snake_case_ = tokenizer.decode(_A ) self.assertEqual(_A , "Unicode €.</s>" ) snake_case_ = tokenizer("e è é ê ë" ) snake_case_ = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["input_ids"] , _A ) # decoding snake_case_ = tokenizer.decode(_A ) self.assertEqual(_A , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.ta_base_tokenizer snake_case_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case_ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": snake_case_ = list(batch.input_ids.numpy()[0] ) else: snake_case_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.ta_base_tokenizer snake_case_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , _A ) self.assertIn("attention_mask" , _A ) self.assertNotIn("decoder_input_ids" , _A ) self.assertNotIn("decoder_attention_mask" , _A ) def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = self.ta_base_tokenizer snake_case_ = [ 'Summary of the text.', 'Another summary.', ] snake_case_ = tokenizer( text_target=_A , max_length=32 , padding="max_length" , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = self.ta_base_tokenizer snake_case_ = ['A long paragraph for summarization. </s>'] snake_case_ = ['Summary of the text. </s>'] # fmt: off snake_case_ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case_ = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch["input_ids"][0] ) self.assertEqual(_A , batch["labels"][0] ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ = tempfile.mkdtemp() snake_case_ = ' He is very happy, UNwant\u00E9d,running' snake_case_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) snake_case_ = tokenizer.__class__.from_pretrained(_A ) snake_case_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) snake_case_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ = tempfile.mkdtemp() snake_case_ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(["bim", "bambam"] ) snake_case_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) snake_case_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) snake_case_ = tokenizer.__class__.from_pretrained(_A ) snake_case_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: snake_case_ = json.load(_A ) with open(os.path.join(_A , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: snake_case_ = json.load(_A ) snake_case_ = [f"<extra_id_{i}>" for i in range(1_25 )] snake_case_ = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case_ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=_A )] snake_case_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) snake_case_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([2_55] ) == "" ) def snake_case__ ( self : Dict ): """simple docstring""" pass def snake_case__ ( self : List[str] ): """simple docstring""" pass def snake_case__ ( self : Optional[int] ): """simple docstring""" pass def snake_case__ ( self : List[Any] ): """simple docstring""" pass def snake_case__ ( self : str ): """simple docstring""" snake_case_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): snake_case_ = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): snake_case_ = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case_ = 0 snake_case_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + "_id" , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + "_id" ) , _A ) setattr(_A , attr + "_id" , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + "_id" ) , _A ) setattr(_A , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_A , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_A , "additional_special_tokens_ids" ) , [] ) setattr(_A , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
187
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=9_9 , __UpperCamelCase=3_2 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=3_7 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , use_stable_embedding=_A , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = OpenLlamaModel(config=_A ) model.to(_A ) model.eval() UpperCamelCase_ = model(_A , attention_mask=_A ) UpperCamelCase_ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = OpenLlamaModel(_A ) model.to(_A ) model.eval() UpperCamelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) UpperCamelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) UpperCamelCase_ = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = OpenLlamaForCausalLM(config=_A ) model.to(_A ) model.eval() UpperCamelCase_ = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = OpenLlamaForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass UpperCamelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['hidden_states'][0] UpperCamelCase_ = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( UpperCamelCase_ ) = config_and_inputs UpperCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): A__ : str = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A__ : Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () A__ : Union[str, Any] = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = False A__ : List[Any] = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = OpenLlamaModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ = type self.model_tester.create_and_check_model(*_A ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = input_dict['input_ids'] UpperCamelCase_ = input_ids.ne(1 ).to(_A ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCamelCase_ = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = 'single_label_classification' UpperCamelCase_ = input_dict['input_ids'] UpperCamelCase_ = input_ids.ne(1 ).to(_A ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCamelCase_ = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = 'multi_label_classification' UpperCamelCase_ = input_dict['input_ids'] UpperCamelCase_ = input_ids.ne(1 ).to(_A ) UpperCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCamelCase_ = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = ids_tensor([1, 1_0] , config.vocab_size ) UpperCamelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase_ = OpenLlamaModel(_A ) original_model.to(_A ) original_model.eval() UpperCamelCase_ = original_model(_A ).last_hidden_state UpperCamelCase_ = original_model(_A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase_ = {'type': scaling_type, 'factor': 10.0} UpperCamelCase_ = OpenLlamaModel(_A ) scaled_model.to(_A ) scaled_model.eval() UpperCamelCase_ = scaled_model(_A ).last_hidden_state UpperCamelCase_ = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) )
122
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
0
'''simple docstring''' def a__ ( lowercase : int = 1000 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = -1 _UpperCamelCase = 0 for a in range(1, n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _UpperCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) _UpperCamelCase = n - a - b if c * c == (a * a + b * b): _UpperCamelCase = a * b * c if candidate >= product: _UpperCamelCase = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
324
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __lowerCamelCase ( ): """simple docstring""" a :Any = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=UpperCAmelCase_ , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=UpperCAmelCase_ , default=5 ) parser.add_argument('''--batch_size''' , type=UpperCAmelCase_ , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=UpperCAmelCase_ , default=1 ) parser.add_argument('''--freeze''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) parser.add_argument('''--learning_rate''' , type=UpperCAmelCase_ , default=5E-4 ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=UpperCAmelCase_ , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=UpperCAmelCase_ , default=10 ) parser.add_argument('''--weight_decay''' , type=UpperCAmelCase_ , default=0.01 ) parser.add_argument('''--output_dir''' , type=UpperCAmelCase_ , default='''./results''' ) return parser.parse_args() snake_case : str = load('''accuracy''') def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ): """simple docstring""" a :List[Any] = eval_pred a :List[Any] = np.argmax(UpperCAmelCase_ , axis=1 ) return metric.compute(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) class _snake_case ( lowercase__ ): def __init__( self , _lowerCamelCase ): super().__init__() a :List[Any] = trainer def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): if control.should_evaluate: a :Optional[int] = deepcopy(_A ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def __lowerCamelCase ( ): """simple docstring""" a :str = get_args() set_seed(args.seed ) a :str = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) a :Tuple = dataset.train_test_split(test_size=0.2 ) a :str = train_test['test'].train_test_split(test_size=0.5 ) a :List[str] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) a :Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) a :Dict = tokenizer.eos_token a :int = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a :List[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a :Any = False a :Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(UpperCAmelCase_ : Dict ): a :Union[str, Any] = tokenizer(example['''src'''] , truncation=UpperCAmelCase_ , max_length=1024 ) a :Optional[Any] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a :Optional[Any] = train_test_validation.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=train_test_validation['''train'''].column_names , ) a :Optional[Any] = DataCollatorWithPadding(tokenizer=UpperCAmelCase_ ) a :int = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) a :Union[str, Any] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) print('''Training...''' ) trainer.add_callback(CustomCallback(UpperCAmelCase_ ) ) trainer.train() if __name__ == "__main__": main()
94
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _enforce_args(UpperCAmelCase_ , UpperCAmelCase_ ) if n == 0: return 0 _UpperCamelCase : List[str] = float('-inf' ) for i in range(1 , n + 1 ): _UpperCamelCase : List[str] = max( UpperCAmelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCAmelCase_ ) ) return max_revue def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _enforce_args(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _UpperCamelCase : List[str] = float('-inf' ) for i in range(1 , n + 1 ): _UpperCamelCase : Any = max( UpperCAmelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCAmelCase_ , UpperCAmelCase_ ) , ) _UpperCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _enforce_args(UpperCAmelCase_ , UpperCAmelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _UpperCamelCase : List[Any] = [float('-inf' ) for _ in range(n + 1 )] _UpperCamelCase : Optional[Any] = 0 for i in range(1 , n + 1 ): _UpperCamelCase : int = max_rev[i] for j in range(1 , i + 1 ): _UpperCamelCase : int = max(UpperCAmelCase_ , prices[j - 1] + max_rev[i - j] ) _UpperCamelCase : Optional[Any] = max_revenue_i return max_rev[n] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if n < 0: _UpperCamelCase : List[str] = f'n must be greater than or equal to 0. Got n = {n}' raise ValueError(UpperCAmelCase_ ) if n > len(UpperCAmelCase_ ): _UpperCamelCase : Dict = ( 'Each integral piece of rod must have a corresponding price. ' f'Got n = {n} but length of prices = {len(UpperCAmelCase_ )}' ) raise ValueError(UpperCAmelCase_ ) def A__ ( ): _UpperCamelCase : Union[str, Any] = [6, 1_0, 1_2, 1_5, 2_0, 2_3] _UpperCamelCase : Union[str, Any] = len(UpperCAmelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _UpperCamelCase : List[Any] = 3_6 _UpperCamelCase : Optional[int] = top_down_cut_rod(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[str] = bottom_up_cut_rod(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = naive_cut_rod_recursive(UpperCAmelCase_ , UpperCAmelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
83
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( lowercase__ ): """simple docstring""" A__ : str = ["""input_features"""] def __init__( self : str , _snake_case : List[Any]=80 , _snake_case : int=1_6000 , _snake_case : List[Any]=160 , _snake_case : Tuple=30 , _snake_case : Tuple=400 , _snake_case : Union[str, Any]=0.0 , _snake_case : List[Any]=False , **_snake_case : Optional[Any] , ): super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) __lowercase : Dict = n_fft __lowercase : Optional[int] = hop_length __lowercase : Tuple = chunk_length __lowercase : int = chunk_length * sampling_rate __lowercase : Dict = self.n_samples // hop_length __lowercase : int = sampling_rate __lowercase : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case_ ( self : Optional[int] , _snake_case : np.array ): __lowercase : int = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) __lowercase : Optional[Any] = log_spec[:, :-1] __lowercase : List[str] = np.maximum(_A , log_spec.max() - 8.0 ) __lowercase : Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case_ ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): if attention_mask is not None: __lowercase : Tuple = np.array(_A , np.intaa ) __lowercase : Optional[int] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): __lowercase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __lowercase : Optional[int] = padding_value normed_input_values.append(_A ) else: __lowercase : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[Any] , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = True , _snake_case : Optional[int] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[str] = "max_length" , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , **_snake_case : str , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __lowercase : Any = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase : str = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): __lowercase : Union[str, Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase : Optional[Any] = [np.asarray([raw_speech] ).T] __lowercase : Optional[Any] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding __lowercase : int = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __lowercase : str = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) __lowercase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format __lowercase : Union[str, Any] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) __lowercase : int = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): __lowercase : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: __lowercase : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __lowercase : Tuple = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: __lowercase : Dict = padded_inputs.convert_to_tensors(_A ) return padded_inputs def snake_case_ ( self : List[Any] ): __lowercase : Tuple = copy.deepcopy(self.__dict__ ) __lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
156
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : Tuple = """gpt_neo""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : str = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=2048 , _lowerCAmelCase=2048 , _lowerCAmelCase=24 , _lowerCAmelCase=[[["global", "local"], 12]] , _lowerCAmelCase=16 , _lowerCAmelCase=None , _lowerCAmelCase=256 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , **_lowerCAmelCase , ) -> Any: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_layers _lowerCAmelCase = num_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = window_size _lowerCAmelCase = activation_function _lowerCAmelCase = resid_dropout _lowerCAmelCase = embed_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = classifier_dropout _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = attention_types _lowerCAmelCase = self.expand_attention_types_params(_A ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) @staticmethod def _snake_case ( _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' import torch _lowerCAmelCase = input.size() _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = shape[dimension] _lowerCAmelCase = torch.arange(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.div(sizedim - size , SCREAMING_SNAKE_CASE_ , rounding_mode="floor" ) + 1 _lowerCAmelCase = torch.arange(SCREAMING_SNAKE_CASE_ ) + low_indices[:min_length][:, None] _lowerCAmelCase = [slice(SCREAMING_SNAKE_CASE_ )] * rank _lowerCAmelCase = indices _lowerCAmelCase = input[s] _lowerCAmelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' import torch _lowerCAmelCase = torch.arange(1 , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.remainder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = remainders == 0 _lowerCAmelCase = candidates[divisor_indices] _lowerCAmelCase = torch.max(SCREAMING_SNAKE_CASE_ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rounding_mode="floor" ) class lowerCAmelCase_ ( lowercase__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction="inputs" ) _lowerCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def _snake_case ( self ) -> int: return self._config.num_heads def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] _lowerCAmelCase = common_inputs['attention_mask'] if self.use_past: _lowerCAmelCase = ordered_inputs['attention_mask'].dtype _lowerCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ) -> int: return 13
158
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Any = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
0
def __lowerCAmelCase ( ) -> Dict: return 1 def __lowerCAmelCase ( a__ ) -> Optional[int]: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowerCAmelCase ( a__ ) -> Optional[Any]: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a__ ) def __lowerCAmelCase ( a__ ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a__ ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a__ ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a__ ) def __lowerCAmelCase ( a__ ) -> Any: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a__ ) def __lowerCAmelCase ( a__ ) -> Any: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a__ ) def __lowerCAmelCase ( a__ = 200 ) -> Tuple: return two_pound(a__ ) if __name__ == "__main__": print(solution(int(input().strip())))
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __SCREAMING_SNAKE_CASE = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE = max(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_ ) , b_binary.zfill(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
100
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github UpperCAmelCase_ : Tuple = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE_ : str = g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE_ : int = repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __a : i.created_at , reverse=__a ) SCREAMING_SNAKE_CASE_ : Tuple = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
91
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , __lowercase : Any , __lowercase : int=99 , __lowercase : Dict=13 , __lowercase : Tuple=16 , __lowercase : Union[str, Any]=7 , __lowercase : List[Any]=True , __lowercase : List[Any]=True , __lowercase : str=True , __lowercase : int=False , __lowercase : Optional[Any]=True , __lowercase : Any=2 , __lowercase : Optional[int]=32 , __lowercase : Dict=4 , __lowercase : Any=4 , __lowercase : Tuple=30 , __lowercase : int=0 , __lowercase : Any=1 , __lowercase : Dict=2 , __lowercase : Optional[Any]=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = d_model snake_case_ = d_model snake_case_ = decoder_layers snake_case_ = decoder_layers snake_case_ = decoder_ffn_dim snake_case_ = decoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = eos_token_id snake_case_ = bos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = use_cache snake_case_ = max_position_embeddings snake_case_ = None snake_case_ = decoder_seq_length snake_case_ = 2 snake_case_ = 1 def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def snake_case__ ( self : str , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = True snake_case_ = TrOCRDecoder(config=_A ).to(_A ).eval() snake_case_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case_ = model(_A , use_cache=_A ) snake_case_ = model(_A ) snake_case_ = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) snake_case_ = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(_A )['last_hidden_state'] snake_case_ = model(_A , past_key_values=_A )['last_hidden_state'] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase_ = True lowerCAmelCase_ = False def snake_case__ ( self : str ): """simple docstring""" snake_case_ = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) snake_case_ = ConfigTester(self , config_class=_A ) def snake_case__ ( self : Optional[int] ): """simple docstring""" pass def snake_case__ ( self : Tuple ): """simple docstring""" pass def snake_case__ ( self : Any ): """simple docstring""" pass def snake_case__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def snake_case__ ( self : Optional[int] ): """simple docstring""" pass
187
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( lowercase__ ): A__ : str = (DDIMParallelScheduler,) A__ : Optional[int] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def lowerCamelCase_ ( self , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_A ) return config def lowerCamelCase_ ( self , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(**_A ) UpperCamelCase_ = scheduler_class(**_A ) UpperCamelCase_ = 1_0, 0.0 UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_A ) for t in scheduler.timesteps: UpperCamelCase_ = model(_A , _A ) UpperCamelCase_ = scheduler.step(_A , _A , _A , _A ).prev_sample return sample def lowerCamelCase_ ( self ): """simple docstring""" for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase_ = scheduler_class(**_A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def lowerCamelCase_ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_A ) def lowerCamelCase_ ( self ): """simple docstring""" self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def lowerCamelCase_ ( self ): """simple docstring""" for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=_A , num_inference_steps=_A ) def lowerCamelCase_ ( self ): """simple docstring""" for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_A , eta=_A ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**_A ) UpperCamelCase_ = 1_0, 0.0 scheduler.set_timesteps(_A ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter UpperCamelCase_ = self.dummy_sample_deter + 0.1 UpperCamelCase_ = self.dummy_sample_deter - 0.1 UpperCamelCase_ = samplea.shape[0] UpperCamelCase_ = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase_ = torch.arange(_A )[0:3, None].repeat(1 , _A ) UpperCamelCase_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase_ = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _A ) UpperCamelCase_ = torch.sum(torch.abs(_A ) ) UpperCamelCase_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.full_loop() UpperCamelCase_ = torch.sum(torch.abs(_A ) ) UpperCamelCase_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase_ = torch.sum(torch.abs(_A ) ) UpperCamelCase_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) UpperCamelCase_ = torch.sum(torch.abs(_A ) ) UpperCamelCase_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) UpperCamelCase_ = torch.sum(torch.abs(_A ) ) UpperCamelCase_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
122
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def a__ ( lowercase : int ) -> Union[str, Any]: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def a__ ( lowercase : Dict ) -> Optional[int]: """simple docstring""" _UpperCamelCase = np.max(_outputs, axis=-1, keepdims=lowercase ) _UpperCamelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=lowercase ) class __lowerCAmelCase ( lowercase__ ): """simple docstring""" _snake_case : List[Any] = """sigmoid""" _snake_case : Optional[Any] = """softmax""" _snake_case : str = """none""" @add_end_docstrings( lowercase__ , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n ' , ) class __lowerCAmelCase ( lowercase__ ): """simple docstring""" _snake_case : Union[str, Any] = False _snake_case : int = ClassificationFunction.NONE def __init__( self : int , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : str="" , **lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = tokenizer_kwargs _UpperCamelCase = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _UpperCamelCase = self.model.config.return_all_scores if isinstance(_A , _A ) or top_k is None: _UpperCamelCase = top_k _UpperCamelCase = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , _A , ) if return_all_scores: _UpperCamelCase = None else: _UpperCamelCase = 1 if isinstance(_A , _A ): _UpperCamelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _UpperCamelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = super().__call__(*_A , **_A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _UpperCamelCase = 'top_k' not in kwargs if isinstance(args[0] , _A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str , **lowerCAmelCase__ : List[str] ) -> Dict[str, GenericTensor]: '''simple docstring''' _UpperCamelCase = self.framework if isinstance(_A , _A ): return self.tokenizer(**_A , return_tensors=_A , **_A ) elif isinstance(_A , _A ) and len(_A ) == 1 and isinstance(inputs[0] , _A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_A , **_A ) elif isinstance(_A , _A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(_A , return_tensors=_A , **_A ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.model(**_A ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Union[str, Any]=True ) -> Optional[int]: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _UpperCamelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _UpperCamelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _UpperCamelCase = self.model.config.function_to_apply else: _UpperCamelCase = ClassificationFunction.NONE _UpperCamelCase = model_outputs['logits'][0] _UpperCamelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _UpperCamelCase = sigmoid(_A ) elif function_to_apply == ClassificationFunction.SOFTMAX: _UpperCamelCase = softmax(_A ) elif function_to_apply == ClassificationFunction.NONE: _UpperCamelCase = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _UpperCamelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(_A ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase__ : x["score"] , reverse=_A ) if top_k is not None: _UpperCamelCase = dict_scores[:top_k] return dict_scores
324
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
0
import math def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): """simple docstring""" if ( not isinstance(UpperCAmelCase_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): """simple docstring""" if ( not isinstance(UpperCAmelCase_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = torch.nn.Linear(10 ,10 ) _UpperCamelCase : Any = torch.optim.SGD(model.parameters() ,0.1 ) _UpperCamelCase : Dict = Accelerator() _UpperCamelCase : int = accelerator.prepare(_A ) try: pickle.loads(pickle.dumps(_A ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
83
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
0
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : Tuple = """vision-encoder-decoder""" __lowerCamelCase : Any = True def __init__( self , **_lowerCAmelCase ) -> Any: super().__init__(**_A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _lowerCAmelCase = kwargs.pop("encoder" ) _lowerCAmelCase = encoder_config.pop("model_type" ) _lowerCAmelCase = kwargs.pop("decoder" ) _lowerCAmelCase = decoder_config.pop("model_type" ) _lowerCAmelCase = AutoConfig.for_model(_A , **_A ) _lowerCAmelCase = AutoConfig.for_model(_A , **_A ) _lowerCAmelCase = True @classmethod def _snake_case ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _lowerCAmelCase = True _lowerCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.encoder.to_dict() _lowerCAmelCase = self.decoder.to_dict() _lowerCAmelCase = self.__class__.model_type return output class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class lowerCAmelCase_ ( lowercase__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase = OrderedDict() _lowerCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCAmelCase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: import torch _lowerCAmelCase = OrderedDict() _lowerCAmelCase = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) _lowerCAmelCase = dummy_input['input_ids'].shape _lowerCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase = dummy_input.pop("input_ids" ) _lowerCAmelCase = dummy_input.pop("attention_mask" ) _lowerCAmelCase = torch.zeros(_A ) return common_inputs class lowerCAmelCase_ ( lowercase__ ): @property def _snake_case ( self ) -> None: pass def _snake_case ( self , _lowerCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_A ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = "default" ) -> OnnxConfig: _lowerCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A )
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
def A_ ( ): """simple docstring""" for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Any = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ : str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A_ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(a ) > 5_0_0 ) if __name__ == "__main__": print(solution())
253
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A : Optional[int] = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> Any: if attention_mask is None: __a = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __a = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __a = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A: def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=16 , _snake_case=2 , _snake_case=4 , _snake_case=4 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=32 , _snake_case=2 , _snake_case=1 , _snake_case=0 , _snake_case=0.02 , ) -> Optional[Any]: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id __a = initializer_range def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __a = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __a = shift_tokens_right(_A , 1 , 2 ) __a = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_A , ) __a = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Dict: '''simple docstring''' __a = 20 __a = model_class_name(_A ) __a = model.encode(inputs_dict['''input_ids'''] ) __a = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __a = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) __a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) __a = model.decode(_A , _A ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = 20 __a = model_class_name(_A ) __a = model.encode(inputs_dict['''input_ids'''] ) __a = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __a = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) __a = model.decode(_A , _A , decoder_attention_mask=_A ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A( unittest.TestCase ): snake_case_ = 9_9 def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __a = input_ids.shape[0] __a = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self._get_config_and_data() __a = FlaxBlenderbotForConditionalGeneration(_A ) __a = lm_model(input_ids=_A ) __a = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _A ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __a = FlaxBlenderbotForConditionalGeneration(_A ) __a = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __a = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __a = lm_model(input_ids=_A , decoder_input_ids=_A ) __a = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _A ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __a = shift_tokens_right(_A , 1 , 2 ) __a = np.equal(_A , 1 ).astype(np.floataa ).sum() __a = np.equal(_A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __A( lowercase__ , unittest.TestCase , lowercase__ ): snake_case_ = True snake_case_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = FlaxBlenderbotModelTester(self ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = self._prepare_for_class(_A , _A ) __a = model_class(_A ) @jax.jit def encode_jitted(_snake_case , _snake_case=None , **_snake_case ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('''JIT Enabled''' ): __a = encode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __a = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = model_class(_A ) __a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __a = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_snake_case , _snake_case , _snake_case ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('''JIT Enabled''' ): __a = decode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __a = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __a = np.ones((1, 1) ) * model.config.eos_token_id __a = model(_A ) self.assertIsNotNone(_A ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __a = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __a = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_A ) __a = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __a = ['Sam'] __a = tokenizer(_A , return_tensors='''jax''' ) __a = model.generate(**_A , **_A ) __a = 'Sam is a great name. It means "sun" in Gaelic.' __a = tokenizer.batch_decode(_A , **_A ) assert generated_txt[0].strip() == tgt_text
6
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = filter(lambda __a : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE_ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) def _A (__a , __a ) -> Optional[Any]: """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE_ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": SCREAMING_SNAKE_CASE_ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": SCREAMING_SNAKE_CASE_ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": SCREAMING_SNAKE_CASE_ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) SCREAMING_SNAKE_CASE_ : List[Any] = ModelCheckpoint( dirpath=__a , filename=__a , monitor=f'val_{metric}' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _A (__a , __a ) -> Union[str, Any]: """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__a , verbose=__a , ) class lowerCAmelCase__ ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(_A) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : pl.Trainer , lowercase_ : pl.LightningModule , lowercase_ : str , lowercase_ : Dict=True): '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****') SCREAMING_SNAKE_CASE_ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']}) # Log results SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": SCREAMING_SNAKE_CASE_ : List[Any] = od / 'test_results.txt' SCREAMING_SNAKE_CASE_ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE_ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' SCREAMING_SNAKE_CASE_ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A) generations_file.parent.mkdir(exist_ok=_A) with open(_A , '''a+''') as writer: for key in sorted(_A): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE_ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor): SCREAMING_SNAKE_CASE_ : Tuple = val.item() SCREAMING_SNAKE_CASE_ : int = F'{key}: {val:.6f}\n' writer.write(_A) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE_ : str = '\n'.join(metrics['''preds''']) generations_file.open('''w+''').write(_A) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' try: SCREAMING_SNAKE_CASE_ : str = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE_ : List[str] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE_ : List[Any] = count_trainable_parameters(_A) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6}) @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : pl.Trainer , lowercase_ : pl.LightningModule): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(_A , _A , '''test''') @rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : pl.Trainer , lowercase_ : Any): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowercase__ : List[str] = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) lowercase__ : List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowercase__ : Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowercase__ : Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowercase__ : Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowercase__ : Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowercase__ : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowercase__ : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowercase__ : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowercase__ : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowercase__ : List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowercase__ : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowercase__ : Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowercase__ : Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowercase__ : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowercase__ : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowercase__ : Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowercase__ : Any = '''''' lowercase__ : Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowercase__ : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowercase__ : str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert ReadMe.from_string(_A , _A ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with pytest.raises(_A , match=re.escape(expected_error.format(path="root" ) ) ): snake_case_ = ReadMe.from_string(_A , _A ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with pytest.raises(_A , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(_A , _A ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A ): '''simple docstring''' ReadMe.from_string(_A , _A , suppress_parsing_errors=_A ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) snake_case_ = ReadMe.from_readme(_A , _A ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) snake_case_ = expected_error.format(path=_A ) with pytest.raises(_A , match=re.escape(_A ) ): snake_case_ = ReadMe.from_readme(_A , _A ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) snake_case_ = expected_error.format(path=_A ) with pytest.raises(_A , match=re.escape(_A ) ): ReadMe.from_readme(_A , _A ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase__ ( _A ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_A ) / 'README.md' with open(_A , "w+" ) as readme_file: readme_file.write(_A ) ReadMe.from_readme(_A , _A , suppress_parsing_errors=_A )
187
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _A = logging.get_logger(__name__) def lowerCamelCase__ ( a__ : nn.ModuleList , a__ : nn.ModuleList , a__ : List[int] ) -> Optional[int]: UpperCamelCase_ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a__ ) == len(a__ ), f'''{len(a__ )} != {len(a__ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _A = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _A = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def lowerCamelCase__ ( a__ : Dict , a__ : Union[str, Any] ) -> List[Any]: try: UpperCamelCase_ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(a__ ) ) def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : List[str] ) -> str: if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(a__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def lowerCamelCase__ ( a__ : Union[str, PreTrainedModel] , a__ : Union[str, Path] = "student" , a__ : Union[int, None] = None , a__ : Union[int, None] = None , a__ : Tuple=False , a__ : Any=None , a__ : Tuple=None , **a__ : Optional[Any] , ) -> List[str]: UpperCamelCase_ = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a__ , a__ ): AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) # purely for convenience UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(a__ ).eval() else: assert isinstance(a__ , a__ ), f'''teacher must be a model or string got type {type(a__ )}''' UpperCamelCase_ = teacher.config.to_diff_dict() try: UpperCamelCase_ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCamelCase_ = teacher_e if d is None: UpperCamelCase_ = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): UpperCamelCase_ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCamelCase_ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCamelCase_ = teacher_e if d is None: UpperCamelCase_ = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a__ ) # Copy weights UpperCamelCase_ = teacher.config_class(**a__ ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_config(a__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCamelCase_ = student.load_state_dict(teacher.state_dict() , strict=a__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCamelCase_ = list(range(a__ ) ), list(range(a__ ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(a__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCamelCase_ = pick_layers_to_copy(a__ , a__ ) if d_layers_to_copy is None: UpperCamelCase_ = pick_layers_to_copy(a__ , a__ ) try: if hasattr( a__ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a__ ) copy_layers(teacher.decoder.block , student.decoder.block , a__ ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) UpperCamelCase_ = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
122
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : List[str] = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :Any = [False] * len(UpperCAmelCase_ ) a :int = [-1] * len(UpperCAmelCase_ ) def dfs(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): a :List[str] = True a :List[str] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase_ , 1 - c ) for i in range(len(UpperCAmelCase_ ) ): if not visited[i]: dfs(UpperCAmelCase_ , 0 ) for i in range(len(UpperCAmelCase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case : List[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
94
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
'''simple docstring''' import os def A__ ( UpperCAmelCase_ = "input.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as input_file: _UpperCamelCase : List[Any] = [ [int(UpperCAmelCase_ ) for element in line.split(',' )] for line in input_file.readlines() ] _UpperCamelCase : Optional[Any] = len(UpperCAmelCase_ ) _UpperCamelCase : Dict = len(matrix[0] ) _UpperCamelCase : Any = [[-1 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = matrix[i][0] for j in range(1 , UpperCAmelCase_ ): for i in range(UpperCAmelCase_ ): _UpperCamelCase : Tuple = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase_ ): _UpperCamelCase : int = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCamelCase : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
83
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
0
import qiskit def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: __lowercase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) __lowercase : Optional[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowercase : Dict = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Tuple = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
156
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __a(SCREAMING_SNAKE_CASE_ : int = 1000000 , SCREAMING_SNAKE_CASE_ : int = 10 ): '''simple docstring''' _lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _lowerCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _lowerCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
158
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def A_ ( a ): """simple docstring""" if isinstance(a , collections.abc.Iterable ): return x return (x, x) @require_flax class _A : def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , f"Difference between torch and flax is {diff} (>= {tol})." ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ : Any = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ : Dict = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) SCREAMING_SNAKE_CASE_ : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Any = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) SCREAMING_SNAKE_CASE_ : int = after_output[0] SCREAMING_SNAKE_CASE_ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1e-3 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ : int = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ : Dict = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) SCREAMING_SNAKE_CASE_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : List[Any] = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ : Any = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" pt_model.to(_A ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE_ : int = inputs_dict SCREAMING_SNAKE_CASE_ : Dict = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_model(**_A ).to_tuple() SCREAMING_SNAKE_CASE_ : Optional[int] = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_A , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(_A , from_pt=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = fx_model_loaded(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_A , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = VisionTextDualEncoderModel.from_pretrained(_A , from_flax=_A ) pt_model_loaded.to(_A ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = pt_model_loaded(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_A , pt_output_loaded.numpy() , 4e-2 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ : str = VisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ : Tuple = FlaxVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A ) SCREAMING_SNAKE_CASE_ : List[Any] = fx_state self.check_pt_flax_equivalence(_A , _A , _A ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ : Any = VisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ : str = load_flax_weights_in_pytorch_model(_A , fx_model.params ) self.check_pt_flax_equivalence(_A , _A , _A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() self.check_save_load(**_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = config_inputs_dict.pop('vision_config' ) SCREAMING_SNAKE_CASE_ : Tuple = config_inputs_dict.pop('text_config' ) SCREAMING_SNAKE_CASE_ : Tuple = config_inputs_dict self.check_equivalence_pt_to_flax(_A , _A , _A ) self.check_equivalence_flax_to_pt(_A , _A , _A ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ : Dict = model_a(**_A ) SCREAMING_SNAKE_CASE_ : Dict = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Dict = model_a(**_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = after_outputs[0] SCREAMING_SNAKE_CASE_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1e-5 ) @require_flax class _A ( lowercase__ , unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_A , text_from_pt=_A , ) SCREAMING_SNAKE_CASE_ : Optional[int] = 13 SCREAMING_SNAKE_CASE_ : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ : str = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FlaxViTModel(_A ) SCREAMING_SNAKE_CASE_ : Tuple = FlaxBertModel(_A ) return vision_model, text_model def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[int] = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : str = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Any = vision_config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _A ( lowercase__ , unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_A , text_from_pt=_A , ) SCREAMING_SNAKE_CASE_ : Dict = 13 SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ : str = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxCLIPVisionModel(_A ) SCREAMING_SNAKE_CASE_ : str = FlaxBertModel(_A ) return vision_model, text_model def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Tuple = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Dict = vision_config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _A ( unittest.TestCase): @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE_ : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) SCREAMING_SNAKE_CASE_ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE_ : Dict = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_A , padding=_A , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE_ : str = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _A , atol=1e-3 ) )
253
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
0
from __future__ import annotations A : Any = '''#''' class __A: def __init__( self ) -> None: '''simple docstring''' __a = {} def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> tuple | list: '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(_A ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> tuple: '''simple docstring''' __a = [] for c, v in d.items(): __a = [' '] if c == END else [(c + s) for s in self._elements(_A )] result.extend(_A ) return tuple(_A ) A : Dict = Trie() A : Optional[int] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: __a = trie.find_word(a__ ) return tuple(string + word for word in suffixes ) def __lowerCAmelCase ( ) -> Dict: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" __lowercase : Dict = """blenderbot-small""" __lowercase : int = ["""past_key_values"""] __lowercase : int = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase__=5_0_2_6_5 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=8 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1_6 , lowerCAmelCase__=8 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1_6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" @property def snake_case_ ( self): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ]) if self.use_past: __SCREAMING_SNAKE_CASE = {0: 'batch'} __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'decoder_sequence'} __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_A , direction="""inputs""") elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ]) if self.use_past: __SCREAMING_SNAKE_CASE = self.num_layers for i in range(_A): __SCREAMING_SNAKE_CASE = {0: 'batch', 2: 'past_sequence + sequence'} __SCREAMING_SNAKE_CASE = {0: 'batch', 2: 'past_sequence + sequence'} else: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ]) return common_inputs @property def snake_case_ ( self): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super().outputs else: __SCREAMING_SNAKE_CASE = super(_A , self).outputs if self.use_past: __SCREAMING_SNAKE_CASE = self.num_layers for i in range(_A): __SCREAMING_SNAKE_CASE = {0: 'batch', 2: 'past_sequence + sequence'} __SCREAMING_SNAKE_CASE = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A) # Generate decoder inputs __SCREAMING_SNAKE_CASE = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A) __SCREAMING_SNAKE_CASE = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE = dict(**_A , **_A) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch __SCREAMING_SNAKE_CASE = common_inputs['input_ids'].shape __SCREAMING_SNAKE_CASE = common_inputs['decoder_input_ids'].shape[1] __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_A , _A)] , dim=1) __SCREAMING_SNAKE_CASE = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE = min(_A , _A) __SCREAMING_SNAKE_CASE = max(_A , _A) - min_num_layers __SCREAMING_SNAKE_CASE = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_A): common_inputs["past_key_values"].append( ( torch.zeros(_A), torch.zeros(_A), torch.zeros(_A), torch.zeros(_A), )) # TODO: test this. __SCREAMING_SNAKE_CASE = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_A , _A): common_inputs["past_key_values"].append((torch.zeros(_A), torch.zeros(_A))) return common_inputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch __SCREAMING_SNAKE_CASE = common_inputs['input_ids'].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = common_inputs['attention_mask'].dtype __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_A , _A , dtype=_A)] , dim=1) __SCREAMING_SNAKE_CASE = [ (torch.zeros(_A), torch.zeros(_A)) for _ in range(_A) ] return common_inputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add(_A) __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size __SCREAMING_SNAKE_CASE = dict(tokenizer(_A , return_tensors=_A)) return common_inputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) elif self.task == "causal-lm": __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) else: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) return common_inputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super()._flatten_past_key_values_(_A , _A , _A , _A) else: __SCREAMING_SNAKE_CASE = super(_A , self)._flatten_past_key_values_( _A , _A , _A , _A)
100
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
"""simple docstring""" class lowerCAmelCase__ : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = row SCREAMING_SNAKE_CASE_ : str = col SCREAMING_SNAKE_CASE_ : Optional[Any] = graph def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]]): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : list[list[bool]]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE_ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE_ : Optional[int] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A) def _SCREAMING_SNAKE_CASE ( self : int): # And finally, count all islands. '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [[False for j in range(self.COL)] for i in range(self.ROW)] SCREAMING_SNAKE_CASE_ : Any = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A) count += 1 return count
91
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
import os from typing import Dict, List, Tuple, TypeVar, Union lowercase__ : Dict = TypeVar("T") lowercase__ : Optional[int] = Union[List[T], Tuple[T, ...]] lowercase__ : int = Union[T, List[T], Dict[str, T]] lowercase__ : List[Any] = Union[str, bytes, os.PathLike]
187
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) UpperCamelCase_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above UpperCamelCase_ = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above UpperCamelCase_ = tf_top_k_top_p_filtering(_A , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) UpperCamelCase_ = output[output != -float("""inf""" )] UpperCamelCase_ = tf.cast( tf.where(tf.not_equal(_A , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_A , _A , rtol=1e-12 ) tf.debugging.assert_equal(_A , _A ) @require_tf class lowercase_ ( unittest.TestCase , lowercase__ ): if is_tf_available(): A__ : Optional[Any] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = 2 UpperCamelCase_ = 2 class lowercase_ ( tf.Module ): def __init__( self , __UpperCamelCase ): """simple docstring""" super(_A , self ).__init__() UpperCamelCase_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_A , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.model.generate( input_ids=_A , attention_mask=_A , max_new_tokens=_A , return_dict_in_generate=_A , ) return {"sequences": outputs["sequences"]} UpperCamelCase_ = [[2, 0], [1_0_2, 1_0_3]] UpperCamelCase_ = [[1, 0], [1, 1]] UpperCamelCase_ = DummyModel(model=_A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_A , _A , signatures={"""serving_default""": dummy_model.serving} ) UpperCamelCase_ = tf.saved_model.load(_A ).signatures['serving_default'] for batch_size in range(1 , len(_A ) + 1 ): UpperCamelCase_ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } UpperCamelCase_ = serving_func(**_A )['sequences'] UpperCamelCase_ = test_model.generate(**_A , max_new_tokens=_A ) tf.debugging.assert_equal(_A , _A ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = 1 UpperCamelCase_ = 2 class lowercase_ ( tf.Module ): def __init__( self , __UpperCamelCase ): """simple docstring""" super(_A , self ).__init__() UpperCamelCase_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_A , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.model.generate( input_ids=_A , attention_mask=_A , max_new_tokens=_A , return_dict_in_generate=_A , ) return {"sequences": outputs["sequences"]} UpperCamelCase_ = [[2], [1_0_2, 1_0_3]] UpperCamelCase_ = [[1], [1, 1]] UpperCamelCase_ = DummyModel(model=_A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_A , _A , signatures={"""serving_default""": dummy_model.serving} ) UpperCamelCase_ = tf.saved_model.load(_A ).signatures['serving_default'] for input_row in range(len(_A ) ): UpperCamelCase_ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } UpperCamelCase_ = serving_func(**_A )['sequences'] UpperCamelCase_ = test_model.generate(**_A , max_new_tokens=_A ) tf.debugging.assert_equal(_A , _A ) @slow @require_tensorflow_text def lowerCamelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_A ) class lowercase_ ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() UpperCamelCase_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_A , """spiece.model""" ) , """rb""" ).read() ) UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowerCamelCase_ ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.tokenizer.tokenize(_A ) UpperCamelCase_ = text.pad_model_inputs( _A , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) UpperCamelCase_ = self.model.generate(input_ids=_A , attention_mask=_A ) return self.tokenizer.detokenize(_A ) UpperCamelCase_ = CompleteSentenceTransformer() UpperCamelCase_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) UpperCamelCase_ = complete_model(_A ) UpperCamelCase_ = tf.keras.Model(_A , _A ) keras_model.save(_A ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 1_0, 'temperature': 0.7, } UpperCamelCase_ = 1_4 UpperCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = 'Hello, my dog is cute and' UpperCamelCase_ = tokenizer(_A , return_tensors="""tf""" ) UpperCamelCase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) UpperCamelCase_ = model.generate(**_A , eos_token_id=_A , **_A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) UpperCamelCase_ = [6_3_8, 1_9_8] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) UpperCamelCase_ = model.generate(**_A , eos_token_id=_A , **_A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) UpperCamelCase_ = 'Hugging Face is a technology company based in New York and Paris.' UpperCamelCase_ = bart_tokenizer(_A , return_tensors="""tf""" ).input_ids UpperCamelCase_ = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) UpperCamelCase_ = bart_model.generate(_A ).numpy() class lowercase_ ( lowercase__ ): def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" return super().call(_A , **_A ) UpperCamelCase_ = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) UpperCamelCase_ = bart_model.generate(_A , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_A , _A ) ) class lowercase_ ( bart_model.model.encoder.__class__ ): def lowerCamelCase_ ( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return super().call(_A , **_A ) UpperCamelCase_ = FakeEncoder(bart_model.config , bart_model.model.shared ) UpperCamelCase_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) UpperCamelCase_ = bart_model.generate(_A ).numpy() with self.assertRaises(_A ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_A , foo="""bar""" )
122
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
0
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase__ : List[Any] = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' lowercase__ : List[Any] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' lowercase__ : Optional[int] = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=False ) -> Optional[int]: '''simple docstring''' if return_pvalue: _UpperCamelCase = pearsonr(_A , _A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A , _A )[0] )}
324
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
0
from collections.abc import Callable import numpy as np def __lowerCamelCase ( UpperCAmelCase_ : Callable , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ): """simple docstring""" a :Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) a :Tuple = np.zeros((n + 1,) ) a :Optional[Any] = ya a :Any = xa for k in range(UpperCAmelCase_ ): a :List[Any] = y[k] + step_size * ode_func(UpperCAmelCase_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax snake_case_ : Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowercase__ ( lowercase__ ): def __init__( self : Optional[Any] ,**lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__(**_A ) requires_backends(self ,'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,lowerCamelCase__ : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase__ : Dict ): '''simple docstring''' return super().__call__(_A ,**_A ) def UpperCamelCase_ ( self : Any ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : str = {} if "candidate_labels" in kwargs: _UpperCamelCase : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCamelCase : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : int="This is a photo of {}." ): '''simple docstring''' _UpperCamelCase : Dict = load_image(_A ) _UpperCamelCase : List[str] = self.image_processor(images=[image] ,return_tensors=self.framework ) _UpperCamelCase : Optional[Any] = candidate_labels _UpperCamelCase : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] _UpperCamelCase : str = self.tokenizer(_A ,return_tensors=self.framework ,padding=_A ) _UpperCamelCase : Optional[Any] = [text_inputs] return inputs def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : str = model_inputs.pop('candidate_labels' ) _UpperCamelCase : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] ,_A ): _UpperCamelCase : Dict = text_inputs[0] else: # Batching case. _UpperCamelCase : Optional[Any] = text_inputs[0][0] _UpperCamelCase : List[Any] = self.model(**_A ,**_A ) _UpperCamelCase : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = model_outputs.pop('candidate_labels' ) _UpperCamelCase : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": _UpperCamelCase : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = probs.tolist() if not isinstance(_A ,_A ): _UpperCamelCase : Any = [scores] elif self.framework == "tf": _UpperCamelCase : Any = stable_softmax(_A ,axis=-1 ) _UpperCamelCase : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _UpperCamelCase : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A ,_A ) ,key=lambda lowerCamelCase__ : -x[0] ) ] return result
83
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
from __future__ import annotations from collections.abc import Callable __lowerCAmelCase : Dict = list[list[float | int]] def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: __lowercase : int = len(__lowerCAmelCase ) __lowercase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] __lowercase : int __lowercase : int __lowercase : int __lowercase : int __lowercase : int __lowercase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): __lowercase : Tuple = matrix[row][col] __lowercase : Tuple = vector[row][0] __lowercase : Union[str, Any] = 0 __lowercase : Union[str, Any] = 0 while row < size and col < size: # pivoting __lowercase : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __lowercase : Optional[int] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): __lowercase : Dict = augmented[rowa][col] / augmented[row][col] __lowercase : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): __lowercase : Tuple = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: __lowercase : int = len(__lowerCAmelCase ) __lowercase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] __lowercase : Matrix = [[0] for _ in range(__lowerCAmelCase )] __lowercase : Matrix __lowercase : int __lowercase : int __lowercase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): __lowercase : Optional[Any] = (x_val + 1) ** (size - col - 1) __lowercase : Tuple = y_val __lowercase : Optional[Any] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __lowerCAmelCase = question_function , __lowerCAmelCase = 10 ) -> Any: __lowercase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] __lowercase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __lowercase : int = 0 __lowercase : Callable[[int], int] __lowercase : int for poly in polynomials: __lowercase : str = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'{solution() = }')
156
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : Tuple = ["""pixel_values"""] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: super().__init__(**_A ) _lowerCAmelCase = size if size is not None else {'shortest_edge': 384} _lowerCAmelCase = get_size_dict(_A , default_to_square=_A ) _lowerCAmelCase = do_resize _lowerCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _lowerCAmelCase = crop_pct if crop_pct is not None else 224 / 256 _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _lowerCAmelCase = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowerCAmelCase = int(shortest_edge / crop_pct ) _lowerCAmelCase = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) _lowerCAmelCase = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> PIL.Image.Image: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_A , default_to_square=_A ) _lowerCAmelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_A ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_A , _A ) for image in images] _lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _A ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : Dict = use_attention_mask SCREAMING_SNAKE_CASE_ : Dict = use_token_type_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = num_choices def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class _A ( lowercase__ , unittest.TestCase): SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_A ) SCREAMING_SNAKE_CASE_ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A ) @require_flax class _A ( unittest.TestCase): @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Tuple = 5_0000 SCREAMING_SNAKE_CASE_ : str = (1, 6, vocab_size) self.assertEqual(output.shape , _A ) SCREAMING_SNAKE_CASE_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
253
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) __a = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __a = components[:-1] + [test_fn.replace('''.py''' , '''''' )] __a = '.'.join(a__ ) return test_module_path def __lowerCAmelCase ( a__ ) -> str: __a = get_module_path(a__ ) __a = importlib.import_module(a__ ) return test_module def __lowerCAmelCase ( a__ ) -> int: __a = [] __a = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: __a = [] __a = get_test_module(a__ ) for attr in dir(a__ ): __a = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a = getattr(a__ , '''all_model_classes''' , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: __a = get_test_classes(a__ ) __a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Any: __a = test_class() if hasattr(a__ , '''setUp''' ): test.setUp() __a = None if hasattr(a__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a = test.model_tester.__class__ return model_tester def __lowerCAmelCase ( a__ , a__ ) -> Any: __a = get_test_classes(a__ ) __a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = get_test_classes_for_model(a__ , a__ ) __a = [] for test_class in test_classes: __a = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def __lowerCAmelCase ( a__ ) -> Dict: __a = get_test_classes(a__ ) __a = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = get_model_classes(a__ ) __a = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def __lowerCAmelCase ( a__ ) -> Dict: __a = get_model_classes(a__ ) __a = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def __lowerCAmelCase ( a__ ) -> Optional[Any]: if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
6
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = process __SCREAMING_SNAKE_CASE = params def __len__( self): return len(self.dataset) def __getitem__( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.dataset[i] __SCREAMING_SNAKE_CASE = self.process(_A , **self.params) return processed class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = loader __SCREAMING_SNAKE_CASE = infer __SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __len__( self): return len(self.loader) def __iter__( self): __SCREAMING_SNAKE_CASE = iter(self.loader) return self def snake_case_ ( self): if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice __SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A): # Convert ModelOutput to tuple first __SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around __SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. __SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(_A) self._loader_batch_index += 1 return result def snake_case_ ( self): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __SCREAMING_SNAKE_CASE = next(self.iterator) __SCREAMING_SNAKE_CASE = self.infer(_A , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys())[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(_A , _A): __SCREAMING_SNAKE_CASE = len(_A) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None): super().__init__(_A , _A , _A) def __iter__( self): __SCREAMING_SNAKE_CASE = iter(self.loader) __SCREAMING_SNAKE_CASE = None return self def snake_case_ ( self): if self.subiterator is None: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator) , **self.params) try: # Try to return next item __SCREAMING_SNAKE_CASE = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator) , **self.params) __SCREAMING_SNAKE_CASE = next(self.subiterator) return processed class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __iter__( self): __SCREAMING_SNAKE_CASE = iter(self.loader) return self def snake_case_ ( self): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop("""is_last""") accumulator.append(_A) if is_last: return accumulator while not is_last: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys())[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(_A , _A): __SCREAMING_SNAKE_CASE = len(_A) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop("""is_last""") accumulator.append(_A) if is_last: return accumulator else: __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = item.pop("""is_last""") accumulator.append(_A) return accumulator class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = key def __len__( self): return len(self.dataset) def __getitem__( self , lowerCAmelCase__): return self.dataset[i][self.key] class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = keya __SCREAMING_SNAKE_CASE = keya def __len__( self): return len(self.dataset) def __getitem__( self , lowerCAmelCase__): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
100
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class lowerCAmelCase__ ( lowercase__ ): '''simple docstring''' __UpperCamelCase = """dpr""" def __init__( self : Dict , lowercase_ : Tuple=30522 , lowercase_ : Optional[int]=768 , lowercase_ : Any=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Dict=3072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Tuple=1e-12 , lowercase_ : List[str]=0 , lowercase_ : Optional[int]="absolute" , lowercase_ : int = 0 , **lowercase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = projection_dim SCREAMING_SNAKE_CASE_ : int = position_embedding_type
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowercase__ : List[str] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase__ : Optional[int] = { '''allenai/led-base-16384''': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case_ = bs[:] snake_case_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 snake_case_ = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char return pairs class UpperCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self : str , __lowercase : Optional[Any] , __lowercase : int , __lowercase : int="replace" , __lowercase : Union[str, Any]="<s>" , __lowercase : Union[str, Any]="</s>" , __lowercase : Any="</s>" , __lowercase : Optional[Any]="<s>" , __lowercase : List[Any]="<unk>" , __lowercase : List[Any]="<pad>" , __lowercase : Union[str, Any]="<mask>" , __lowercase : str=False , **__lowercase : Optional[int] , ): """simple docstring""" snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(_A ) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = errors # how to handle errors in decoding snake_case_ = bytes_to_unicode() snake_case_ = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding="utf-8" ) as merges_handle: snake_case_ = merges_handle.read().split("\n" )[1:-1] snake_case_ = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ = dict(zip(_A , range(len(_A ) ) ) ) snake_case_ = {} snake_case_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ = re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case__ ( self : Any ): """simple docstring""" return len(self.encoder ) def snake_case__ ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self : Optional[int] , __lowercase : List[str] ): """simple docstring""" if token in self.cache: return self.cache[token] snake_case_ = tuple(_A ) snake_case_ = get_pairs(_A ) if not pairs: return token while True: snake_case_ = min(_A , key=lambda __lowercase : self.bpe_ranks.get(_A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(_A ): try: snake_case_ = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ = tuple(_A ) snake_case_ = new_word if len(_A ) == 1: break else: snake_case_ = get_pairs(_A ) snake_case_ = ' '.join(_A ) snake_case_ = word return word def snake_case__ ( self : Union[str, Any] , __lowercase : List[str] ): """simple docstring""" snake_case_ = [] for token in re.findall(self.pat , _A ): snake_case_ = ''.join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def snake_case__ ( self : Optional[int] , __lowercase : Dict ): """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def snake_case__ ( self : Dict , __lowercase : Dict ): """simple docstring""" return self.decoder.get(_A ) def snake_case__ ( self : Optional[Any] , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = ''.join(_A ) snake_case_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case__ ( self : int , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + "\n" ) snake_case_ = 0 with open(_A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) snake_case_ = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : Optional[Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def snake_case__ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : int , __lowercase : Any , __lowercase : Any=False , **__lowercase : List[str] ): """simple docstring""" snake_case_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): snake_case_ = ' ' + text return (text, kwargs) def snake_case__ ( self : Any , __lowercase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowercase : Optional[int] = None , __lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowercase : Optional[int] = None , __lowercase : Optional[bool] = None , ): """simple docstring""" snake_case_ = super()._pad( encoded_inputs=_A , max_length=_A , padding_strategy=_A , pad_to_multiple_of=_A , return_attention_mask=_A , ) # Load from model defaults if return_attention_mask is None: snake_case_ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case_ = len(encoded_inputs["global_attention_mask"] ) != len(_A ) if needs_to_be_padded: snake_case_ = len(_A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case_ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case_ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
187
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCamelCase__ ( a__ : int ) -> List[str]: return x + 2 class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'x = 3' UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {"""x""": 3} ) UpperCamelCase_ = 'x = y' UpperCamelCase_ = {'y': 5} UpperCamelCase_ = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {"""x""": 5, """y""": 5} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'y = add_two(x)' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {"""add_two""": add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCamelCase_ = evaluate(_A , {} , state=_A ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'x = 3' UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {"""x""": 3} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'test_dict = {\'x\': x, \'y\': add_two(x)}' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {"""add_two""": add_two} , state=_A ) self.assertDictEqual(_A , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_A , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'x = 3\ny = 5' UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {"""x""": 3, """y""": 5} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'text = f\'This is x: {x}.\'' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_A , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'if x <= 3:\n y = 2\nelse:\n y = 5' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_A , {"""x""": 3, """y""": 2} ) UpperCamelCase_ = {'x': 8} UpperCamelCase_ = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {"""x""": 8, """y""": 5} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'test_list = [x, add_two(x)]' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {"""add_two""": add_two} , state=_A ) self.assertListEqual(_A , [3, 5] ) self.assertDictEqual(_A , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'y = x' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {"""x""": 3, """y""": 3} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'test_list = [x, add_two(x)]\ntest_list[1]' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {"""add_two""": add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {"""x""": 3, """test_list""": [3, 5]} ) UpperCamelCase_ = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' UpperCamelCase_ = {'x': 3} UpperCamelCase_ = evaluate(_A , {"""add_two""": add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 'x = 0\nfor i in range(3):\n x = i' UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_A , {"""range""": range} , state=_A ) assert result == 2 self.assertDictEqual(_A , {"""x""": 2, """i""": 2} )
122
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :int = F'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase_ ) if number < 0: return False a :Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase__ ( lowercase__ ): def __get__( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any=None ): '''simple docstring''' # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) _UpperCamelCase : List[Any] = '__cached_' + self.fget.__name__ _UpperCamelCase : List[str] = getattr(_A ,_A ,_A ) if cached is None: _UpperCamelCase : Union[str, Any] = self.fget(_A ) setattr(_A ,_A ,_A ) return cached def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def A__ ( UpperCAmelCase_ ): if is_torch_fx_proxy(UpperCAmelCase_ ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase_ , np.ndarray ) def A__ ( UpperCAmelCase_ ): return isinstance(UpperCAmelCase_ , np.ndarray ) def A__ ( UpperCAmelCase_ ): return _is_numpy(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): import torch return isinstance(UpperCAmelCase_ , torch.Tensor ) def A__ ( UpperCAmelCase_ ): return False if not is_torch_available() else _is_torch(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): import torch return isinstance(UpperCAmelCase_ , torch.device ) def A__ ( UpperCAmelCase_ ): return False if not is_torch_available() else _is_torch_device(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): import torch if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) else: return False return isinstance(UpperCAmelCase_ , torch.dtype ) def A__ ( UpperCAmelCase_ ): return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): import tensorflow as tf return isinstance(UpperCAmelCase_ , tf.Tensor ) def A__ ( UpperCAmelCase_ ): return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase_ , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(UpperCAmelCase_ ) return type(UpperCAmelCase_ ) == tf.Tensor def A__ ( UpperCAmelCase_ ): return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase_ , jnp.ndarray ) def A__ ( UpperCAmelCase_ ): return False if not is_flax_available() else _is_jax(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase_ ) for k, v in obj.items()} elif isinstance(UpperCAmelCase_ , (list, tuple) ): return [to_py_obj(UpperCAmelCase_ ) for o in obj] elif is_tf_tensor(UpperCAmelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase_ ): return np.asarray(UpperCAmelCase_ ).tolist() elif isinstance(UpperCAmelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A__ ( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase_ ) for k, v in obj.items()} elif isinstance(UpperCAmelCase_ , (list, tuple) ): return np.array(UpperCAmelCase_ ) elif is_tf_tensor(UpperCAmelCase_ ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase_ ): return np.asarray(UpperCAmelCase_ ) else: return obj class lowercase__ ( lowercase__ ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) _UpperCamelCase : List[Any] = getattr(self ,class_fields[0].name ) _UpperCamelCase : Dict = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A ,_A ): _UpperCamelCase : Union[str, Any] = first_field.items() _UpperCamelCase : Tuple = True else: try: _UpperCamelCase : Optional[Any] = iter(_A ) _UpperCamelCase : List[str] = True except TypeError: _UpperCamelCase : str = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A ,(list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] ,_A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCamelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: _UpperCamelCase : Tuple = element[1] elif first_field is not None: _UpperCamelCase : Union[str, Any] = first_field else: for field in class_fields: _UpperCamelCase : Union[str, Any] = getattr(self ,field.name ) if v is not None: _UpperCamelCase : int = v def __delitem__( self : Any ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : Any ): '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase_ ( self : List[Any] ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase_ ( self : Dict ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : List[str] ): '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase_ ( self : int ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : List[str] ): '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : List[str] ,lowerCamelCase__ : Dict ): '''simple docstring''' if isinstance(_A ,_A ): _UpperCamelCase : str = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A ,_A ) super().__setattr__(_A ,_A ) def __setitem__( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' # Will raise a KeyException if needed super().__setitem__(_A ,_A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A ,_A ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowercase__ ( lowercase__ , lowercase__ ): @classmethod def UpperCamelCase_ ( cls : Dict ,lowerCamelCase__ : int ): '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class lowercase__ ( lowercase__ ): lowercase__ = """longest""" lowercase__ = """max_length""" lowercase__ = """do_not_pad""" class lowercase__ ( lowercase__ ): lowercase__ = """pt""" lowercase__ = """tf""" lowercase__ = """np""" lowercase__ = """jax""" class lowercase__ : def __init__( self : str ,lowerCamelCase__ : List[ContextManager] ): '''simple docstring''' _UpperCamelCase : Optional[int] = context_managers _UpperCamelCase : Any = ExitStack() def __enter__( self : Tuple ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Any ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' self.stack.__exit__(*_A ,**_A ) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = infer_framework(UpperCAmelCase_ ) if framework == "tf": _UpperCamelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase : int = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = model_class.__name__ _UpperCamelCase : List[str] = infer_framework(UpperCAmelCase_ ) if framework == "tf": _UpperCamelCase : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = "" , UpperCAmelCase_ = "." ): def _flatten_dict(UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_="." ): for k, v in d.items(): _UpperCamelCase : Optional[Any] = str(UpperCAmelCase_ ) + delimiter + str(UpperCAmelCase_ ) if parent_key else k if v and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): yield from flatten_dict(UpperCAmelCase_ , UpperCAmelCase_ , delimiter=UpperCAmelCase_ ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) @contextmanager def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A__ ( UpperCAmelCase_ , UpperCAmelCase_=None ): if is_numpy_array(UpperCAmelCase_ ): return np.transpose(UpperCAmelCase_ , axes=UpperCAmelCase_ ) elif is_torch_tensor(UpperCAmelCase_ ): return array.T if axes is None else array.permute(*UpperCAmelCase_ ) elif is_tf_tensor(UpperCAmelCase_ ): import tensorflow as tf return tf.transpose(UpperCAmelCase_ , perm=UpperCAmelCase_ ) elif is_jax_tensor(UpperCAmelCase_ ): return jnp.transpose(UpperCAmelCase_ , axes=UpperCAmelCase_ ) else: raise ValueError(f'Type not supported for transpose: {type(UpperCAmelCase_ )}.' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if is_numpy_array(UpperCAmelCase_ ): return np.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) elif is_torch_tensor(UpperCAmelCase_ ): return array.reshape(*UpperCAmelCase_ ) elif is_tf_tensor(UpperCAmelCase_ ): import tensorflow as tf return tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) elif is_jax_tensor(UpperCAmelCase_ ): return jnp.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) else: raise ValueError(f'Type not supported for reshape: {type(UpperCAmelCase_ )}.' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_=None ): if is_numpy_array(UpperCAmelCase_ ): return np.squeeze(UpperCAmelCase_ , axis=UpperCAmelCase_ ) elif is_torch_tensor(UpperCAmelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase_ ) elif is_tf_tensor(UpperCAmelCase_ ): import tensorflow as tf return tf.squeeze(UpperCAmelCase_ , axis=UpperCAmelCase_ ) elif is_jax_tensor(UpperCAmelCase_ ): return jnp.squeeze(UpperCAmelCase_ , axis=UpperCAmelCase_ ) else: raise ValueError(f'Type not supported for squeeze: {type(UpperCAmelCase_ )}.' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if is_numpy_array(UpperCAmelCase_ ): return np.expand_dims(UpperCAmelCase_ , UpperCAmelCase_ ) elif is_torch_tensor(UpperCAmelCase_ ): return array.unsqueeze(dim=UpperCAmelCase_ ) elif is_tf_tensor(UpperCAmelCase_ ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase_ , axis=UpperCAmelCase_ ) elif is_jax_tensor(UpperCAmelCase_ ): return jnp.expand_dims(UpperCAmelCase_ , axis=UpperCAmelCase_ ) else: raise ValueError(f'Type not supported for expand_dims: {type(UpperCAmelCase_ )}.' ) def A__ ( UpperCAmelCase_ ): if is_numpy_array(UpperCAmelCase_ ): return np.size(UpperCAmelCase_ ) elif is_torch_tensor(UpperCAmelCase_ ): return array.numel() elif is_tf_tensor(UpperCAmelCase_ ): import tensorflow as tf return tf.size(UpperCAmelCase_ ) elif is_jax_tensor(UpperCAmelCase_ ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(UpperCAmelCase_ )}.' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for key, value in auto_map.items(): if isinstance(UpperCAmelCase_ , (tuple, list) ): _UpperCamelCase : str = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCamelCase : List[Any] = f'{repo_id}--{value}' return auto_map def A__ ( UpperCAmelCase_ ): for base_class in inspect.getmro(UpperCAmelCase_ ): _UpperCamelCase : str = base_class.__module__ _UpperCamelCase : int = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
83
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __lowerCAmelCase : Tuple = 1.0_54_57_18_17e-34 # unit of ℏ : J * s __lowerCAmelCase : Union[str, Any] = 3e8 # unit of c : m * s^-1 def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: __lowercase : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowercase : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowercase : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowercase__ ): __lowerCamelCase : Optional[Any] = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["flax", "transformers"] ) class lowerCAmelCase_ ( metaclass=lowercase__ ): __lowerCamelCase : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["flax", "transformers"] ) class lowerCAmelCase_ ( metaclass=lowercase__ ): __lowerCamelCase : Dict = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["flax", "transformers"] ) class lowerCAmelCase_ ( metaclass=lowercase__ ): __lowerCamelCase : Optional[int] = ["""flax""", """transformers"""] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["flax", "transformers"] )
158
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1000 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : Any = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Any = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope SCREAMING_SNAKE_CASE_ : Optional[Any] = range_bbox def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : int = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : Dict = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : int = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : Tuple = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : Optional[int] = t SCREAMING_SNAKE_CASE_ : Optional[int] = tf.convert_to_tensor(_A ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : List[str] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = TFLayoutLMModel(config=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A , _A , attention_mask=_A , token_type_ids=_A ) SCREAMING_SNAKE_CASE_ : Any = model(_A , _A , token_type_ids=_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A , _A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = TFLayoutLMForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Any = model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = TFLayoutLMForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : int = model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = TFLayoutLMForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = TFLayoutLMForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : str = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _A ( lowercase__ , lowercase__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Optional[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : str = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = 10 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = TFLayoutLMModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCAmelCase ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = TFLayoutLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCAmelCase ( self ): """simple docstring""" pass def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.convert_to_tensor([[1_0_1,1_0_1_9,1_0_1_4,1_0_1_6,1_0_3_7,1_2_8_4_9,4_7_4_7,1_0_0_4,1_4_2_4_6,2_2_7_8,5_4_3_9,4_5_2_4,5_0_0_2,2_9_3_0,2_1_9_3,2_9_3_0,4_3_4_1,3_2_0_8,1_0_0_5,1_0_5_5,2_1_7_1,2_8_4_8,1_1_3_0_0,3_5_3_1,1_0_2],[1_0_1,4_0_7_0,4_0_3_4,7_0_2_0,1_0_2_4,3_0_5_8,1_0_1_5,1_0_1_3,2_8_6_1,1_0_1_3,6_0_7_0,1_9_2_7_4,2_7_7_2,6_2_0_5,2_7_8_1_4,1_6_1_4_7,1_6_1_4_7,4_3_4_3,2_0_4_7,1_0_2_8_3,1_0_9_6_9,1_4_3_8_9,1_0_1_2,2_3_3_8,1_0_2]] ) # noqa: E231 SCREAMING_SNAKE_CASE_ : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 SCREAMING_SNAKE_CASE_ : List[Any] = tf.convert_to_tensor([[[0,0,0,0],[4_2_3,2_3_7,4_4_0,2_5_1],[4_2_7,2_7_2,4_4_1,2_8_7],[4_1_9,1_1_5,4_3_7,1_2_9],[9_6_1,8_8_5,9_9_2,9_1_2],[2_5_6,3_8,3_3_0,5_8],[2_5_6,3_8,3_3_0,5_8],[3_3_6,4_2,3_5_3,5_7],[3_6_0,3_9,4_0_1,5_6],[3_6_0,3_9,4_0_1,5_6],[4_1_1,3_9,4_7_1,5_9],[4_7_9,4_1,5_2_8,5_9],[5_3_3,3_9,6_3_0,6_0],[6_7,1_1_3,1_3_4,1_3_1],[1_4_1,1_1_5,2_0_9,1_3_2],[6_8,1_4_9,1_3_3,1_6_6],[1_4_1,1_4_9,1_8_7,1_6_4],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[2_9_5,1_4_8,3_4_9,1_6_5],[4_4_1,1_4_9,4_9_2,1_6_6],[4_9_7,1_4_9,5_4_6,1_6_4],[6_4,2_0_1,1_2_5,2_1_8],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]],[[0,0,0,0],[6_6_2,1_5_0,7_5_4,1_6_6],[6_6_5,1_9_9,7_4_2,2_1_1],[5_1_9,2_1_3,5_5_4,2_2_8],[5_1_9,2_1_3,5_5_4,2_2_8],[1_3_4,4_3_3,1_8_7,4_5_4],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[3_1_4,4_6_9,3_7_6,4_8_2],[5_0_4,6_8_4,5_8_2,7_0_6],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[6_1_0,7_4_9,6_5_2,7_6_5],[1_3_0,6_5_9,1_6_8,6_7_2],[1_7_6,6_5_7,2_3_7,6_7_2],[2_3_8,6_5_7,3_1_2,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[7_1_6,3_0_1,8_2_5,3_1_7],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]]] ) # noqa: E231 SCREAMING_SNAKE_CASE_ : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) SCREAMING_SNAKE_CASE_ : Dict = tf.convert_to_tensor([[-1_0_0,1_0,1_0,1_0,9,1,-1_0_0,7,7,-1_0_0,7,7,4,2,5,2,8,8,-1_0_0,-1_0_0,5,0,3,2,-1_0_0],[-1_0_0,1_2,1_2,1_2,-1_0_0,1_2,1_0,-1_0_0,-1_0_0,-1_0_0,-1_0_0,1_0,1_2,9,-1_0_0,-1_0_0,-1_0_0,1_0,1_0,1_0,9,1_2,-1_0_0,1_0,-1_0_0]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _A ( unittest.TestCase): @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE_ : List[str] = model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the sequence output on [0, :3, :3] SCREAMING_SNAKE_CASE_ : Dict = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-3 ) ) # test the pooled output on [1, :3] SCREAMING_SNAKE_CASE_ : Dict = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _A , atol=1e-3 ) ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) SCREAMING_SNAKE_CASE_ : Dict = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE_ : Optional[Any] = model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar SCREAMING_SNAKE_CASE_ : int = outputs.loss SCREAMING_SNAKE_CASE_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , _A ) # test the shape of the logits SCREAMING_SNAKE_CASE_ : List[str] = outputs.logits SCREAMING_SNAKE_CASE_ : List[Any] = (2, 2) self.assertEqual(logits.shape , _A ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) SCREAMING_SNAKE_CASE_ : str = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE_ : int = model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) # test the shape of the logits SCREAMING_SNAKE_CASE_ : Tuple = outputs.logits SCREAMING_SNAKE_CASE_ : int = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _A ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) SCREAMING_SNAKE_CASE_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass SCREAMING_SNAKE_CASE_ : List[str] = model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the shape of the logits SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _A ) self.assertEqual(outputs.end_logits.shape , _A )
253
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
0
import os import sys import unittest A : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A : List[Any] = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') A : Dict = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = get_test_to_tester_mapping(_A ) __a = get_test_to_tester_mapping(_A ) __a = {'BertModelTest': 'BertModelTester'} __a = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = get_model_to_test_mapping(_A ) __a = get_model_to_test_mapping(_A ) __a = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __a = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = get_model_to_tester_mapping(_A ) __a = get_model_to_tester_mapping(_A ) __a = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __a = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A )
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0.00 __SCREAMING_SNAKE_CASE = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE = f"Resistor at index {index} has a negative or zero value!" raise ValueError(UpperCamelCase_ ) first_sum += 1 / float(UpperCamelCase_ ) index += 1 return 1 / first_sum def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0.00 __SCREAMING_SNAKE_CASE = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE = f"Resistor at index {index} has a negative value!" raise ValueError(UpperCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
100
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : int , lowercase_ : Any=14 , lowercase_ : Any=7 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=True , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Dict=99 , lowercase_ : Optional[Any]=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : Optional[int]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : int=0.1 , lowercase_ : str=512 , lowercase_ : List[str]=16 , lowercase_ : str=2 , lowercase_ : int=0.02 , lowercase_ : str=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : Any=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Any = seq_length SCREAMING_SNAKE_CASE_ : Optional[int] = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Dict = use_input_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = use_mc_token_ids SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Dict = num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = num_choices SCREAMING_SNAKE_CASE_ : int = scope SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ : Any = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.num_choices] , self.seq_length) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : List[str] = self.get_config() SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[str] , *lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = CTRLModel(config=_A) model.to(_A) model.eval() model(_A , token_type_ids=_A , head_mask=_A) model(_A , token_type_ids=_A) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values) , config.n_layer) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , *lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = CTRLLMHeadModel(_A) model.to(_A) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , *lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE_ : Tuple = CTRLForSequenceClassification(_A) model.to(_A) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) @require_torch class lowerCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () __UpperCamelCase = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Any , lowercase_ : Any , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = CTRLModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=_A , n_embd=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_A) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' pass @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : int = CTRLModel.from_pretrained(_A) self.assertIsNotNone(_A) @unittest.skip('''The model doesn\'t support left padding''') # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' pass @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = CTRLLMHeadModel.from_pretrained('''ctrl''') model.to(_A) SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=_A) # Legal the president is SCREAMING_SNAKE_CASE_ : List[Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ : Any = model.generate(_A , do_sample=_A) self.assertListEqual(output_ids[0].tolist() , _A)
91
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
from __future__ import annotations import requests def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(_A ).json() def lowerCamelCase__ ( _A = 10 ): '''simple docstring''' snake_case_ = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' snake_case_ = requests.get(_A ).json()[:max_stories] return [get_hackernews_story(_A ) for story_id in story_ids] def lowerCamelCase__ ( _A = 10 ): '''simple docstring''' snake_case_ = hackernews_top_stories(_A ) return "\n".join("* [{title}]({url})".format(**_A ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
187
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [[1, 2, 4], [1, 2, 3, 4]] UpperCamelCase_ = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [[1, 2, 3], [1, 2, 4]] UpperCamelCase_ = DisjunctiveConstraint(_A ) UpperCamelCase_ = dc.update(1 ) UpperCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase_ = dc.update(2 ) UpperCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase_ = dc.update(3 ) UpperCamelCase_ = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCamelCase_ = DisjunctiveConstraint(_A ) UpperCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
122
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowercase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class __lowerCAmelCase ( lowercase__ ): """simple docstring""" def __init__( self : int , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' super().__init__(*_A , **_A ) requires_backends(self , '''vision''' ) self.check_model_type(_A ) def __call__( self : Tuple , lowerCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return super().__call__(_A , **_A ) def snake_case__ ( self : str , **lowerCAmelCase__ : Union[str, Any] ) -> int: '''simple docstring''' return {}, {}, {} def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = load_image(_A ) _UpperCamelCase = image.size _UpperCamelCase = self.image_processor(images=_A , return_tensors=self.framework ) return model_inputs def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model(**_A ) return model_outputs def snake_case__ ( self : int , lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase = model_outputs.predicted_depth _UpperCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=_A ) _UpperCamelCase = prediction.squeeze().cpu().numpy() _UpperCamelCase = (output * 255 / np.max(_A )).astype('''uint8''' ) _UpperCamelCase = Image.fromarray(_A ) _UpperCamelCase = {} _UpperCamelCase = predicted_depth _UpperCamelCase = depth return output_dict
324
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
0
from __future__ import annotations from cmath import sqrt def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) a :Any = b * b - 4 * a * c a :str = (-b + sqrt(UpperCAmelCase_ )) / (2 * a) a :Dict = (-b - sqrt(UpperCAmelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCamelCase ( ): """simple docstring""" a :Any = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
94
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser snake_case_ : Optional[Any] = re.compile(r'\s+') def A__ ( UpperCAmelCase_ ): return {"hash": hashlib.mda(re.sub(UpperCAmelCase_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = [len(UpperCAmelCase_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(UpperCAmelCase_ ), "line_max": max(UpperCAmelCase_ )} def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A__ ( UpperCAmelCase_ , UpperCAmelCase_=5 ): _UpperCamelCase : Dict = ['auto-generated', 'autogenerated', 'automatically generated'] _UpperCamelCase : Optional[Any] = example['content'].splitlines() for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A__ ( UpperCAmelCase_ , UpperCAmelCase_=5 , UpperCAmelCase_=0.05 ): _UpperCamelCase : Dict = ['unit tests', 'test file', 'configuration file'] _UpperCamelCase : Union[str, Any] = example['content'].splitlines() _UpperCamelCase : List[Any] = 0 _UpperCamelCase : str = 0 # first test for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _UpperCamelCase : Tuple = example['content'].count('\n' ) _UpperCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = ['def ', 'class ', 'for ', 'while '] _UpperCamelCase : Dict = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A__ ( UpperCAmelCase_ , UpperCAmelCase_=4 ): _UpperCamelCase : Any = example['content'].splitlines() _UpperCamelCase : List[str] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Tuple = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids'] _UpperCamelCase : int = len(example['content'] ) / len(UpperCAmelCase_ ) return {"ratio": ratio} def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = {} results.update(get_hash(UpperCAmelCase_ ) ) results.update(line_stats(UpperCAmelCase_ ) ) results.update(alpha_stats(UpperCAmelCase_ ) ) results.update(char_token_ratio(UpperCAmelCase_ ) ) results.update(is_autogenerated(UpperCAmelCase_ ) ) results.update(is_config_or_test(UpperCAmelCase_ ) ) results.update(has_no_keywords(UpperCAmelCase_ ) ) results.update(has_few_assignments(UpperCAmelCase_ ) ) return results def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not check_uniques(UpperCAmelCase_ , UpperCAmelCase_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A__ ( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'rb' ) as f_in: with gzip.open(str(UpperCAmelCase_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCAmelCase_ , UpperCAmelCase_ ) os.unlink(UpperCAmelCase_ ) # Settings snake_case_ : Any = HfArgumentParser(PreprocessingArguments) snake_case_ : List[Any] = parser.parse_args() if args.num_workers is None: snake_case_ : Union[str, Any] = multiprocessing.cpu_count() snake_case_ : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset snake_case_ : Any = time.time() snake_case_ : Union[str, Any] = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing snake_case_ : Dict = time.time() snake_case_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes snake_case_ : Optional[int] = set(ds.unique('hash')) snake_case_ : List[str] = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics snake_case_ : Optional[Any] = time.time() snake_case_ : Any = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: snake_case_ : Any = time.time() snake_case_ : Union[str, Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file snake_case_ : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) snake_case_ : Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) snake_case_ : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): snake_case_ : List[Any] = str(data_dir / F"""file-{file_number+1:012}.json""") snake_case_ : Optional[int] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
83
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import math __lowerCAmelCase : int = 10 __lowerCAmelCase : str = 7 __lowerCAmelCase : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_ ( __lowerCAmelCase = 20 ) -> Optional[int]: __lowercase : List[Any] = math.comb(__lowerCAmelCase , __lowerCAmelCase ) __lowercase : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCAmelCase ) __lowercase : List[str] = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(20))
156
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''CLIPFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _A ( datasets.BuilderConfig): SCREAMING_SNAKE_CASE : int = 10_000 SCREAMING_SNAKE_CASE : Optional[List[str]] = None SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _A ( datasets.ArrowBasedBuilder): SCREAMING_SNAKE_CASE : Dict = ParquetConfig def UpperCAmelCase ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ : str = data_files if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : List[str] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE_ : Dict = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Dict = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , 'rb' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files} ) ) return splits def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ : str = table_cast(_A , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , 'rb' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(_A ) except ValueError as e: logger.error(f"Failed to read file \'{file}\' with error {type(_A )}: {e}" ) raise
253
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__=False , ) -> Optional[Any]: output_path.parent.mkdir(parents=a__ , exist_ok=a__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , ) else: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__ , a__ = False ) -> Tuple: __a = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __a = 'cpu' __a = Path(a__ ) # VAE DECODER __a = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __a = vae_decoder.config.latent_channels # forward only through the decoder part __a = vae_decoder.decode onnx_export( a__ , model_args=( torch.randn(1 , a__ , 25 , 25 ).to(device=a__ , dtype=a__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a__ , ) del vae_decoder if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') A : Union[str, Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
6
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""") __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __SCREAMING_SNAKE_CASE = model(_A)['last_hidden_state'] __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1_0, 7_6_8)) self.assertEqual(output.shape , _A) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
100
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
from collections import deque class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , __lowercase : str , __lowercase : int , __lowercase : int ): """simple docstring""" snake_case_ = process_name # process name snake_case_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time snake_case_ = arrival_time snake_case_ = burst_time # remaining burst time snake_case_ = 0 # total time of the process wait in ready queue snake_case_ = 0 # time from arrival time to completion time class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __lowercase : int , __lowercase : list[int] , __lowercase : deque[Process] , __lowercase : int , ): """simple docstring""" snake_case_ = number_of_queues # time slice of queues that round robin algorithm applied snake_case_ = time_slices # unfinished process is in this ready_queue snake_case_ = queue # current time snake_case_ = current_time # finished process is in this sequence queue snake_case_ = deque() def snake_case__ ( self : int ): """simple docstring""" snake_case_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self : Optional[int] , __lowercase : list[Process] ): """simple docstring""" snake_case_ = [] for i in range(len(_A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self : Tuple , __lowercase : list[Process] ): """simple docstring""" snake_case_ = [] for i in range(len(_A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self : List[str] , __lowercase : list[Process] ): """simple docstring""" snake_case_ = [] for i in range(len(_A ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self : Any , __lowercase : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def snake_case__ ( self : Dict , __lowercase : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self : List[str] , __lowercase : deque[Process] ): """simple docstring""" snake_case_ = deque() # sequence deque of finished process while len(_A ) != 0: snake_case_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 snake_case_ = 0 # set the process's turnaround time because it is finished snake_case_ = self.current_time - cp.arrival_time # set the completion time snake_case_ = self.current_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self : Any , __lowercase : deque[Process] , __lowercase : int ): """simple docstring""" snake_case_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_A ) ): snake_case_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time snake_case_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished snake_case_ = 0 # set the finish time snake_case_ = self.current_time # update the process' turnaround time because it is finished snake_case_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self : Optional[Any] ): """simple docstring""" for i in range(self.number_of_queues - 1 ): snake_case_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowercase__ : Dict = Process("P1", 0, 53) lowercase__ : Dict = Process("P2", 0, 17) lowercase__ : Dict = Process("P3", 0, 68) lowercase__ : Any = Process("P4", 0, 24) lowercase__ : Optional[int] = 3 lowercase__ : Optional[int] = [17, 25] lowercase__ : Optional[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowercase__ : int = Process("P1", 0, 53) lowercase__ : int = Process("P2", 0, 17) lowercase__ : Any = Process("P3", 0, 68) lowercase__ : List[str] = Process("P4", 0, 24) lowercase__ : Dict = 3 lowercase__ : Union[str, Any] = [17, 25] lowercase__ : Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowercase__ : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowercase__ : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
187
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( a__ : int ) -> Union[str, Any]: if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( a__ : str ) -> Tuple: for char in word: UpperCamelCase_ = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def lowerCamelCase__ ( a__ : List[str] ) -> Any: UpperCamelCase_ = set() for token in tokens: UpperCamelCase_ = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) UpperCamelCase_ = list(a__ ) return word_list def lowerCamelCase__ ( a__ : List[str] , a__ : set() ) -> Union[str, Any]: if not chinese_word_set: return bert_tokens UpperCamelCase_ = max([len(a__ ) for w in chinese_word_set] ) UpperCamelCase_ = bert_tokens UpperCamelCase_ = 0, len(a__ ) while start < end: UpperCamelCase_ = True if is_chinese(bert_word[start] ): UpperCamelCase_ = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): UpperCamelCase_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase_ = '##' + bert_word[j] UpperCamelCase_ = start + i UpperCamelCase_ = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( a__ : List[str] , a__ : LTP , a__ : BertTokenizer ) -> Any: UpperCamelCase_ = [] for i in range(0 , len(a__ ) , 100 ): UpperCamelCase_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase_ = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) UpperCamelCase_ = [] for i in range(0 , len(a__ ) , 100 ): UpperCamelCase_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(a__ ) == len(a__ ) UpperCamelCase_ = [] for input_ids, chinese_word in zip(a__ , a__ ): UpperCamelCase_ = [] for id in input_ids: UpperCamelCase_ = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) UpperCamelCase_ = add_sub_symbol(a__ , a__ ) UpperCamelCase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": UpperCamelCase_ = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def lowerCamelCase__ ( a__ : Optional[Any] ) -> Any: with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase_ = f.readlines() UpperCamelCase_ = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase_ = LTP(args.ltp ) # faster in GPU device UpperCamelCase_ = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase_ = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase_ = [json.dumps(a__ ) + '\n' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') _A = parser.parse_args() main(args)
122
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( lowercase__ ): """simple docstring""" _snake_case : List[str] = """megatron-bert""" def __init__( self : int , lowerCAmelCase__ : List[str]=29056 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Union[str, Any]=24 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : List[str]=4096 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[Any]=512 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : int=1e-1_2 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Any=True , **lowerCAmelCase__ : Optional[int] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache
324
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss snake_case : Dict = pytest.mark.integration @require_faiss class _snake_case ( lowercase__ ): def SCREAMING_SNAKE_CASE__ ( self ): a :str = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dataset = self._create_dummy_dataset() a :Union[str, Any] = dset.map( lambda _lowerCamelCase , _lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) a :int = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) a :List[str] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) a :Any = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) a :Dict = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(_A , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): from elasticsearch import Elasticsearch a :Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a :int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) a :List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} a :Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=_A ) a :Tuple = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class _snake_case ( lowercase__ ): def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query a :str = np.zeros(5 , dtype=np.floataa ) a :Optional[int] = 1 a :str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries a :Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] a :str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) a :List[Any] = [scores[0] for scores in total_scores] a :List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :str = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) a :str = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): a :Dict = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Any = faiss.IndexFlat(5 ) a :Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) a :Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) a :Dict = np.zeros(5 , dtype=np.floataa ) a :Tuple = 1 a :Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __lowerCamelCase ( UpperCAmelCase_ : Tuple ): """simple docstring""" import faiss a :Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) a :Dict = 'index.faiss' a :Optional[Any] = F'''mock://{index_name}''' index.save(UpperCAmelCase_ , storage_options=mockfs.storage_options ) a :Tuple = FaissIndex.load(UpperCAmelCase_ , storage_options=mockfs.storage_options ) a :Union[str, Any] = np.zeros(5 , dtype=np.floataa ) a :List[str] = 1 a :Dict = index.search(UpperCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( lowercase__ ): def SCREAMING_SNAKE_CASE__ ( self ): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a :Any = Elasticsearch() a :Union[str, Any] = {'acknowledged': True} a :Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query a :str = 'foo' a :str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} a :Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout a :str = 'foo' a :Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} a :Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries a :Optional[Any] = ['foo', 'bar', 'foobar'] a :Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} a :Optional[Any] = index.search_batch(_A ) a :Tuple = [scores[0] for scores in total_scores] a :List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout a :Union[str, Any] = ['foo', 'bar', 'foobar'] a :Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} a :Dict = index.search_batch(_A , request_timeout=30 ) a :Optional[int] = [scores[0] for scores in total_scores] a :Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
94
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = word.split() def justify(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> str: _UpperCamelCase : Optional[Any] = max_width - width _UpperCamelCase : List[str] = len(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _UpperCamelCase : Optional[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _UpperCamelCase : Any = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _UpperCamelCase : Union[str, Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase_ ): num_spaces_between_words_list[i] += 1 _UpperCamelCase : str = [] for i in range(UpperCAmelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase_ ) _UpperCamelCase : Any = [] _UpperCamelCase : list[str] = [] _UpperCamelCase : Any = 0 for word in words: if width + len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase_ ) width += len(UpperCAmelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) # reset new line and new width _UpperCamelCase : List[str] = [word], len(UpperCAmelCase_ ) _UpperCamelCase : List[str] = max_width - width - len(UpperCAmelCase_ ) answer.append(' '.join(UpperCAmelCase_ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
83
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
0
from sklearn.metrics import mean_squared_error import datasets __lowerCAmelCase : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' __lowerCAmelCase : int = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' __lowerCAmelCase : Any = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case_ ( self : List[Any] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case_ ( self : str , _snake_case : Dict , _snake_case : List[str] , _snake_case : str=None , _snake_case : Optional[Any]="uniform_average" , _snake_case : Optional[int]=True ): __lowercase : Union[str, Any] = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
156
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
158
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _A ( lowercase__): SCREAMING_SNAKE_CASE : Tuple = """marian""" SCREAMING_SNAKE_CASE : int = ["""past_key_values"""] SCREAMING_SNAKE_CASE : Dict = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _SCREAMING_SNAKE_CASE=5_8101 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=5_8100 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=5_8100 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = d_model SCREAMING_SNAKE_CASE_ : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : List[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : List[str] = decoder_layers SCREAMING_SNAKE_CASE_ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE_ : str = activation_function SCREAMING_SNAKE_CASE_ : int = init_std SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_layerdrop SCREAMING_SNAKE_CASE_ : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Optional[int] = use_cache SCREAMING_SNAKE_CASE_ : Dict = encoder_layers SCREAMING_SNAKE_CASE_ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : Optional[int] = share_encoder_decoder_embeddings super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class _A ( lowercase__): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ : int = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ : str = {0: 'batch'} SCREAMING_SNAKE_CASE_ : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ : List[Any] = {0: 'batch', 1: 'decoder_sequence'} SCREAMING_SNAKE_CASE_ : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ : Any = self.num_layers for i in range(_A ): SCREAMING_SNAKE_CASE_ : str = {0: 'batch', 2: 'past_sequence + sequence'} SCREAMING_SNAKE_CASE_ : Any = {0: 'batch', 2: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ : Tuple = super().outputs else: SCREAMING_SNAKE_CASE_ : int = super(_A , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ : int = self.num_layers for i in range(_A ): SCREAMING_SNAKE_CASE_ : Any = {0: 'batch', 2: 'past_sequence + sequence'} SCREAMING_SNAKE_CASE_ : int = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ : int = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ : Any = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ : Tuple = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE_ : Union[str, Any] = common_inputs['input_ids'].shape SCREAMING_SNAKE_CASE_ : Optional[int] = common_inputs['decoder_input_ids'].shape[1] SCREAMING_SNAKE_CASE_ : int = self.num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ : Any = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ : int = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_A , _A )] , dim=1 ) SCREAMING_SNAKE_CASE_ : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ : int = self.num_layers SCREAMING_SNAKE_CASE_ : Any = min(_A , _A ) SCREAMING_SNAKE_CASE_ : Optional[int] = max(_A , _A ) - min_num_layers SCREAMING_SNAKE_CASE_ : Optional[int] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ : List[Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE_ : Optional[int] = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ : List[str] = seqlen + 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_layers SCREAMING_SNAKE_CASE_ : Optional[int] = self.num_attention_heads SCREAMING_SNAKE_CASE_ : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ : Dict = common_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A )] , dim=1 ) SCREAMING_SNAKE_CASE_ : Any = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : int = tokenizer.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : List[str] = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: SCREAMING_SNAKE_CASE_ : str = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: SCREAMING_SNAKE_CASE_ : List[Any] = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A ) @property def UpperCAmelCase ( self ): """simple docstring""" return 1e-4
253
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
0
import argparse import os import re import packaging.version A : Any = '''examples/''' A : List[Any] = { '''examples''': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), '''release = "VERSION"\n'''), } A : Dict = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } A : Optional[Any] = '''README.md''' def __lowerCAmelCase ( a__ , a__ , a__ ) -> List[str]: with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.read() __a = REPLACE_PATTERNS[pattern] __a = replace.replace('''VERSION''' , a__ ) __a = re_pattern.sub(a__ , a__ ) with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(a__ ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern='''examples''' ) def __lowerCAmelCase ( a__ , a__=False ) -> Dict: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def __lowerCAmelCase ( ) -> Any: __a = '🤗 Transformers currently provides the following architectures' __a = '1. Want to contribute a new model?' with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() # Find the start of the list. __a = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a__ ) def __lowerCAmelCase ( ) -> Dict: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a = f.read() __a = REPLACE_PATTERNS['init'][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def __lowerCAmelCase ( a__=False ) -> List[Any]: __a = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a = default_version.base_version elif patch: __a = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __a = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __a = input(F"""Which version are you releasing? [{default_version}]""" ) if len(a__ ) == 0: __a = default_version print(F"""Updating version to {version}.""" ) global_version_update(a__ , patch=a__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __lowerCAmelCase ( ) -> Union[str, Any]: __a = get_version() __a = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __a = current_version.base_version # Check with the user we got that right. __a = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(a__ ) == 0: __a = dev_version print(F"""Updating version to {version}.""" ) global_version_update(a__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": A : str = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') A : List[str] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Optional[int] = 16 _lowercase : Tuple = 32 def lowercase__ ( snake_case_ :Accelerator , snake_case_ :int = 16 , snake_case_ :str = "bert-base-cased" ): __UpperCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) __UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ :Tuple ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ :Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Any , snake_case_ :str , snake_case_ :List[Any] ): model.eval() __UpperCAmelCase = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase = model(**snake_case_ ) __UpperCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCAmelCase , __UpperCAmelCase = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __UpperCAmelCase = metric.compute() return eval_metric["accuracy"] def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] ): # Initialize accelerator __UpperCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase = config['''lr'''] __UpperCAmelCase = int(config['''num_epochs'''] ) __UpperCAmelCase = int(config['''seed'''] ) __UpperCAmelCase = int(config['''batch_size'''] ) __UpperCAmelCase = args.model_name_or_path set_seed(snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __UpperCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __UpperCAmelCase = 1 __UpperCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __UpperCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __UpperCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCAmelCase = 0 __UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) __UpperCAmelCase = num_epochs if args.partial_train_epoch is not None: __UpperCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __UpperCAmelCase = args.resume_from_checkpoint.split('''epoch_''' )[1] __UpperCAmelCase = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __UpperCAmelCase = int(snake_case_ ) + 1 __UpperCAmelCase = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.print('''resumed checkpoint performance:''' , snake_case_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: __UpperCAmelCase = json.load(snake_case_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __UpperCAmelCase = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __UpperCAmelCase = model(**snake_case_ ) __UpperCAmelCase = outputs.loss __UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __UpperCAmelCase = F'''epoch_{epoch}''' __UpperCAmelCase = os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) __UpperCAmelCase = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = accuracy __UpperCAmelCase = lr_scheduler.get_lr()[0] __UpperCAmelCase = optimizer.param_groups[0]['''lr'''] __UpperCAmelCase = epoch __UpperCAmelCase = overall_step accelerator.print(F'''epoch {epoch}:''' , snake_case_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
332
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
1
"""simple docstring""" def lowercase__ ( snake_case_ :int = 10 , snake_case_ :int = 22 ): __UpperCAmelCase = range(1 , snake_case_ ) __UpperCAmelCase = range(1 , snake_case_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
332
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = (DDPMScheduler,) def a ( self : List[str] , **_lowercase : Optional[int] ): __UpperCAmelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowercase ) return config def a ( self : Optional[Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def a ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def a ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def a ( self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def a ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def a ( self : Any ): self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def a ( self : Any ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def a ( self : Union[str, Any] ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_lowercase ) def a ( self : Tuple ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def a ( self : int ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def a ( self : Any ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) __UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: __UpperCAmelCase = -1 else: __UpperCAmelCase = timesteps[i + 1] __UpperCAmelCase = scheduler.previous_timestep(_lowercase ) __UpperCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def a ( self : Any ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] __UpperCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def a ( self : str ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowercase )
332
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Optional[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
1
"""simple docstring""" import os import sys import unittest _lowercase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowercase : int = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') _lowercase : Dict = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class _UpperCAmelCase ( unittest.TestCase ): def a ( self : int ): __UpperCAmelCase = get_test_to_tester_mapping(_lowercase ) __UpperCAmelCase = get_test_to_tester_mapping(_lowercase ) __UpperCAmelCase = {'''BertModelTest''': '''BertModelTester'''} __UpperCAmelCase = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) def a ( self : Tuple ): __UpperCAmelCase = get_model_to_test_mapping(_lowercase ) __UpperCAmelCase = get_model_to_test_mapping(_lowercase ) __UpperCAmelCase = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __UpperCAmelCase = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) def a ( self : Dict ): __UpperCAmelCase = get_model_to_tester_mapping(_lowercase ) __UpperCAmelCase = get_model_to_tester_mapping(_lowercase ) __UpperCAmelCase = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __UpperCAmelCase = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase ) self.assertEqual(get_test_info.to_json(_lowercase ) , _lowercase )
332
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[Any] = "Wav2Vec2FeatureExtractor" a__ : int = "AutoTokenizer" def __init__( self : Dict , _lowercase : Dict , _lowercase : Union[str, Any] ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False @classmethod def a ( cls : List[str] , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): try: return super().from_pretrained(_lowercase , **_lowercase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowercase , ) __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(feature_extractor=_lowercase , tokenizer=_lowercase ) def __call__( self : Tuple , *_lowercase : Dict , **_lowercase : Any ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __UpperCAmelCase = kwargs.pop('''raw_speech''' ) else: __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase = encodings['''input_ids'''] return inputs def a ( self : Optional[int] , *_lowercase : Any , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''input_features''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''labels''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if input_features is not None: __UpperCAmelCase = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) if labels is not None: __UpperCAmelCase = self.tokenizer.pad(_lowercase , **_lowercase ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCAmelCase = labels['''input_ids'''] return input_features def a ( self : Dict , *_lowercase : Dict , **_lowercase : Dict ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Optional[Any] , *_lowercase : Any , **_lowercase : int ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def a ( self : Optional[int] ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer yield __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False
332
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
1
"""simple docstring""" import cva import numpy as np class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : float , _lowercase : int ): if k in (0.04, 0.06): __UpperCAmelCase = k __UpperCAmelCase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : int ): return str(self.k ) def a ( self : int , _lowercase : str ): __UpperCAmelCase = cva.imread(_lowercase , 0 ) __UpperCAmelCase , __UpperCAmelCase = img.shape __UpperCAmelCase = [] __UpperCAmelCase = img.copy() __UpperCAmelCase = cva.cvtColor(_lowercase , cva.COLOR_GRAY2RGB ) __UpperCAmelCase , __UpperCAmelCase = np.gradient(_lowercase ) __UpperCAmelCase = dx**2 __UpperCAmelCase = dy**2 __UpperCAmelCase = dx * dy __UpperCAmelCase = 0.04 __UpperCAmelCase = self.window_size // 2 for y in range(_lowercase , h - offset ): for x in range(_lowercase , w - offset ): __UpperCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = (wxx * wyy) - (wxy**2) __UpperCAmelCase = wxx + wyy __UpperCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _lowercase : List[Any] = HarrisCorner(0.04, 3) _lowercase ,_lowercase : int = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
332
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowercase : List[str] = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] _lowercase : Union[str, Any] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def lowercase__ ( ): __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , bootstrap_aggregation=snake_case_ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(snake_case_ , snake_case_ ) __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , bootstrap_aggregation=snake_case_ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowercase__ ( ): __UpperCAmelCase = '''rougeLsum''' __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=[k] )[k] __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase__ ( ): __UpperCAmelCase = ['''rouge1''', '''rouge2''', '''rougeL'''] __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=snake_case_ ) __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=snake_case_ ) assert score_sep == score_no_sep def lowercase__ ( ): __UpperCAmelCase = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] __UpperCAmelCase = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ ) == calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] __UpperCAmelCase = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , rouge_keys=['''rougeLsum'''] , newline_sep=snake_case_ )['''rougeLsum'''] __UpperCAmelCase = calculate_rouge(snake_case_ , snake_case_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowercase__ ( ): __UpperCAmelCase = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) __UpperCAmelCase = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(snake_case_ , snake_case_ ) __UpperCAmelCase = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=snake_case_ ) assert isinstance(snake_case_ , snake_case_ )
332
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = botoa.client('''iam''' ) __UpperCAmelCase = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=snake_case_ , AssumeRolePolicyDocument=json.dumps(snake_case_ , indent=2 ) ) __UpperCAmelCase = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=snake_case_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(snake_case_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = botoa.client('''iam''' ) return iam_client.get_role(RoleName=snake_case_ )["Role"]["Arn"] def lowercase__ ( ): __UpperCAmelCase = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , snake_case_ , ) __UpperCAmelCase = None if credentials_configuration == 0: __UpperCAmelCase = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) __UpperCAmelCase = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) __UpperCAmelCase = _ask_field('''AWS Access Key ID: ''' ) __UpperCAmelCase = aws_access_key_id __UpperCAmelCase = _ask_field('''AWS Secret Access Key: ''' ) __UpperCAmelCase = aws_secret_access_key __UpperCAmelCase = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) __UpperCAmelCase = aws_region __UpperCAmelCase = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , snake_case_ , ) if role_management == 0: __UpperCAmelCase = _ask_field('''Enter your IAM role name: ''' ) else: __UpperCAmelCase = '''accelerate_sagemaker_execution_role''' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(snake_case_ ) __UpperCAmelCase = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = None if is_custom_docker_image: __UpperCAmelCase = _ask_field('''Enter your Docker image: ''' , lambda snake_case_ : str(snake_case_ ).lower() ) __UpperCAmelCase = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = None if is_sagemaker_inputs_enabled: __UpperCAmelCase = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda snake_case_ : str(snake_case_ ).lower() , ) __UpperCAmelCase = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = None if is_sagemaker_metrics_enabled: __UpperCAmelCase = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda snake_case_ : str(snake_case_ ).lower() , ) __UpperCAmelCase = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) __UpperCAmelCase = {} __UpperCAmelCase = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) if use_dynamo: __UpperCAmelCase = '''dynamo_''' __UpperCAmelCase = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __UpperCAmelCase = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) if use_custom_options: __UpperCAmelCase = _ask_options( '''Which mode do you want to use?''' , snake_case_ , lambda snake_case_ : TORCH_DYNAMO_MODES[int(snake_case_ )] , default='''default''' , ) __UpperCAmelCase = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: __UpperCAmelCase = _ask_options( snake_case_ , snake_case_ , lambda snake_case_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(snake_case_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __UpperCAmelCase = _ask_field(snake_case_ , lambda snake_case_ : str(snake_case_ ).lower() , default='''ml.p3.2xlarge''' ) __UpperCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __UpperCAmelCase = _ask_field( '''How many machines do you want use? [1]: ''' , snake_case_ , default=1 , ) __UpperCAmelCase = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=snake_case_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=snake_case_ , use_cpu=snake_case_ , dynamo_config=snake_case_ , eca_instance_type=snake_case_ , profile=snake_case_ , region=snake_case_ , iam_role_name=snake_case_ , mixed_precision=snake_case_ , num_machines=snake_case_ , sagemaker_inputs_file=snake_case_ , sagemaker_metrics_file=snake_case_ , )
332
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int] ): return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
332
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
1
"""simple docstring""" import os from pathlib import Path def lowercase__ ( ): from torch.utils.cpp_extension import load __UpperCAmelCase = Path(snake_case_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __UpperCAmelCase = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , snake_case_ , with_cuda=snake_case_ , extra_include_paths=[str(snake_case_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
332
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a__ : str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) a__ : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) a__ : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) a__ : str = "question" a__ : str = "context" a__ : str = "answers" @property def a ( self : List[str] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
332
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = FunnelTokenizer a__ : Union[str, Any] = FunnelTokenizerFast a__ : Union[str, Any] = True a__ : int = True def a ( self : Union[str, Any] ): super().setUp() __UpperCAmelCase = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def a ( self : List[Any] , **_lowercase : Optional[Any] ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Union[str, Any] , **_lowercase : Dict ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Optional[Any] , _lowercase : Dict ): __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = '''unwanted, running''' return input_text, output_text def a ( self : Dict ): __UpperCAmelCase = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def a ( self : List[Any] ): __UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: __UpperCAmelCase = tokenizer('''UNwant\u00E9d,running''' ) __UpperCAmelCase = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __UpperCAmelCase = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
332
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCAmelCase ) , "Tatoeba directory does not exist." ) class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a ( self : Dict ): __UpperCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=_lowercase ) @slow def a ( self : Any ): self.resolver.convert_models(['''heb-eng'''] ) @slow def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_lowercase ) assert mmeta["long_pair"] == "heb-eng"
332
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowercase : List[str] = logging.get_logger('transformers.models.encodec') _lowercase : str = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } _lowercase : str = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } _lowercase : Union[str, Any] = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } _lowercase : Union[str, Any] = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } _lowercase : Union[str, Any] = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } _lowercase : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowercase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowercase : Dict = [] _lowercase : int = [] def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] , snake_case_ :Any , snake_case_ :Tuple ): for attribute in key.split('''.''' ): __UpperCAmelCase = getattr(snake_case_ , snake_case_ ) if weight_type is not None: __UpperCAmelCase = getattr(snake_case_ , snake_case_ ).shape else: __UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase = value elif weight_type == "weight_g": __UpperCAmelCase = value elif weight_type == "weight_v": __UpperCAmelCase = value elif weight_type == "bias": __UpperCAmelCase = value elif weight_type == "running_mean": __UpperCAmelCase = value elif weight_type == "running_var": __UpperCAmelCase = value elif weight_type == "num_batches_tracked": __UpperCAmelCase = value elif weight_type == "weight_ih_l0": __UpperCAmelCase = value elif weight_type == "weight_hh_l0": __UpperCAmelCase = value elif weight_type == "bias_ih_l0": __UpperCAmelCase = value elif weight_type == "bias_hh_l0": __UpperCAmelCase = value elif weight_type == "weight_ih_l1": __UpperCAmelCase = value elif weight_type == "weight_hh_l1": __UpperCAmelCase = value elif weight_type == "bias_ih_l1": __UpperCAmelCase = value elif weight_type == "bias_hh_l1": __UpperCAmelCase = value else: __UpperCAmelCase = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :str ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCAmelCase , __UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :int , snake_case_ :Dict ): __UpperCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": __UpperCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": __UpperCAmelCase = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(snake_case_ , snake_case_ ): logger.info(F'''{name} was ignored''' ) continue __UpperCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: __UpperCAmelCase , __UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: __UpperCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue __UpperCAmelCase = True if "*" in mapped_key: __UpperCAmelCase = name.split(snake_case_ )[0].split('''.''' )[-2] __UpperCAmelCase = mapped_key.replace('''*''' , snake_case_ ) if "weight_g" in name: __UpperCAmelCase = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase = '''weight_v''' elif "weight_ih_l0" in name: __UpperCAmelCase = '''weight_ih_l0''' elif "weight_hh_l0" in name: __UpperCAmelCase = '''weight_hh_l0''' elif "bias_ih_l0" in name: __UpperCAmelCase = '''bias_ih_l0''' elif "bias_hh_l0" in name: __UpperCAmelCase = '''bias_hh_l0''' elif "weight_ih_l1" in name: __UpperCAmelCase = '''weight_ih_l1''' elif "weight_hh_l1" in name: __UpperCAmelCase = '''weight_hh_l1''' elif "bias_ih_l1" in name: __UpperCAmelCase = '''bias_ih_l1''' elif "bias_hh_l1" in name: __UpperCAmelCase = '''bias_hh_l1''' elif "bias" in name: __UpperCAmelCase = '''bias''' elif "weight" in name: __UpperCAmelCase = '''weight''' elif "running_mean" in name: __UpperCAmelCase = '''running_mean''' elif "running_var" in name: __UpperCAmelCase = '''running_var''' elif "num_batches_tracked" in name: __UpperCAmelCase = '''num_batches_tracked''' else: __UpperCAmelCase = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[str] , snake_case_ :Optional[int] , snake_case_ :Tuple=None , snake_case_ :int=None , ): if config_path is not None: __UpperCAmelCase = EncodecConfig.from_pretrained(snake_case_ ) else: __UpperCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __UpperCAmelCase = [8, 5, 4, 4] __UpperCAmelCase = [2.2] __UpperCAmelCase = 64 __UpperCAmelCase = 32_000 __UpperCAmelCase = 2_048 __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False elif model_name == "encodec_48khz": __UpperCAmelCase = [8, 5, 4, 2] __UpperCAmelCase = [3.0, 6.0, 12.0, 24.0] __UpperCAmelCase = 48_000 __UpperCAmelCase = 2 __UpperCAmelCase = False __UpperCAmelCase = '''time_group_norm''' __UpperCAmelCase = True __UpperCAmelCase = 1.0 __UpperCAmelCase = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) __UpperCAmelCase = EncodecModel(snake_case_ ) __UpperCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(snake_case_ ) __UpperCAmelCase = torch.load(snake_case_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __UpperCAmelCase = original_checkpoint['''best_state'''] recursively_load_weights(snake_case_ , snake_case_ , snake_case_ ) model.save_pretrained(snake_case_ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(snake_case_ ) model.push_to_hub(snake_case_ ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowercase : Optional[int] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
332
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
1
"""simple docstring""" import numpy as np def lowercase__ ( snake_case_ :np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
332
"""simple docstring""" import argparse import copy def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ): with open(snake_case_ ) as f: __UpperCAmelCase = f.read(1 ) __UpperCAmelCase = start_node __UpperCAmelCase = [] __UpperCAmelCase = start_node __UpperCAmelCase = 0 while visiting not in first_solution: __UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: __UpperCAmelCase = k[1] __UpperCAmelCase = k[0] first_solution.append(snake_case_ ) __UpperCAmelCase = distance_of_first_solution + int(snake_case_ ) __UpperCAmelCase = best_node first_solution.append(snake_case_ ) __UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ): __UpperCAmelCase = [] for n in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) for kn in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) if n == kn: continue __UpperCAmelCase = copy.deepcopy(snake_case_ ) __UpperCAmelCase = kn __UpperCAmelCase = n __UpperCAmelCase = 0 for k in _tmp[:-1]: __UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = first_solution __UpperCAmelCase = [] __UpperCAmelCase = distance_of_first_solution __UpperCAmelCase = solution while count <= iters: __UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = neighborhood[index_of_best_solution] __UpperCAmelCase = len(snake_case_ ) - 1 __UpperCAmelCase = False while not found: __UpperCAmelCase = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: __UpperCAmelCase = best_solution[i] __UpperCAmelCase = solution[i] break __UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCAmelCase = True __UpperCAmelCase = best_solution[:-1] __UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCAmelCase = cost __UpperCAmelCase = solution else: __UpperCAmelCase = index_of_best_solution + 1 __UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) __UpperCAmelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( snake_case_ :str=None ): __UpperCAmelCase = generate_neighbours(args.File ) __UpperCAmelCase , __UpperCAmelCase = generate_first_solution( args.File , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = tabu_search( snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
332
1
"""simple docstring""" def lowercase__ ( snake_case_ :int = 100 ): __UpperCAmelCase = 0 __UpperCAmelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
332
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = ["pixel_values"] def __init__( self : int , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Dict , ): super().__init__(**_lowercase ) __UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_24} __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='''crop_size''' ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase = do_convert_rgb def a ( self : Union[str, Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase = get_resize_output_image_size(_lowercase , size=size['''shortest_edge'''] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): __UpperCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase ) def a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : List[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Optional[int] , ): __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(_lowercase , param_name='''size''' , default_to_square=_lowercase ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' , default_to_square=_lowercase ) __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
332
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
1