code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import os
from collections.abc import Iterator
def lowercase__ ( snake_case_ :str = "." ):
for dir_path, dir_names, filenames in os.walk(snake_case_ ):
__UpperCAmelCase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._''']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(snake_case_ )[1] in (".py", ".ipynb"):
yield os.path.join(snake_case_ , snake_case_ ).lstrip('''./''' )
def lowercase__ ( snake_case_ :Tuple ):
return F'''{i * " "}*''' if i else "\n##"
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(snake_case_ ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(snake_case_ )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def lowercase__ ( snake_case_ :str = "." ):
__UpperCAmelCase = ''''''
for filepath in sorted(good_file_paths(snake_case_ ) ):
__UpperCAmelCase , __UpperCAmelCase = os.path.split(snake_case_ )
if filepath != old_path:
__UpperCAmelCase = print_path(snake_case_ , snake_case_ )
__UpperCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
__UpperCAmelCase = F'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' )
__UpperCAmelCase = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0]
print(F'''{md_prefix(snake_case_ )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('.')
| 332 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_lowercase : Optional[int] = logging.get_logger(__name__)
_lowercase : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_lowercase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
a__ : str = field(
default=_lowerCAmelCase , metadata={"help": "Model type selected in the list: " + ", ".join(_lowerCAmelCase )} )
a__ : str = field(
default=_lowerCAmelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} )
a__ : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
a__ : int = field(
default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
a__ : int = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
a__ : int = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
a__ : bool = field(
default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
a__ : bool = field(
default=_lowerCAmelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} )
a__ : float = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} )
a__ : int = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} )
a__ : int = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
a__ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} )
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[Any] = "train"
a__ : int = "dev"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : SquadDataTrainingArguments
a__ : List[SquadFeatures]
a__ : Split
a__ : bool
def __init__( self : List[str] , _lowercase : SquadDataTrainingArguments , _lowercase : PreTrainedTokenizer , _lowercase : Optional[int] = None , _lowercase : Union[str, Split] = Split.train , _lowercase : Optional[bool] = False , _lowercase : Optional[str] = None , _lowercase : Optional[str] = "pt" , ):
__UpperCAmelCase = args
__UpperCAmelCase = is_language_sensitive
__UpperCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowercase , _lowercase ):
try:
__UpperCAmelCase = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
__UpperCAmelCase = mode
# Load data features from cache or dataset file
__UpperCAmelCase = '''v2''' if args.version_2_with_negative else '''v1'''
__UpperCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__UpperCAmelCase = cached_features_file + '''.lock'''
with FileLock(_lowercase ):
if os.path.exists(_lowercase ) and not args.overwrite_cache:
__UpperCAmelCase = time.time()
__UpperCAmelCase = torch.load(_lowercase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__UpperCAmelCase = self.old_features['''features''']
__UpperCAmelCase = self.old_features.get('''dataset''' , _lowercase )
__UpperCAmelCase = self.old_features.get('''examples''' , _lowercase )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
''' future run''' )
else:
if mode == Split.dev:
__UpperCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
__UpperCAmelCase = self.processor.get_train_examples(args.data_dir )
__UpperCAmelCase , __UpperCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , )
__UpperCAmelCase = time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowercase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self : Any ):
return len(self.features )
def __getitem__( self : int , _lowercase : Union[str, Any] ):
# Convert to Tensors and build dataset
__UpperCAmelCase = self.features[i]
__UpperCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
__UpperCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
__UpperCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
__UpperCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
__UpperCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
__UpperCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__UpperCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
__UpperCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 332 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowercase : List[str] = {
'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'],
'tokenization_xlm': ['XLMTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'XLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLMForMultipleChoice',
'XLMForQuestionAnswering',
'XLMForQuestionAnsweringSimple',
'XLMForSequenceClassification',
'XLMForTokenClassification',
'XLMModel',
'XLMPreTrainedModel',
'XLMWithLMHeadModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLMForMultipleChoice',
'TFXLMForQuestionAnsweringSimple',
'TFXLMForSequenceClassification',
'TFXLMForTokenClassification',
'TFXLMMainLayer',
'TFXLMModel',
'TFXLMPreTrainedModel',
'TFXLMWithLMHeadModel',
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
_lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int , snake_case_ :list ):
_enforce_args(snake_case_ , snake_case_ )
if n == 0:
return 0
__UpperCAmelCase = float('''-inf''' )
for i in range(1 , n + 1 ):
__UpperCAmelCase = max(
snake_case_ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case_ ) )
return max_revue
def lowercase__ ( snake_case_ :int , snake_case_ :list ):
_enforce_args(snake_case_ , snake_case_ )
__UpperCAmelCase = [float('''-inf''' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :list , snake_case_ :list ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
__UpperCAmelCase = float('''-inf''' )
for i in range(1 , n + 1 ):
__UpperCAmelCase = max(
snake_case_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case_ , snake_case_ ) , )
__UpperCAmelCase = max_revenue
return max_rev[n]
def lowercase__ ( snake_case_ :int , snake_case_ :list ):
_enforce_args(snake_case_ , snake_case_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
__UpperCAmelCase = [float('''-inf''' ) for _ in range(n + 1 )]
__UpperCAmelCase = 0
for i in range(1 , n + 1 ):
__UpperCAmelCase = max_rev[i]
for j in range(1 , i + 1 ):
__UpperCAmelCase = max(snake_case_ , prices[j - 1] + max_rev[i - j] )
__UpperCAmelCase = max_revenue_i
return max_rev[n]
def lowercase__ ( snake_case_ :int , snake_case_ :list ):
if n < 0:
__UpperCAmelCase = F'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(snake_case_ )
if n > len(snake_case_ ):
__UpperCAmelCase = (
'''Each integral piece of rod must have a corresponding price. '''
F'''Got n = {n} but length of prices = {len(snake_case_ )}'''
)
raise ValueError(snake_case_ )
def lowercase__ ( ):
__UpperCAmelCase = [6, 10, 12, 15, 20, 23]
__UpperCAmelCase = len(snake_case_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
__UpperCAmelCase = 36
__UpperCAmelCase = top_down_cut_rod(snake_case_ , snake_case_ )
__UpperCAmelCase = bottom_up_cut_rod(snake_case_ , snake_case_ )
__UpperCAmelCase = naive_cut_rod_recursive(snake_case_ , snake_case_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 332 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 1 |
"""simple docstring"""
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
_lowercase : List[Any] = logging.getLogger()
def lowercase__ ( snake_case_ :Any ):
__UpperCAmelCase = {}
__UpperCAmelCase = os.path.join(snake_case_ , '''all_results.json''' )
if os.path.exists(snake_case_ ):
with open(snake_case_ , '''r''' ) as f:
__UpperCAmelCase = json.load(snake_case_ )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
_lowercase : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple ):
import xla_spawn
__UpperCAmelCase = self.get_auto_remove_tmp_dir()
__UpperCAmelCase = F'''
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(_lowercase , '''argv''' , _lowercase ):
__UpperCAmelCase = time()
xla_spawn.main()
__UpperCAmelCase = time()
__UpperCAmelCase = get_results(_lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 5_00 )
def a ( self : Optional[Any] ):
import xla_spawn
__UpperCAmelCase = '''
./tests/test_trainer_tpu.py
--num_cores=8
./tests/test_trainer_tpu.py
'''.split()
with patch.object(_lowercase , '''argv''' , _lowercase ):
xla_spawn.main()
| 332 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def lowercase__ ( snake_case_ :int , snake_case_ :int = 2 , snake_case_ :int = 1 , snake_case_ :int = 3 , ):
# A value less than 2 can cause an infinite loop in the algorithm.
if num < 2:
raise ValueError('''The input value cannot be less than 2''' )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(snake_case_ :int , snake_case_ :int , snake_case_ :int ) -> int:
return (pow(snake_case_ , 2 ) + step) % modulus
for _ in range(snake_case_ ):
# These track the position within the cycle detection logic.
__UpperCAmelCase = seed
__UpperCAmelCase = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
__UpperCAmelCase = rand_fn(snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = rand_fn(snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = rand_fn(snake_case_ , snake_case_ , snake_case_ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
__UpperCAmelCase = gcd(hare - tortoise , snake_case_ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
__UpperCAmelCase = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'num',
type=int,
help='The value to find a divisor of',
)
parser.add_argument(
'--attempts',
type=int,
default=3,
help='The number of attempts before giving up',
)
_lowercase : Optional[int] = parser.parse_args()
_lowercase : Optional[int] = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(f"""{args.num} is probably prime""")
else:
_lowercase : List[str] = args.num // divisor
print(f"""{args.num} = {divisor} * {quotient}""")
| 332 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : List[Any] = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
_lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 1 |
"""simple docstring"""
import pytest
_lowercase : str = '__dummy_dataset1__'
_lowercase : Tuple = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def lowercase__ ( ):
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def lowercase__ ( ):
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Optional[int] , snake_case_ :Any ):
__UpperCAmelCase = dataset_loading_script_name
__UpperCAmelCase = tmp_path / '''datasets''' / script_name
script_dir.mkdir(parents=snake_case_ )
__UpperCAmelCase = script_dir / F'''{script_name}.py'''
with open(snake_case_ , '''w''' ) as f:
f.write(snake_case_ )
return str(snake_case_ )
| 332 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 1 |
"""simple docstring"""
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_lowercase : Union[str, Any] = get_tests_dir('fixtures')
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Any ):
# A mock response for an HTTP head request to emulate server down
__UpperCAmelCase = mock.Mock()
__UpperCAmelCase = 5_00
__UpperCAmelCase = {}
__UpperCAmelCase = HTTPError
__UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_lowercase ) as mock_head:
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# This check we did call the fake head request
mock_head.assert_called()
def a ( self : Optional[int] ):
# This test is for deprecated behavior and can be removed in v5
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' )
@is_staging_test
class _UpperCAmelCase ( unittest.TestCase ):
@classmethod
def a ( cls : Optional[int] ):
__UpperCAmelCase = TOKEN
HfFolder.save_token(_lowercase )
@classmethod
def a ( cls : Tuple ):
try:
delete_repo(token=cls._token , repo_id='''test-feature-extractor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' )
except HTTPError:
pass
def a ( self : Optional[int] ):
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase )
feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token )
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_lowercase , repo_id='''test-feature-extractor''' , push_to_hub=_lowercase , use_auth_token=self._token )
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
def a ( self : int ):
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase )
feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token )
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_lowercase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_lowercase , use_auth_token=self._token )
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
def a ( self : int ):
CustomFeatureExtractor.register_for_auto_class()
__UpperCAmelCase = CustomFeatureExtractor.from_pretrained(_lowercase )
feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , )
__UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=_lowercase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
| 332 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _UpperCAmelCase :
def __init__( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any]=13 , _lowercase : str=7 , _lowercase : int=True , _lowercase : str=True , _lowercase : Dict=True , _lowercase : Optional[int]=99 , _lowercase : str=32 , _lowercase : Dict=5 , _lowercase : Dict=4 , _lowercase : Optional[int]=37 , _lowercase : List[Any]="gelu" , _lowercase : List[Any]=0.1 , _lowercase : int=0.1 , _lowercase : List[str]=5_12 , _lowercase : str=16 , _lowercase : Tuple=2 , _lowercase : Optional[Any]=0.02 , _lowercase : Dict=3 , _lowercase : Dict=4 , _lowercase : Tuple=None , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_token_type_ids
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = type_sequence_label_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = num_labels
__UpperCAmelCase = num_choices
__UpperCAmelCase = scope
__UpperCAmelCase = self.vocab_size - 1
def a ( self : str ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_token_type_ids:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def a ( self : Dict , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : List[str] , _lowercase : List[str] , *_lowercase : Tuple ):
__UpperCAmelCase = OpenAIGPTModel(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase )
__UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase )
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Any , *_lowercase : List[Any] ):
__UpperCAmelCase = OpenAIGPTLMHeadModel(_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : List[str] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : str , *_lowercase : Dict ):
__UpperCAmelCase = OpenAIGPTDoubleHeadsModel(_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : List[Any] , _lowercase : Dict , _lowercase : str , _lowercase : List[str] , _lowercase : List[Any] , *_lowercase : Any ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = OpenAIGPTForSequenceClassification(_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) = config_and_inputs
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[int] = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
a__ : Any = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
a__ : Any = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Any , _lowercase : int , _lowercase : int , _lowercase : Optional[int] ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def a ( self : str , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : int=False ):
__UpperCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase , )
__UpperCAmelCase = inputs_dict['''labels''']
__UpperCAmelCase = inputs_dict['''labels''']
__UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowercase , )
__UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowercase )
return inputs_dict
def a ( self : Optional[Any] ):
__UpperCAmelCase = OpenAIGPTModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 )
def a ( self : Optional[int] ):
self.config_tester.run_common_tests()
def a ( self : int ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_lowercase )
def a ( self : Any ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_lowercase )
def a ( self : int ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowercase )
@slow
def a ( self : Union[str, Any] ):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = OpenAIGPTModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(_lowercase )
__UpperCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_lowercase ) # the president is
__UpperCAmelCase = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__UpperCAmelCase = model.generate(_lowercase , do_sample=_lowercase )
self.assertListEqual(output_ids[0].tolist() , _lowercase )
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : List[Any] = logging.get_logger(__name__)
_lowercase : Optional[Any] = {
'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json',
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "data2vec-text"
def __init__( self : Optional[int] , _lowercase : Tuple=3_05_22 , _lowercase : Optional[int]=7_68 , _lowercase : List[str]=12 , _lowercase : Dict=12 , _lowercase : List[str]=30_72 , _lowercase : Optional[Any]="gelu" , _lowercase : Any=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : List[str]=5_12 , _lowercase : Union[str, Any]=2 , _lowercase : Dict=0.02 , _lowercase : Tuple=1E-12 , _lowercase : int=1 , _lowercase : List[str]=0 , _lowercase : int=2 , _lowercase : List[str]="absolute" , _lowercase : Tuple=True , _lowercase : Union[str, Any]=None , **_lowercase : Optional[int] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
__UpperCAmelCase = classifier_dropout
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : str ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 332 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 1 |
"""simple docstring"""
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def lowercase__ ( snake_case_ :dict ):
return (data["data"], data["target"])
def lowercase__ ( snake_case_ :np.ndarray , snake_case_ :np.ndarray ):
__UpperCAmelCase = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def lowercase__ ( ):
__UpperCAmelCase = load_iris()
__UpperCAmelCase , __UpperCAmelCase = data_handling(snake_case_ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
__UpperCAmelCase = iris['''target_names''']
# Create an XGBoost Classifier from the training data
__UpperCAmelCase = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap='''Blues''' , normalize='''true''' , )
plt.title('''Normalized Confusion Matrix - IRIS Dataset''' )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 332 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 1 |
"""simple docstring"""
from math import factorial
_lowercase : List[Any] = {str(d): factorial(d) for d in range(10)}
def lowercase__ ( snake_case_ :int ):
return sum(DIGIT_FACTORIAL[d] for d in str(snake_case_ ) )
def lowercase__ ( ):
__UpperCAmelCase = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , snake_case_ ) if sum_of_digit_factorial(snake_case_ ) == i )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 332 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : int
class _UpperCAmelCase :
def __init__( self : str , _lowercase : int ):
__UpperCAmelCase = [[] for _ in range(_lowercase )]
__UpperCAmelCase = size
def __getitem__( self : str , _lowercase : int ):
return iter(self._graph[vertex] )
@property
def a ( self : Optional[Any] ):
return self._size
def a ( self : int , _lowercase : int , _lowercase : int , _lowercase : int ):
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(_lowercase , _lowercase ) )
def a ( self : Dict , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = deque([start_vertex] )
__UpperCAmelCase = [None] * self.size
__UpperCAmelCase = 0
while queue:
__UpperCAmelCase = queue.popleft()
__UpperCAmelCase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__UpperCAmelCase = current_distance + edge.weight
__UpperCAmelCase = distances[edge.destination_vertex]
if (
isinstance(_lowercase , _lowercase )
and new_distance >= dest_vertex_distance
):
continue
__UpperCAmelCase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 1 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[int] = IFInpaintingSuperResolutionPipeline
a__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
a__ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
a__ : List[str] = PipelineTesterMixin.required_optional_params - {"latents"}
def a ( self : int ):
return self._get_superresolution_dummy_components()
def a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=0 ):
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def a ( self : Optional[Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def a ( self : Optional[Any] ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def a ( self : Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def a ( self : Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def a ( self : Optional[int] ):
self._test_save_load_local()
def a ( self : List[Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 332 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int = 2_000_000 ):
__UpperCAmelCase = [0 for i in range(n + 1 )]
__UpperCAmelCase = 1
__UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , snake_case_ ):
__UpperCAmelCase = 1
__UpperCAmelCase = 0
for i in range(snake_case_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f"""{solution() = }""")
| 332 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 1 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _UpperCAmelCase ( unittest.TestCase ):
a__ : List[Any] = JukeboxTokenizer
a__ : str = {
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def a ( self : Union[str, Any] ):
import torch
__UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' )
__UpperCAmelCase = tokenizer(**self.metas )['''input_ids''']
# fmt: off
__UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def a ( self : Optional[Any] ):
import torch
__UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' )
__UpperCAmelCase = tokenizer(**self.metas )['''input_ids''']
# fmt: off
__UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 332 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowercase : Optional[int] = logging.get_logger(__name__)
_lowercase : List[Any] = {
'nielsr/canine-s': 20_48,
}
# Unicode defines 1,114,112 total “codepoints”
_lowercase : int = 1_11_41_12
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowercase : Dict = 0
_lowercase : Union[str, Any] = 0XE0_00
_lowercase : Tuple = 0XE0_01
_lowercase : Union[str, Any] = 0XE0_02
_lowercase : Any = 0XE0_03
_lowercase : Optional[Any] = 0XE0_04
# Maps special codepoints to human-readable names.
_lowercase : Dict[int, str] = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowercase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[Any] , _lowercase : Dict=chr(_lowercase ) , _lowercase : str=chr(_lowercase ) , _lowercase : Dict=chr(_lowercase ) , _lowercase : Tuple=chr(_lowercase ) , _lowercase : List[Any]=chr(_lowercase ) , _lowercase : Optional[Any]=chr(_lowercase ) , _lowercase : List[str]=False , _lowercase : List[str]=20_48 , **_lowercase : Union[str, Any] , ):
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token
super().__init__(
bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , model_max_length=_lowercase , **_lowercase , )
# Creates a mapping for looking up the IDs of special symbols.
__UpperCAmelCase = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
__UpperCAmelCase = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
__UpperCAmelCase = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
__UpperCAmelCase = UNICODE_VOCAB_SIZE
__UpperCAmelCase = len(self._special_codepoints )
@property
def a ( self : List[str] ):
return self._unicode_vocab_size
def a ( self : Optional[Any] , _lowercase : str ):
return list(_lowercase )
def a ( self : Union[str, Any] , _lowercase : str ):
try:
return ord(_lowercase )
except TypeError:
raise ValueError(F'''invalid token: \'{token}\'''' )
def a ( self : List[Any] , _lowercase : int ):
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(_lowercase )
except TypeError:
raise ValueError(F'''invalid id: {index}''' )
def a ( self : Union[str, Any] , _lowercase : Dict ):
return "".join(_lowercase )
def a ( self : int , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
__UpperCAmelCase = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase )
__UpperCAmelCase = [1] + ([0] * len(_lowercase )) + [1]
if token_ids_a is not None:
result += ([0] * len(_lowercase )) + [1]
return result
def a ( self : int , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
__UpperCAmelCase = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ):
return ()
| 332 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 1 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowercase : List[str] = logging.get_logger(__name__)
_lowercase : Optional[Any] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
_lowercase : List[str] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def lowercase__ ( snake_case_ :List[str] ):
__UpperCAmelCase = {}
with open(snake_case_ , '''r''' ) as file:
for line_number, line in enumerate(snake_case_ ):
__UpperCAmelCase = line.strip()
if line:
__UpperCAmelCase = line.split()
__UpperCAmelCase = line_number
__UpperCAmelCase = words[0]
__UpperCAmelCase = value
return result
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :str , snake_case_ :Tuple ):
for attribute in key.split('''.''' ):
__UpperCAmelCase = getattr(snake_case_ , snake_case_ )
__UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case_ ):
__UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__UpperCAmelCase = '''param'''
if weight_type is not None and weight_type != "param":
__UpperCAmelCase = getattr(snake_case_ , snake_case_ ).shape
elif weight_type is not None and weight_type == "param":
__UpperCAmelCase = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__UpperCAmelCase = getattr(snake_case_ , snake_case_ )
__UpperCAmelCase = shape_pointer.shape
# let's reduce dimension
__UpperCAmelCase = value[0]
else:
__UpperCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
__UpperCAmelCase = value
elif weight_type == "weight_g":
__UpperCAmelCase = value
elif weight_type == "weight_v":
__UpperCAmelCase = value
elif weight_type == "bias":
__UpperCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__UpperCAmelCase = getattr(snake_case_ , snake_case_ )
__UpperCAmelCase = value
else:
__UpperCAmelCase = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowercase__ ( snake_case_ :Dict , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :int , snake_case_ :int ):
__UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case_ ):
__UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__UpperCAmelCase = '''param'''
if weight_type is not None and weight_type != "param":
__UpperCAmelCase = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCAmelCase = '''.'''.join([key, hf_param_name] )
else:
__UpperCAmelCase = key
__UpperCAmelCase = value if '''lm_head''' in full_key else value[0]
_lowercase : Any = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Tuple , snake_case_ :Optional[int]=None , snake_case_ :List[Any]=None ):
__UpperCAmelCase = False
for key, mapped_key in MAPPING.items():
__UpperCAmelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__UpperCAmelCase = True
if "*" in mapped_key:
__UpperCAmelCase = name.split(snake_case_ )[0].split('''.''' )[-2]
__UpperCAmelCase = mapped_key.replace('''*''' , snake_case_ )
if "weight_g" in name:
__UpperCAmelCase = '''weight_g'''
elif "weight_v" in name:
__UpperCAmelCase = '''weight_v'''
elif "bias" in name:
__UpperCAmelCase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCAmelCase = '''weight'''
else:
__UpperCAmelCase = None
if hf_dict is not None:
rename_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
else:
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
return is_used
return is_used
def lowercase__ ( snake_case_ :int , snake_case_ :str , snake_case_ :List[Any] ):
__UpperCAmelCase = []
__UpperCAmelCase = fairseq_model.state_dict()
__UpperCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == '''group''' , )
__UpperCAmelCase = True
else:
__UpperCAmelCase = load_wavaveca_layer(snake_case_ , snake_case_ , snake_case_ )
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = full_name.split('''conv_layers.''' )[-1]
__UpperCAmelCase = name.split('''.''' )
__UpperCAmelCase = int(items[0] )
__UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
__UpperCAmelCase = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
__UpperCAmelCase = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
__UpperCAmelCase = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
__UpperCAmelCase = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def lowercase__ ( snake_case_ :Dict , snake_case_ :str , snake_case_ :Optional[Any]=None , snake_case_ :List[Any]=None , snake_case_ :Tuple=True , snake_case_ :Optional[Any]=False ):
if config_path is not None:
__UpperCAmelCase = WavaVecaConfig.from_pretrained(snake_case_ )
else:
__UpperCAmelCase = WavaVecaConfig()
if is_seq_class:
__UpperCAmelCase = read_txt_into_dict(snake_case_ )
__UpperCAmelCase = idalabel
__UpperCAmelCase = WavaVecaForSequenceClassification(snake_case_ )
__UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , )
feature_extractor.save_pretrained(snake_case_ )
elif is_finetuned:
if dict_path:
__UpperCAmelCase = Dictionary.load(snake_case_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase = target_dict.pad_index
__UpperCAmelCase = target_dict.bos_index
__UpperCAmelCase = target_dict.eos_index
__UpperCAmelCase = len(target_dict.symbols )
__UpperCAmelCase = os.path.join(snake_case_ , '''vocab.json''' )
if not os.path.isdir(snake_case_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case_ ) )
return
os.makedirs(snake_case_ , exist_ok=snake_case_ )
__UpperCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCAmelCase = 0
__UpperCAmelCase = 1
with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(snake_case_ , snake_case_ )
__UpperCAmelCase = WavaVecaCTCTokenizer(
snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case_ , )
__UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False
__UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , )
__UpperCAmelCase = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ )
processor.save_pretrained(snake_case_ )
__UpperCAmelCase = WavaVecaForCTC(snake_case_ )
else:
__UpperCAmelCase = WavaVecaForPreTraining(snake_case_ )
if is_finetuned or is_seq_class:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' )
__UpperCAmelCase = fairseq.tasks.setup_task(snake_case_ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case_ )
__UpperCAmelCase = model[0].eval()
recursively_load_weights(snake_case_ , snake_case_ , not is_finetuned )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
_lowercase : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
_lowercase : Dict = parser.parse_args()
_lowercase : int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 1 |
"""simple docstring"""
_lowercase : List[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : Optional[int] = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int = 3 , snake_case_ :int = 7 , snake_case_ :int = 1_000_000 ):
__UpperCAmelCase = 0
__UpperCAmelCase = 1
for current_denominator in range(1 , limit + 1 ):
__UpperCAmelCase = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__UpperCAmelCase = current_numerator
__UpperCAmelCase = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_00_00_00))
| 332 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_lowercase : Dict = logging.get_logger(__name__)
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = ["pixel_values"]
def __init__( self : str , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PIL.Image.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : int , ):
super().__init__(**_lowercase )
__UpperCAmelCase = size if size is not None else {'''height''': 2_56, '''width''': 2_56}
__UpperCAmelCase = get_size_dict(_lowercase )
__UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' )
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = resample
__UpperCAmelCase = do_center_crop
__UpperCAmelCase = crop_size
__UpperCAmelCase = do_rescale
__UpperCAmelCase = rescale_factor
__UpperCAmelCase = do_normalize
__UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a ( self : Tuple , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PIL.Image.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ):
__UpperCAmelCase = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
_lowercase , size=(size['''height'''], size['''width''']) , resample=_lowercase , data_format=_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[Any] , ):
__UpperCAmelCase = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase )
def a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Any , ):
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def a ( self : Dict , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ):
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Dict=None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : List[Any] , ):
__UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase = resample if resample is not None else self.resample
__UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase = image_std if image_std is not None else self.image_std
__UpperCAmelCase = size if size is not None else self.size
__UpperCAmelCase = get_size_dict(_lowercase )
__UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' )
__UpperCAmelCase = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCAmelCase = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
__UpperCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images]
if do_center_crop:
__UpperCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images]
if do_rescale:
__UpperCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images]
if do_normalize:
__UpperCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images]
__UpperCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
__UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 332 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 1 |
"""simple docstring"""
import math
import random
def lowercase__ ( snake_case_ :float , snake_case_ :bool = False ):
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
_lowercase : Union[str, Any] = 0.02
def lowercase__ ( snake_case_ :int , snake_case_ :int ):
__UpperCAmelCase = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(snake_case_ ):
# Forward propagation
__UpperCAmelCase = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
__UpperCAmelCase = (expected / 100) - layer_a
# Error delta
__UpperCAmelCase = layer_1_error * sigmoid_function(snake_case_ , snake_case_ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : Any = int(input('Expected value: '))
_lowercase : Tuple = int(input('Number of propagations: '))
print(forward_propagation(expected, number_propagations))
| 332 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
_lowercase : List[str] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
_lowercase : Dict = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
_lowercase : Dict = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def a ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'''
] , )
def a ( self : Optional[Any] ):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('''float''' ) ),
"references": datasets.Sequence(datasets.Value('''float''' ) ),
}
else:
return {
"predictions": datasets.Value('''float''' ),
"references": datasets.Value('''float''' ),
}
def a ( self : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=None , _lowercase : List[Any]="uniform_average" , _lowercase : Tuple=True ):
__UpperCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 332 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[int] = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = "ibert"
def __init__( self : List[str] , _lowercase : Dict=3_05_22 , _lowercase : List[Any]=7_68 , _lowercase : Optional[Any]=12 , _lowercase : Optional[int]=12 , _lowercase : Tuple=30_72 , _lowercase : Optional[Any]="gelu" , _lowercase : Any=0.1 , _lowercase : Optional[Any]=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : List[str]=2 , _lowercase : Dict=0.02 , _lowercase : Tuple=1E-12 , _lowercase : Any=1 , _lowercase : Any=0 , _lowercase : Tuple=2 , _lowercase : str="absolute" , _lowercase : Optional[Any]=False , _lowercase : int="none" , **_lowercase : List[Any] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = quant_mode
__UpperCAmelCase = force_dequant
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : int ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 332 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 1 |
"""simple docstring"""
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
_lowercase : Tuple = datasets.utils.logging.get_logger(__name__)
class _UpperCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ):
a__ : bool = None
a__ : bool = None
class _UpperCAmelCase ( folder_based_builder.FolderBasedBuilder ):
a__ : Tuple = datasets.Audio()
a__ : Optional[Any] = "audio"
a__ : Union[str, Any] = AudioFolderConfig
a__ : List[str] # definition at the bottom of the script
a__ : Union[str, Any] = AudioClassification(audio_column="audio" , label_column="label" )
_lowercase : int = [
'.aiff',
'.au',
'.avr',
'.caf',
'.flac',
'.htk',
'.svx',
'.mat4',
'.mat5',
'.mpc2k',
'.ogg',
'.paf',
'.pvf',
'.raw',
'.rf64',
'.sd2',
'.sds',
'.ircam',
'.voc',
'.w64',
'.wav',
'.nist',
'.wavex',
'.wve',
'.xi',
'.mp3',
'.opus',
]
_lowercase : List[Any] = AUDIO_EXTENSIONS
| 332 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 1 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 1 |
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : Any = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
_lowercase : Union[str, Any] = {
'allenai/led-base-16384': 1_63_84,
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = LEDTokenizer
a__ : Optional[Any] = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , _lowercase : Any=None , _lowercase : Union[str, Any]=None , _lowercase : Tuple=None , _lowercase : List[Any]="replace" , _lowercase : Optional[int]="<s>" , _lowercase : List[str]="</s>" , _lowercase : Any="</s>" , _lowercase : Optional[int]="<s>" , _lowercase : Dict="<unk>" , _lowercase : List[str]="<pad>" , _lowercase : Any="<mask>" , _lowercase : Tuple=False , _lowercase : Tuple=True , **_lowercase : Dict , ):
super().__init__(
_lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , _lowercase ) != add_prefix_space:
__UpperCAmelCase = getattr(_lowercase , pre_tok_state.pop('''type''' ) )
__UpperCAmelCase = add_prefix_space
__UpperCAmelCase = pre_tok_class(**_lowercase )
__UpperCAmelCase = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__UpperCAmelCase = '''post_processor'''
__UpperCAmelCase = getattr(self.backend_tokenizer , _lowercase , _lowercase )
if tokenizer_component_instance:
__UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__UpperCAmelCase = tuple(state['''sep'''] )
if "cls" in state:
__UpperCAmelCase = tuple(state['''cls'''] )
__UpperCAmelCase = False
if state.get('''add_prefix_space''' , _lowercase ) != add_prefix_space:
__UpperCAmelCase = add_prefix_space
__UpperCAmelCase = True
if state.get('''trim_offsets''' , _lowercase ) != trim_offsets:
__UpperCAmelCase = trim_offsets
__UpperCAmelCase = True
if changes_to_apply:
__UpperCAmelCase = getattr(_lowercase , state.pop('''type''' ) )
__UpperCAmelCase = component_class(**_lowercase )
setattr(self.backend_tokenizer , _lowercase , _lowercase )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def a ( self : List[str] ):
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self : Union[str, Any] , _lowercase : Union[str, Any] ):
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else value
__UpperCAmelCase = value
def a ( self : str , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , _lowercase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'''to use it with pretokenized inputs.''' )
return super()._batch_encode_plus(*_lowercase , **_lowercase )
def a ( self : Tuple , *_lowercase : Dict , **_lowercase : Dict ):
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , _lowercase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'''to use it with pretokenized inputs.''' )
return super()._encode_plus(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
def a ( self : Tuple , _lowercase : List[Any] , _lowercase : Any=None ):
__UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self : int , _lowercase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowercase : Optional[int] = None , _lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , ):
__UpperCAmelCase = super()._pad(
encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , )
# Load from model defaults
if return_attention_mask is None:
__UpperCAmelCase = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__UpperCAmelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__UpperCAmelCase = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowercase )
if needs_to_be_padded:
__UpperCAmelCase = len(_lowercase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__UpperCAmelCase = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
__UpperCAmelCase = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 332 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 1 |
"""simple docstring"""
from manim import *
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : List[Any] ):
__UpperCAmelCase = Rectangle(height=0.5 , width=0.5 )
__UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
__UpperCAmelCase = [mem.copy() for i in range(6 )]
__UpperCAmelCase = [mem.copy() for i in range(6 )]
__UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
__UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
__UpperCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 )
__UpperCAmelCase = Text('''CPU''' , font_size=24 )
__UpperCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowercase )
__UpperCAmelCase = [mem.copy() for i in range(1 )]
__UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
__UpperCAmelCase = Text('''GPU''' , font_size=24 )
__UpperCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
gpu.align_to(_lowercase , _lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowercase )
__UpperCAmelCase = [mem.copy() for i in range(6 )]
__UpperCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 )
__UpperCAmelCase = Text('''Model''' , font_size=24 )
__UpperCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , )
__UpperCAmelCase = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , )
__UpperCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__UpperCAmelCase = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) )
self.add(_lowercase )
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = []
for i, rect in enumerate(_lowercase ):
__UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 )
cpu_target.move_to(_lowercase )
cpu_target.generate_target()
__UpperCAmelCase = 0.46 / 4
__UpperCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 )
cpu_targs.append(_lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) )
second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) )
self.play(*_lowercase )
self.play(*_lowercase )
self.wait()
| 332 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 1 |
"""simple docstring"""
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
@abstractmethod
def a ( _lowercase : ArgumentParser ):
raise NotImplementedError()
@abstractmethod
def a ( self : Union[str, Any] ):
raise NotImplementedError()
| 332 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 1 |
"""simple docstring"""
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 332 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 1 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 1 |
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : str , _lowercase : Any=13 , _lowercase : Optional[int]=7 , _lowercase : Optional[int]=False , _lowercase : List[str]=True , _lowercase : Any=False , _lowercase : Tuple=True , _lowercase : str=33 , _lowercase : Optional[Any]=32 , _lowercase : List[str]=5 , _lowercase : Optional[int]=4 , _lowercase : Union[str, Any]=37 , _lowercase : Any="gelu" , _lowercase : List[str]=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Tuple=5_12 , _lowercase : Optional[int]=16 , _lowercase : Tuple=2 , _lowercase : Optional[int]=0.02 , _lowercase : Tuple=3 , _lowercase : Optional[Any]=4 , _lowercase : Dict=None , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_input_mask
__UpperCAmelCase = use_token_type_ids
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = type_sequence_label_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = num_labels
__UpperCAmelCase = num_choices
__UpperCAmelCase = scope
def a ( self : str ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a ( self : Dict ):
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def a ( self : List[str] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] ):
__UpperCAmelCase = EsmModel(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase )
__UpperCAmelCase = model(_lowercase )
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a ( self : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : str ):
__UpperCAmelCase = EsmForMaskedLM(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : int , _lowercase : int , _lowercase : int , _lowercase : str , _lowercase : str , _lowercase : Optional[int] , _lowercase : List[Any] ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = EsmForTokenClassification(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Dict = False
a__ : Union[str, Any] = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
a__ : Tuple = ()
a__ : Optional[int] = (
{
"feature-extraction": EsmModel,
"fill-mask": EsmForMaskedLM,
"text-classification": EsmForSequenceClassification,
"token-classification": EsmForTokenClassification,
"zero-shot": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
a__ : Any = True
def a ( self : List[Any] ):
__UpperCAmelCase = EsmModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 )
def a ( self : Optional[int] ):
self.config_tester.run_common_tests()
def a ( self : Dict ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowercase )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase = type
self.model_tester.create_and_check_model(*_lowercase )
def a ( self : List[str] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowercase )
def a ( self : int ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowercase )
@slow
def a ( self : Tuple ):
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = EsmModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()[0]
__UpperCAmelCase = EsmEmbeddings(config=_lowercase )
__UpperCAmelCase = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
__UpperCAmelCase = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
__UpperCAmelCase = create_position_ids_from_input_ids(_lowercase , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(_lowercase , _lowercase ) ) )
def a ( self : str ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()[0]
__UpperCAmelCase = EsmEmbeddings(config=_lowercase )
__UpperCAmelCase = torch.empty(2 , 4 , 30 )
__UpperCAmelCase = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
__UpperCAmelCase = torch.as_tensor([expected_single_positions, expected_single_positions] )
__UpperCAmelCase = embeddings.create_position_ids_from_inputs_embeds(_lowercase )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(_lowercase , _lowercase ) ) )
@unittest.skip('''Esm does not support embedding resizing''' )
def a ( self : List[Any] ):
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def a ( self : Optional[int] ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def a ( self : int ):
pass
@require_torch
class _UpperCAmelCase ( _lowerCAmelCase ):
@slow
def a ( self : Union[str, Any] ):
with torch.no_grad():
__UpperCAmelCase = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' )
model.eval()
__UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(_lowercase )[0]
__UpperCAmelCase = 33
__UpperCAmelCase = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , _lowercase )
__UpperCAmelCase = torch.tensor(
[[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
@slow
def a ( self : Optional[int] ):
with torch.no_grad():
__UpperCAmelCase = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' )
model.eval()
__UpperCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
__UpperCAmelCase = model(_lowercase )[0]
# compare the actual values for a slice.
__UpperCAmelCase = torch.tensor(
[[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
| 332 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
_lowercase : int = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Any , snake_case_ :str ):
__UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ )
__UpperCAmelCase = downstream_dict['''projector.weight''']
__UpperCAmelCase = downstream_dict['''projector.bias''']
__UpperCAmelCase = downstream_dict['''model.post_net.linear.weight''']
__UpperCAmelCase = downstream_dict['''model.post_net.linear.bias''']
return model
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :Tuple , snake_case_ :Optional[Any] ):
__UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ )
__UpperCAmelCase = downstream_dict['''model.linear.weight''']
__UpperCAmelCase = downstream_dict['''model.linear.bias''']
return model
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Union[str, Any] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = WavaVecaForXVector.from_pretrained(snake_case_ , config=snake_case_ )
__UpperCAmelCase = downstream_dict['''connector.weight''']
__UpperCAmelCase = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__UpperCAmelCase = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
__UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
__UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
__UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
__UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
__UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
__UpperCAmelCase = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :Optional[int] , snake_case_ :List[str] ):
__UpperCAmelCase = torch.load(snake_case_ , map_location='''cpu''' )
__UpperCAmelCase = checkpoint['''Downstream''']
__UpperCAmelCase = WavaVecaConfig.from_pretrained(snake_case_ )
__UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ )
__UpperCAmelCase = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
__UpperCAmelCase = convert_classification(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('''ForAudioFrameClassification''' ):
__UpperCAmelCase = convert_diarization(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('''ForXVector''' ):
__UpperCAmelCase = convert_xvector(snake_case_ , snake_case_ , snake_case_ )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
__UpperCAmelCase = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(snake_case_ )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
_lowercase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
_lowercase : int = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 332 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :list[int] ):
__UpperCAmelCase = len(snake_case_ )
for i in range(snake_case_ ):
for j in range(i + 1 , snake_case_ ):
if numbers[j] < numbers[i]:
__UpperCAmelCase , __UpperCAmelCase = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
_lowercase : Optional[Any] = input('Enter numbers separated by a comma:\n').strip()
_lowercase : Tuple = [int(item) for item in user_input.split(',')]
print(exchange_sort(unsorted))
| 332 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Dict , _lowercase : int = 0 ):
__UpperCAmelCase = key
def a ( self : Optional[int] , _lowercase : str , _lowercase : int ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
__UpperCAmelCase = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(_lowercase ) ^ key ) for ch in content]
def a ( self : str , _lowercase : str , _lowercase : int ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
__UpperCAmelCase = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(_lowercase ) ^ key ) for ch in content]
def a ( self : Optional[int] , _lowercase : str , _lowercase : int = 0 ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
__UpperCAmelCase = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
__UpperCAmelCase = ''''''
for ch in content:
ans += chr(ord(_lowercase ) ^ key )
return ans
def a ( self : Any , _lowercase : str , _lowercase : int = 0 ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
__UpperCAmelCase = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
__UpperCAmelCase = ''''''
for ch in content:
ans += chr(ord(_lowercase ) ^ key )
return ans
def a ( self : Dict , _lowercase : str , _lowercase : int = 0 ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
try:
with open(_lowercase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_lowercase , _lowercase ) )
except OSError:
return False
return True
def a ( self : int , _lowercase : str , _lowercase : int ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
try:
with open(_lowercase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_lowercase , _lowercase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 332 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : int ):
__UpperCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
__UpperCAmelCase = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
__UpperCAmelCase = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
__UpperCAmelCase = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 1_60_00,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(self.tmpdirname , _lowercase )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
# load decoder from hub
__UpperCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder'''
def a ( self : List[Any] , **_lowercase : List[str] ):
__UpperCAmelCase = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowercase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : Optional[int] , **_lowercase : int ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : str , **_lowercase : Tuple ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowercase )
def a ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowercase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowercase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowercase )
def a ( self : int ):
__UpperCAmelCase = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def a ( self : List[str] ):
__UpperCAmelCase = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(_lowercase , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=_lowercase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def a ( self : List[str] ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__UpperCAmelCase = floats_list((3, 10_00) )
__UpperCAmelCase = feature_extractor(_lowercase , return_tensors='''np''' )
__UpperCAmelCase = processor(_lowercase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def a ( self : int ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__UpperCAmelCase = '''This is a test string'''
__UpperCAmelCase = processor(text=_lowercase )
__UpperCAmelCase = tokenizer(_lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a ( self : Any , _lowercase : Any=(2, 10, 16) , _lowercase : Tuple=77 ):
np.random.seed(_lowercase )
return np.random.rand(*_lowercase )
def a ( self : Tuple ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__UpperCAmelCase = processor.decode(_lowercase )
__UpperCAmelCase = decoder.decode_beams(_lowercase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def a ( self : Any , _lowercase : Dict ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__UpperCAmelCase = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__UpperCAmelCase = processor.batch_decode(_lowercase )
else:
with get_context(_lowercase ).Pool() as pool:
__UpperCAmelCase = processor.batch_decode(_lowercase , _lowercase )
__UpperCAmelCase = list(_lowercase )
with get_context('''fork''' ).Pool() as p:
__UpperCAmelCase = decoder.decode_beams_batch(_lowercase , _lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowercase , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(_lowercase , decoded_processor.logit_score )
self.assertListEqual(_lowercase , decoded_processor.lm_score )
def a ( self : List[Any] ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__UpperCAmelCase = self._get_dummy_logits()
__UpperCAmelCase = 15
__UpperCAmelCase = -20.0
__UpperCAmelCase = -4.0
__UpperCAmelCase = processor.batch_decode(
_lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , )
__UpperCAmelCase = decoded_processor_out.text
__UpperCAmelCase = list(_lowercase )
with get_context('''fork''' ).Pool() as pool:
__UpperCAmelCase = decoder.decode_beams_batch(
_lowercase , _lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , )
__UpperCAmelCase = [d[0][0] for d in decoded_decoder_out]
__UpperCAmelCase = [d[0][2] for d in decoded_decoder_out]
__UpperCAmelCase = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowercase , _lowercase )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _lowercase )
self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowercase , atol=1E-3 ) )
self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , _lowercase , atol=1E-3 ) )
def a ( self : List[str] ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__UpperCAmelCase = self._get_dummy_logits()
__UpperCAmelCase = 2.0
__UpperCAmelCase = 5.0
__UpperCAmelCase = -20.0
__UpperCAmelCase = True
__UpperCAmelCase = processor.batch_decode(
_lowercase , alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , )
__UpperCAmelCase = decoded_processor_out.text
__UpperCAmelCase = list(_lowercase )
decoder.reset_params(
alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , )
with get_context('''fork''' ).Pool() as pool:
__UpperCAmelCase = decoder.decode_beams_batch(
_lowercase , _lowercase , )
__UpperCAmelCase = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowercase , _lowercase )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _lowercase )
__UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowercase )
def a ( self : List[Any] ):
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
__UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
__UpperCAmelCase = os.listdir(_lowercase )
__UpperCAmelCase = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
__UpperCAmelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' )
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(_lowercase )
__UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
__UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
__UpperCAmelCase = os.listdir(_lowercase )
__UpperCAmelCase = os.listdir(_lowercase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowercase , _lowercase )
def a ( self : List[Any] ):
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__UpperCAmelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__UpperCAmelCase = floats_list((3, 10_00) )
__UpperCAmelCase = processor_wavaveca(_lowercase , return_tensors='''np''' )
__UpperCAmelCase = processor_auto(_lowercase , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 )
__UpperCAmelCase = self._get_dummy_logits()
__UpperCAmelCase = processor_wavaveca.batch_decode(_lowercase )
__UpperCAmelCase = processor_auto.batch_decode(_lowercase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_feature_extractor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_decoder()
__UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def a ( _lowercase : Dict , _lowercase : List[Any] ):
__UpperCAmelCase = [d[key] for d in offsets]
return retrieved_list
def a ( self : Optional[int] ):
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__UpperCAmelCase = self._get_dummy_logits()[0]
__UpperCAmelCase = processor.decode(_lowercase , output_word_offsets=_lowercase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(_lowercase , _lowercase ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def a ( self : Optional[int] ):
__UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__UpperCAmelCase = self._get_dummy_logits()
__UpperCAmelCase = processor.batch_decode(_lowercase , output_word_offsets=_lowercase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(_lowercase , _lowercase ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def a ( self : Any ):
import torch
__UpperCAmelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_lowercase )
__UpperCAmelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) )
__UpperCAmelCase = iter(_lowercase )
__UpperCAmelCase = next(_lowercase )
__UpperCAmelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
__UpperCAmelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__UpperCAmelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
__UpperCAmelCase = model(_lowercase ).logits.cpu().numpy()
__UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=_lowercase )
__UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__UpperCAmelCase = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
__UpperCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , _lowercase )
self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , output.text )
# output times
__UpperCAmelCase = torch.tensor(self.get_from_offsets(_lowercase , '''start_time''' ) )
__UpperCAmelCase = torch.tensor(self.get_from_offsets(_lowercase , '''end_time''' ) )
# fmt: off
__UpperCAmelCase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
__UpperCAmelCase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) )
| 332 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 1 |
"""simple docstring"""
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
_lowercase : Union[str, Any] = pd.read_csv(
'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/'
'position_salaries.csv'
)
_lowercase : int = dataset.iloc[:, 1:2].values
_lowercase : str = dataset.iloc[:, 2].values
_lowercase ,_lowercase ,_lowercase ,_lowercase : Tuple = train_test_split(X, y, test_size=0.2, random_state=0)
_lowercase : str = PolynomialFeatures(degree=4)
_lowercase : Optional[int] = poly_reg.fit_transform(X)
_lowercase : List[Any] = LinearRegression()
pol_reg.fit(X_poly, y)
def lowercase__ ( ):
plt.scatter(snake_case_ , snake_case_ , color='''red''' )
plt.plot(snake_case_ , pol_reg.predict(poly_reg.fit_transform(snake_case_ ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 1 |
"""simple docstring"""
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
_lowercase : int = ['text', 'image', 'audio']
def lowercase__ ( snake_case_ :List[str] ):
__UpperCAmelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3_000 ) )
elif isinstance(snake_case_ , snake_case_ ):
inputs.append(create_inputs(snake_case_ ) )
else:
raise ValueError(F'''Invalid type requested: {input_type}''' )
return inputs
def lowercase__ ( snake_case_ :List ):
__UpperCAmelCase = []
for output in outputs:
if isinstance(snake_case_ , (str, AgentText) ):
output_types.append('''text''' )
elif isinstance(snake_case_ , (Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(snake_case_ , (torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(F'''Invalid output: {output}''' )
return output_types
@is_tool_test
class _UpperCAmelCase :
def a ( self : Optional[int] ):
self.assertTrue(hasattr(self.tool , '''inputs''' ) )
self.assertTrue(hasattr(self.tool , '''outputs''' ) )
__UpperCAmelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input , _lowercase ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
__UpperCAmelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def a ( self : int ):
__UpperCAmelCase = create_inputs(self.tool.inputs )
__UpperCAmelCase = self.tool(*_lowercase )
# There is a single output
if len(self.tool.outputs ) == 1:
__UpperCAmelCase = [outputs]
self.assertListEqual(output_types(_lowercase ) , self.tool.outputs )
def a ( self : Optional[int] ):
self.assertTrue(hasattr(self.tool , '''description''' ) )
self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) )
self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) )
def a ( self : Dict ):
__UpperCAmelCase = create_inputs(self.tool.inputs )
__UpperCAmelCase = self.tool(*_lowercase )
if not isinstance(_lowercase , _lowercase ):
__UpperCAmelCase = [outputs]
self.assertEqual(len(_lowercase ) , len(self.tool.outputs ) )
for output, output_type in zip(_lowercase , self.tool.outputs ):
__UpperCAmelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(_lowercase , _lowercase ) )
def a ( self : List[str] ):
__UpperCAmelCase = create_inputs(self.tool.inputs )
__UpperCAmelCase = []
for _input, input_type in zip(_lowercase , self.tool.inputs ):
if isinstance(_lowercase , _lowercase ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
__UpperCAmelCase = self.tool(*_lowercase )
if not isinstance(_lowercase , _lowercase ):
__UpperCAmelCase = [outputs]
self.assertEqual(len(_lowercase ) , len(self.tool.outputs ) )
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=_lowerCAmelCase )
class _UpperCAmelCase ( _lowerCAmelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
a__ : str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
a__ : ClassVar[Features] = Features({"text": Value("string" )} )
a__ : ClassVar[Features] = Features({"labels": ClassLabel} )
a__ : str = "text"
a__ : str = "labels"
def a ( self : Optional[int] , _lowercase : int ):
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , _lowercase ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
__UpperCAmelCase = copy.deepcopy(self )
__UpperCAmelCase = self.label_schema.copy()
__UpperCAmelCase = features[self.label_column]
__UpperCAmelCase = label_schema
return task_template
@property
def a ( self : Optional[Any] ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 332 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
def __init__( self : int , _lowercase : List[Any] , _lowercase : str=7 , _lowercase : Tuple=3 , _lowercase : Dict=10 , _lowercase : str=18 , _lowercase : Union[str, Any]=30 , _lowercase : Optional[int]=4_00 , _lowercase : Tuple=True , _lowercase : Dict=None , _lowercase : int=True , _lowercase : Any=[0.5, 0.5, 0.5] , _lowercase : Tuple=[0.5, 0.5, 0.5] , _lowercase : int=None , ):
__UpperCAmelCase = size if size is not None else {'''shortest_edge''': 18}
__UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = num_frames
__UpperCAmelCase = image_size
__UpperCAmelCase = min_resolution
__UpperCAmelCase = max_resolution
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = do_normalize
__UpperCAmelCase = image_mean
__UpperCAmelCase = image_std
__UpperCAmelCase = crop_size
def a ( self : int ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[Any] = VivitImageProcessor if is_vision_available() else None
def a ( self : List[Any] ):
__UpperCAmelCase = VivitImageProcessingTester(self )
@property
def a ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def a ( self : str ):
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowercase , '''image_std''' ) )
self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowercase , '''do_center_crop''' ) )
self.assertTrue(hasattr(_lowercase , '''size''' ) )
def a ( self : int ):
__UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def a ( self : Tuple ):
# Initialize image_processing
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
__UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
__UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def a ( self : List[str] ):
# Initialize image_processing
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
__UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def a ( self : Optional[Any] ):
# Initialize image_processing
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
__UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 332 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 1 |
"""simple docstring"""
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
_lowercase : Dict = data_utils.TransfoXLTokenizer
_lowercase : Optional[Any] = data_utils.TransfoXLCorpus
_lowercase : Any = data_utils
_lowercase : str = data_utils
def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :str , snake_case_ :Dict ):
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(snake_case_ , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ , encoding='''latin1''' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
__UpperCAmelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file''']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
__UpperCAmelCase = corpus.vocab.__dict__
torch.save(snake_case_ , snake_case_ )
__UpperCAmelCase = corpus.__dict__
corpus_dict_no_vocab.pop('''vocab''' , snake_case_ )
__UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(snake_case_ , snake_case_ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
__UpperCAmelCase = os.path.abspath(snake_case_ )
__UpperCAmelCase = os.path.abspath(snake_case_ )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
__UpperCAmelCase = TransfoXLConfig()
else:
__UpperCAmelCase = TransfoXLConfig.from_json_file(snake_case_ )
print(F'''Building PyTorch model from configuration: {config}''' )
__UpperCAmelCase = TransfoXLLMHeadModel(snake_case_ )
__UpperCAmelCase = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
__UpperCAmelCase = os.path.join(snake_case_ , snake_case_ )
__UpperCAmelCase = os.path.join(snake_case_ , snake_case_ )
print(F'''Save PyTorch model to {os.path.abspath(snake_case_ )}''' )
torch.save(model.state_dict() , snake_case_ )
print(F'''Save configuration file to {os.path.abspath(snake_case_ )}''' )
with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
_lowercase : str = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 332 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Any = ""
a__ : str = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
a__ : str = None # compression type in fsspec. ex: "gzip"
a__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self : str , _lowercase : str = "" , _lowercase : Optional[str] = None , _lowercase : Optional[dict] = None , **_lowercase : Optional[int] ):
super().__init__(self , **_lowercase )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
__UpperCAmelCase = fsspec.open(
_lowercase , mode='''rb''' , protocol=_lowercase , compression=self.compression , client_kwargs={
'''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459
'''trust_env''': True, # Enable reading proxy env variables.
**(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
__UpperCAmelCase = os.path.basename(self.file.path.split('''::''' )[0] )
__UpperCAmelCase = (
self.compressed_name[: self.compressed_name.rindex('''.''' )]
if '''.''' in self.compressed_name
else self.compressed_name
)
__UpperCAmelCase = None
@classmethod
def a ( cls : Optional[Any] , _lowercase : Tuple ):
# compressed file paths are always relative to the archive root
return super()._strip_protocol(_lowercase ).lstrip('''/''' )
def a ( self : int ):
if self.dir_cache is None:
__UpperCAmelCase = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name}
__UpperCAmelCase = {f['''name''']: f}
def a ( self : List[Any] , _lowercase : str ):
return self.file.open().read()
def a ( self : Optional[int] , _lowercase : str , _lowercase : str = "rb" , _lowercase : Any=None , _lowercase : Optional[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ):
__UpperCAmelCase = self._strip_protocol(_lowercase )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = "bz2"
a__ : str = "bz2"
a__ : str = ".bz2"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[str] = "gzip"
a__ : List[Any] = "gzip"
a__ : int = ".gz"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[Any] = "lz4"
a__ : Optional[Any] = "lz4"
a__ : int = ".lz4"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "xz"
a__ : Dict = "xz"
a__ : Any = ".xz"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Any = "zstd"
a__ : Optional[int] = "zstd"
a__ : int = ".zst"
def __init__( self : List[Any] , _lowercase : str , _lowercase : str = "rb" , _lowercase : Optional[str] = None , _lowercase : Optional[dict] = None , _lowercase : int = DEFAULT_BLOCK_SIZE , **_lowercase : Dict , ):
super().__init__(
fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
__UpperCAmelCase = self.file.__enter__
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Any ):
__UpperCAmelCase = file_
def __enter__( self : str ):
self._file.__enter__()
return self
def __exit__( self : Union[str, Any] , *_lowercase : List[Any] , **_lowercase : Any ):
self._file.__exit__(*_lowercase , **_lowercase )
def __iter__( self : str ):
return iter(self._file )
def a ( self : Optional[int] ):
return next(self._file )
def __getattr__( self : Optional[int] , _lowercase : Tuple ):
return getattr(self._file , _lowercase )
def fixed_enter(*_lowercase : Any , **_lowercase : int ):
return WrappedFile(_enter(*_lowercase , **_lowercase ) )
__UpperCAmelCase = fixed_enter
| 332 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = ["image_processor", "tokenizer"]
a__ : Union[str, Any] = "LayoutLMv3ImageProcessor"
a__ : List[str] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
def __init__( self : str , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , **_lowercase : Optional[Any] ):
__UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _lowercase , )
__UpperCAmelCase = kwargs.pop('''feature_extractor''' )
__UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_lowercase , _lowercase )
def __call__( self : Union[str, Any] , _lowercase : str , _lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowercase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _lowercase : Union[List[List[int]], List[List[List[int]]]] = None , _lowercase : Optional[Union[List[int], List[List[int]]]] = None , _lowercase : bool = True , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Union[bool, str, TruncationStrategy] = None , _lowercase : Optional[int] = None , _lowercase : int = 0 , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[bool] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : Optional[Union[str, TensorType]] = None , **_lowercase : Any , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
# first, apply the image processor
__UpperCAmelCase = self.image_processor(images=_lowercase , return_tensors=_lowercase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_lowercase , _lowercase ):
__UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__UpperCAmelCase = features['''words''']
__UpperCAmelCase = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , )
# add pixel values
__UpperCAmelCase = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__UpperCAmelCase = self.get_overflowing_images(_lowercase , encoded_inputs['''overflow_to_sample_mapping'''] )
__UpperCAmelCase = images
return encoded_inputs
def a ( self : int , _lowercase : Optional[int] , _lowercase : Optional[int] ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__UpperCAmelCase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_lowercase ) != len(_lowercase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
F''' {len(_lowercase )} and {len(_lowercase )}''' )
return images_with_overflow
def a ( self : Any , *_lowercase : int , **_lowercase : List[Any] ):
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : Dict , **_lowercase : Dict ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
@property
def a ( self : Union[str, Any] ):
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def a ( self : Dict ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , )
return self.image_processor_class
@property
def a ( self : Dict ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowercase , )
return self.image_processor
| 332 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 1 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
_lowercase : Tuple = TypeVar('KT')
_lowercase : List[str] = TypeVar('VT')
class _UpperCAmelCase ( Generic[KT, VT] ):
def __init__( self : Optional[Any] , _lowercase : KT | str = "root" , _lowercase : VT | None = None ):
__UpperCAmelCase = key
__UpperCAmelCase = value
__UpperCAmelCase = []
def __repr__( self : Union[str, Any] ):
return F'''Node({self.key}: {self.value})'''
@property
def a ( self : Optional[int] ):
return len(self.forward )
class _UpperCAmelCase ( Generic[KT, VT] ):
def __init__( self : Union[str, Any] , _lowercase : float = 0.5 , _lowercase : int = 16 ):
__UpperCAmelCase = Node[KT, VT]()
__UpperCAmelCase = 0
__UpperCAmelCase = p
__UpperCAmelCase = max_level
def __str__( self : str ):
__UpperCAmelCase = list(self )
if len(_lowercase ) == 0:
return F'''SkipList(level={self.level})'''
__UpperCAmelCase = max((len(str(_lowercase ) ) for item in items) , default=4 )
__UpperCAmelCase = max(_lowercase , 4 ) + 4
__UpperCAmelCase = self.head
__UpperCAmelCase = []
__UpperCAmelCase = node.forward.copy()
lines.append(F'''[{node.key}]'''.ljust(_lowercase , '''-''' ) + '''* ''' * len(_lowercase ) )
lines.append(''' ''' * label_size + '''| ''' * len(_lowercase ) )
while len(node.forward ) != 0:
__UpperCAmelCase = node.forward[0]
lines.append(
F'''[{node.key}]'''.ljust(_lowercase , '''-''' )
+ ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) )
lines.append(''' ''' * label_size + '''| ''' * len(_lowercase ) )
__UpperCAmelCase = node.forward
lines.append('''None'''.ljust(_lowercase ) + '''* ''' * len(_lowercase ) )
return F'''SkipList(level={self.level})\n''' + "\n".join(_lowercase )
def __iter__( self : Dict ):
__UpperCAmelCase = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
__UpperCAmelCase = node.forward[0]
def a ( self : Union[str, Any] ):
__UpperCAmelCase = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def a ( self : List[str] , _lowercase : int ):
__UpperCAmelCase = []
__UpperCAmelCase = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
__UpperCAmelCase = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(_lowercase )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def a ( self : str , _lowercase : KT ):
__UpperCAmelCase , __UpperCAmelCase = self._locate_node(_lowercase )
if node is not None:
for i, update_node in enumerate(_lowercase ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
__UpperCAmelCase = node.forward[i]
else:
__UpperCAmelCase = update_node.forward[:i]
def a ( self : Any , _lowercase : KT , _lowercase : VT ):
__UpperCAmelCase , __UpperCAmelCase = self._locate_node(_lowercase )
if node is not None:
__UpperCAmelCase = value
else:
__UpperCAmelCase = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , _lowercase ):
update_vector.append(self.head )
__UpperCAmelCase = level
__UpperCAmelCase = Node(_lowercase , _lowercase )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(_lowercase )
else:
__UpperCAmelCase = new_node
def a ( self : Optional[Any] , _lowercase : VT ):
__UpperCAmelCase , __UpperCAmelCase = self._locate_node(_lowercase )
if node is not None:
return node.value
return None
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert('''Key1''' , 3 )
skip_list.insert('''Key2''' , 12 )
skip_list.insert('''Key3''' , 41 )
skip_list.insert('''Key4''' , -19 )
__UpperCAmelCase = skip_list.head
__UpperCAmelCase = {}
while node.level != 0:
__UpperCAmelCase = node.forward[0]
__UpperCAmelCase = node.value
assert len(snake_case_ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert('''Key1''' , 10 )
skip_list.insert('''Key1''' , 12 )
skip_list.insert('''Key5''' , 7 )
skip_list.insert('''Key7''' , 10 )
skip_list.insert('''Key10''' , 5 )
skip_list.insert('''Key7''' , 7 )
skip_list.insert('''Key5''' , 5 )
skip_list.insert('''Key10''' , 10 )
__UpperCAmelCase = skip_list.head
__UpperCAmelCase = {}
while node.level != 0:
__UpperCAmelCase = node.forward[0]
__UpperCAmelCase = node.value
if len(snake_case_ ) != 4:
print()
assert len(snake_case_ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
assert skip_list.find('''Some key''' ) is None
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert('''Key2''' , 20 )
assert skip_list.find('''Key2''' ) == 20
skip_list.insert('''Some Key''' , 10 )
skip_list.insert('''Key2''' , 8 )
skip_list.insert('''V''' , 13 )
assert skip_list.find('''Y''' ) is None
assert skip_list.find('''Key2''' ) == 8
assert skip_list.find('''Some Key''' ) == 10
assert skip_list.find('''V''' ) == 13
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.delete('''Some key''' )
assert len(skip_list.head.forward ) == 0
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert('''Key1''' , 12 )
skip_list.insert('''V''' , 13 )
skip_list.insert('''X''' , 14 )
skip_list.insert('''Key2''' , 15 )
skip_list.delete('''V''' )
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''Key2''' ) is None
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert('''Key1''' , 12 )
skip_list.insert('''V''' , 13 )
skip_list.insert('''X''' , 14 )
skip_list.insert('''Key2''' , 15 )
skip_list.delete('''V''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) == 14
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''X''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key1''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) is None
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert('''Key1''' , 12 )
skip_list.insert('''V''' , 13 )
skip_list.insert('''X''' , 142 )
skip_list.insert('''Key2''' , 15 )
skip_list.delete('''X''' )
def traverse_keys(snake_case_ :int ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(snake_case_ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def lowercase__ ( ):
def is_sorted(snake_case_ :Dict ):
return all(next_item >= item for item, next_item in zip(snake_case_ , lst[1:] ) )
__UpperCAmelCase = SkipList()
for i in range(10 ):
skip_list.insert(snake_case_ , snake_case_ )
assert is_sorted(list(snake_case_ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(snake_case_ ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(snake_case_ ) )
def lowercase__ ( ):
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def lowercase__ ( ):
__UpperCAmelCase = SkipList()
skip_list.insert(2 , '''2''' )
skip_list.insert(4 , '''4''' )
skip_list.insert(6 , '''4''' )
skip_list.insert(4 , '''5''' )
skip_list.insert(8 , '''4''' )
skip_list.insert(9 , '''4''' )
skip_list.delete(4 )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 1 |
"""simple docstring"""
import operator
def lowercase__ ( snake_case_ :list , snake_case_ :bool = False , snake_case_ :list | None = None ):
__UpperCAmelCase = operator.lt if reverse else operator.gt
__UpperCAmelCase = solution or []
if not arr:
return solution
__UpperCAmelCase = [arr.pop(0 )]
for i, item in enumerate(snake_case_ ):
if _operator(snake_case_ , sublist[-1] ):
sublist.append(snake_case_ )
arr.pop(snake_case_ )
# merging sublist into solution list
if not solution:
solution.extend(snake_case_ )
else:
while sublist:
__UpperCAmelCase = sublist.pop(0 )
for i, xx in enumerate(snake_case_ ):
if not _operator(snake_case_ , snake_case_ ):
solution.insert(snake_case_ , snake_case_ )
break
else:
solution.append(snake_case_ )
strand_sort(snake_case_ , snake_case_ , snake_case_ )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 332 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 1 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "microsoft/speecht5_tts"
a__ : Tuple = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
a__ : Optional[Any] = "text_reader"
a__ : int = SpeechTaProcessor
a__ : List[Any] = SpeechTaForTextToSpeech
a__ : int = SpeechTaHifiGan
a__ : Dict = ["text"]
a__ : Union[str, Any] = ["audio"]
def a ( self : int ):
if self.post_processor is None:
__UpperCAmelCase = '''microsoft/speecht5_hifigan'''
super().setup()
def a ( self : List[str] , _lowercase : str , _lowercase : Union[str, Any]=None ):
__UpperCAmelCase = self.pre_processor(text=_lowercase , return_tensors='''pt''' , truncation=_lowercase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' )
__UpperCAmelCase = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' )
__UpperCAmelCase = torch.tensor(embeddings_dataset[73_05]['''xvector'''] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def a ( self : Any , _lowercase : Union[str, Any] ):
with torch.no_grad():
return self.model.generate_speech(**_lowercase )
def a ( self : List[str] , _lowercase : Any ):
with torch.no_grad():
return self.post_processor(_lowercase ).cpu().detach()
| 332 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = ShapEPipeline
a__ : Union[str, Any] = ["prompt"]
a__ : int = ["prompt"]
a__ : Optional[int] = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
a__ : int = False
@property
def a ( self : Optional[Any] ):
return 32
@property
def a ( self : Any ):
return 32
@property
def a ( self : str ):
return self.time_input_dim * 4
@property
def a ( self : List[str] ):
return 8
@property
def a ( self : str ):
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(_lowercase )
@property
def a ( self : List[Any] ):
torch.manual_seed(0 )
__UpperCAmelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__UpperCAmelCase = PriorTransformer(**_lowercase )
return model
@property
def a ( self : int ):
torch.manual_seed(0 )
__UpperCAmelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__UpperCAmelCase = ShapERenderer(**_lowercase )
return model
def a ( self : Dict ):
__UpperCAmelCase = self.dummy_prior
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = self.dummy_tokenizer
__UpperCAmelCase = self.dummy_renderer
__UpperCAmelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=_lowercase , clip_sample=_lowercase , clip_sample_range=1.0 , )
__UpperCAmelCase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def a ( self : Any , _lowercase : List[str] , _lowercase : List[str]=0 ):
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''cpu'''
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) )
__UpperCAmelCase = output.images[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__UpperCAmelCase = np.array(
[
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a ( self : Union[str, Any] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def a ( self : Tuple ):
__UpperCAmelCase = torch_device == '''cpu'''
__UpperCAmelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_lowercase , relax_max_difference=_lowercase , )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = 1
__UpperCAmelCase = 2
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
for key in inputs.keys():
if key in self.batch_params:
__UpperCAmelCase = batch_size * [inputs[key]]
__UpperCAmelCase = pipe(**_lowercase , num_images_per_prompt=_lowercase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : int ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : List[Any] ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
__UpperCAmelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = pipe(
'''a shark''' , generator=_lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
| 332 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : Optional[Any] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :str ):
__UpperCAmelCase = SwinConfig.from_pretrained(
'''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
__UpperCAmelCase = MaskFormerConfig(backbone_config=snake_case_ )
__UpperCAmelCase = '''huggingface/label-files'''
if "ade20k-full" in model_name:
# this should be ok
__UpperCAmelCase = 847
__UpperCAmelCase = '''maskformer-ade20k-full-id2label.json'''
elif "ade" in model_name:
# this should be ok
__UpperCAmelCase = 150
__UpperCAmelCase = '''ade20k-id2label.json'''
elif "coco-stuff" in model_name:
# this should be ok
__UpperCAmelCase = 171
__UpperCAmelCase = '''maskformer-coco-stuff-id2label.json'''
elif "coco" in model_name:
# TODO
__UpperCAmelCase = 133
__UpperCAmelCase = '''coco-panoptic-id2label.json'''
elif "cityscapes" in model_name:
# this should be ok
__UpperCAmelCase = 19
__UpperCAmelCase = '''cityscapes-id2label.json'''
elif "vistas" in model_name:
# this should be ok
__UpperCAmelCase = 65
__UpperCAmelCase = '''mapillary-vistas-id2label.json'''
__UpperCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()}
return config
def lowercase__ ( snake_case_ :Optional[Any] ):
__UpperCAmelCase = []
# stem
# fmt: off
rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') )
rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') )
rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') )
rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') )
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') )
# heads on top
rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') )
rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') )
rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') )
rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') )
rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[Any] , snake_case_ :Union[str, Any] ):
__UpperCAmelCase = dct.pop(snake_case_ )
__UpperCAmelCase = val
def lowercase__ ( snake_case_ :Any , snake_case_ :Any ):
__UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__UpperCAmelCase = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__UpperCAmelCase = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
__UpperCAmelCase = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase = in_proj_weight[:dim, :]
__UpperCAmelCase = in_proj_bias[: dim]
__UpperCAmelCase = in_proj_weight[
dim : dim * 2, :
]
__UpperCAmelCase = in_proj_bias[
dim : dim * 2
]
__UpperCAmelCase = in_proj_weight[
-dim :, :
]
__UpperCAmelCase = in_proj_bias[-dim :]
# fmt: on
def lowercase__ ( snake_case_ :Any , snake_case_ :Tuple ):
# fmt: off
__UpperCAmelCase = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase = in_proj_weight[: hidden_size, :]
__UpperCAmelCase = in_proj_bias[:config.hidden_size]
__UpperCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
__UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__UpperCAmelCase = in_proj_weight[-hidden_size :, :]
__UpperCAmelCase = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase = in_proj_weight[: hidden_size, :]
__UpperCAmelCase = in_proj_bias[:config.hidden_size]
__UpperCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
__UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__UpperCAmelCase = in_proj_weight[-hidden_size :, :]
__UpperCAmelCase = in_proj_bias[-hidden_size :]
# fmt: on
def lowercase__ ( ):
__UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :str , snake_case_ :bool = False ):
__UpperCAmelCase = get_maskformer_config(snake_case_ )
# load original state_dict
with open(snake_case_ , '''rb''' ) as f:
__UpperCAmelCase = pickle.load(snake_case_ )
__UpperCAmelCase = data['''model''']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
__UpperCAmelCase = create_rename_keys(snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_ , snake_case_ , snake_case_ )
read_in_swin_q_k_v(snake_case_ , config.backbone_config )
read_in_decoder_q_k_v(snake_case_ , snake_case_ )
# update to torch tensors
for key, value in state_dict.items():
__UpperCAmelCase = torch.from_numpy(snake_case_ )
# load 🤗 model
__UpperCAmelCase = MaskFormerForInstanceSegmentation(snake_case_ )
model.eval()
for name, param in model.named_parameters():
print(snake_case_ , param.shape )
__UpperCAmelCase , __UpperCAmelCase = model.load_state_dict(snake_case_ , strict=snake_case_ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(snake_case_ ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
__UpperCAmelCase = prepare_img()
if "vistas" in model_name:
__UpperCAmelCase = 65
elif "cityscapes" in model_name:
__UpperCAmelCase = 65_535
else:
__UpperCAmelCase = 255
__UpperCAmelCase = True if '''ade''' in model_name else False
__UpperCAmelCase = MaskFormerImageProcessor(ignore_index=snake_case_ , reduce_labels=snake_case_ )
__UpperCAmelCase = image_processor(snake_case_ , return_tensors='''pt''' )
__UpperCAmelCase = model(**snake_case_ )
print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
__UpperCAmelCase = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print('''Pushing model and image processor to the hub...''' )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
_lowercase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowercase : Optional[Any] = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
_lowercase : Optional[Any] = logging.get_logger(__name__)
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Optional[Any] , *_lowercase : List[str] , **_lowercase : int ):
warnings.warn(
'''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DPTImageProcessor instead.''' , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 332 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : List[Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Optional[int] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase , [config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase , [config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase , [config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Dict ):
__UpperCAmelCase = '''patrickvonplaten/t5-tiny-random'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Dict ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[str] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : List[Any] ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , eager_mode=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = TensorFlowBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : TreeNode | None = None
a__ : TreeNode | None = None
_lowercase : List[str] = namedtuple('CoinsDistribResult', 'moves excess')
def lowercase__ ( snake_case_ :TreeNode | None ):
if root is None:
return 0
# Validation
def count_nodes(snake_case_ :TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(snake_case_ :TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(snake_case_ ) != count_coins(snake_case_ ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(snake_case_ :TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__UpperCAmelCase , __UpperCAmelCase = get_distrib(node.left )
__UpperCAmelCase , __UpperCAmelCase = get_distrib(node.right )
__UpperCAmelCase = 1 - left_distrib_excess
__UpperCAmelCase = 1 - right_distrib_excess
__UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(snake_case_ )
+ abs(snake_case_ )
)
__UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(snake_case_ , snake_case_ )
return get_distrib(snake_case_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 1 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 332 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
_lowercase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : int = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self : Optional[Any] , **_lowercase : Dict ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__UpperCAmelCase = deprecated_arg[3:]
__UpperCAmelCase = not kwargs.pop(_lowercase )
logger.warning(
F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'''
F''' {positive_arg}={kwargs[positive_arg]}''' )
__UpperCAmelCase = kwargs.pop('''tpu_name''' , self.tpu_name )
__UpperCAmelCase = kwargs.pop('''device_idx''' , self.device_idx )
__UpperCAmelCase = kwargs.pop('''eager_mode''' , self.eager_mode )
__UpperCAmelCase = kwargs.pop('''use_xla''' , self.use_xla )
super().__init__(**_lowercase )
a__ : str = field(
default=_lowerCAmelCase , metadata={"help": "Name of TPU"} , )
a__ : int = field(
default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , )
a__ : bool = field(default=_lowerCAmelCase , metadata={"help": "Benchmark models in eager model."} )
a__ : bool = field(
default=_lowerCAmelCase , metadata={
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
} , )
@cached_property
def a ( self : List[str] ):
requires_backends(self , ['''tf'''] )
__UpperCAmelCase = None
if self.tpu:
try:
if self.tpu_name:
__UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
__UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__UpperCAmelCase = None
return tpu
@cached_property
def a ( self : Optional[int] ):
requires_backends(self , ['''tf'''] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
__UpperCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' )
__UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' )
else:
tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU
__UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' )
return strategy
@property
def a ( self : Tuple ):
requires_backends(self , ['''tf'''] )
return self._setup_tpu is not None
@property
def a ( self : List[str] ):
requires_backends(self , ['''tf'''] )
return self._setup_strategy
@property
def a ( self : Union[str, Any] ):
requires_backends(self , ['''tf'''] )
return tf.config.list_physical_devices('''GPU''' )
@property
def a ( self : str ):
requires_backends(self , ['''tf'''] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def a ( self : Union[str, Any] ):
return self.n_gpu > 0
| 332 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 1 |
"""simple docstring"""
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
_lowercase : List[str] = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
_lowercase : Optional[int] = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
def lowercase__ ( snake_case_ :Optional[Any] ):
__UpperCAmelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=snake_case_ )[0]
@deprecated(snake_case_ , '''Please use tf.data to implement this functionality.''' )
def lowercase__ ( snake_case_ :Tuple ):
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=snake_case_ ) as bytestream:
__UpperCAmelCase = _readaa(snake_case_ )
if magic != 2_051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__UpperCAmelCase = _readaa(snake_case_ )
__UpperCAmelCase = _readaa(snake_case_ )
__UpperCAmelCase = _readaa(snake_case_ )
__UpperCAmelCase = bytestream.read(rows * cols * num_images )
__UpperCAmelCase = numpy.frombuffer(snake_case_ , dtype=numpy.uinta )
__UpperCAmelCase = data.reshape(snake_case_ , snake_case_ , snake_case_ , 1 )
return data
@deprecated(snake_case_ , '''Please use tf.one_hot on tensors.''' )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Optional[int] ):
__UpperCAmelCase = labels_dense.shape[0]
__UpperCAmelCase = numpy.arange(snake_case_ ) * num_classes
__UpperCAmelCase = numpy.zeros((num_labels, num_classes) )
__UpperCAmelCase = 1
return labels_one_hot
@deprecated(snake_case_ , '''Please use tf.data to implement this functionality.''' )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :int=False , snake_case_ :Optional[int]=10 ):
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=snake_case_ ) as bytestream:
__UpperCAmelCase = _readaa(snake_case_ )
if magic != 2_049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__UpperCAmelCase = _readaa(snake_case_ )
__UpperCAmelCase = bytestream.read(snake_case_ )
__UpperCAmelCase = numpy.frombuffer(snake_case_ , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(snake_case_ , snake_case_ )
return labels
class _UpperCAmelCase :
@deprecated(
_lowercase , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : Tuple , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Dict=False , _lowercase : Tuple=False , _lowercase : Optional[int]=dtypes.floataa , _lowercase : Union[str, Any]=True , _lowercase : Dict=None , ):
__UpperCAmelCase , __UpperCAmelCase = random_seed.get_seed(_lowercase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__UpperCAmelCase = dtypes.as_dtype(_lowercase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__UpperCAmelCase = 1_00_00
__UpperCAmelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__UpperCAmelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__UpperCAmelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__UpperCAmelCase = images.astype(numpy.floataa )
__UpperCAmelCase = numpy.multiply(_lowercase , 1.0 / 255.0 )
__UpperCAmelCase = images
__UpperCAmelCase = labels
__UpperCAmelCase = 0
__UpperCAmelCase = 0
@property
def a ( self : Dict ):
return self._images
@property
def a ( self : Optional[Any] ):
return self._labels
@property
def a ( self : Dict ):
return self._num_examples
@property
def a ( self : Dict ):
return self._epochs_completed
def a ( self : Any , _lowercase : str , _lowercase : Dict=False , _lowercase : str=True ):
if fake_data:
__UpperCAmelCase = [1] * 7_84
__UpperCAmelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(_lowercase )],
[fake_label for _ in range(_lowercase )],
)
__UpperCAmelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__UpperCAmelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(_lowercase )
__UpperCAmelCase = self.images[perma]
__UpperCAmelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__UpperCAmelCase = self._num_examples - start
__UpperCAmelCase = self._images[start : self._num_examples]
__UpperCAmelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__UpperCAmelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(_lowercase )
__UpperCAmelCase = self.images[perm]
__UpperCAmelCase = self.labels[perm]
# Start next epoch
__UpperCAmelCase = 0
__UpperCAmelCase = batch_size - rest_num_examples
__UpperCAmelCase = self._index_in_epoch
__UpperCAmelCase = self._images[start:end]
__UpperCAmelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__UpperCAmelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(snake_case_ , '''Please write your own downloading logic.''' )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :List[str] ):
if not gfile.Exists(snake_case_ ):
gfile.MakeDirs(snake_case_ )
__UpperCAmelCase = os.path.join(snake_case_ , snake_case_ )
if not gfile.Exists(snake_case_ ):
urllib.request.urlretrieve(snake_case_ , snake_case_ ) # noqa: S310
with gfile.GFile(snake_case_ ) as f:
__UpperCAmelCase = f.size()
print('''Successfully downloaded''' , snake_case_ , snake_case_ , '''bytes.''' )
return filepath
@deprecated(
snake_case_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str]=False , snake_case_ :List[Any]=False , snake_case_ :List[str]=dtypes.floataa , snake_case_ :str=True , snake_case_ :Optional[int]=5_000 , snake_case_ :str=None , snake_case_ :str=DEFAULT_SOURCE_URL , ):
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=snake_case_ , one_hot=snake_case_ , dtype=snake_case_ , seed=snake_case_ )
__UpperCAmelCase = fake()
__UpperCAmelCase = fake()
__UpperCAmelCase = fake()
return _Datasets(train=snake_case_ , validation=snake_case_ , test=snake_case_ )
if not source_url: # empty string check
__UpperCAmelCase = DEFAULT_SOURCE_URL
__UpperCAmelCase = '''train-images-idx3-ubyte.gz'''
__UpperCAmelCase = '''train-labels-idx1-ubyte.gz'''
__UpperCAmelCase = '''t10k-images-idx3-ubyte.gz'''
__UpperCAmelCase = '''t10k-labels-idx1-ubyte.gz'''
__UpperCAmelCase = _maybe_download(
snake_case_ , snake_case_ , source_url + train_images_file )
with gfile.Open(snake_case_ , '''rb''' ) as f:
__UpperCAmelCase = _extract_images(snake_case_ )
__UpperCAmelCase = _maybe_download(
snake_case_ , snake_case_ , source_url + train_labels_file )
with gfile.Open(snake_case_ , '''rb''' ) as f:
__UpperCAmelCase = _extract_labels(snake_case_ , one_hot=snake_case_ )
__UpperCAmelCase = _maybe_download(
snake_case_ , snake_case_ , source_url + test_images_file )
with gfile.Open(snake_case_ , '''rb''' ) as f:
__UpperCAmelCase = _extract_images(snake_case_ )
__UpperCAmelCase = _maybe_download(
snake_case_ , snake_case_ , source_url + test_labels_file )
with gfile.Open(snake_case_ , '''rb''' ) as f:
__UpperCAmelCase = _extract_labels(snake_case_ , one_hot=snake_case_ )
if not 0 <= validation_size <= len(snake_case_ ):
__UpperCAmelCase = (
'''Validation size should be between 0 and '''
F'''{len(snake_case_ )}. Received: {validation_size}.'''
)
raise ValueError(snake_case_ )
__UpperCAmelCase = train_images[:validation_size]
__UpperCAmelCase = train_labels[:validation_size]
__UpperCAmelCase = train_images[validation_size:]
__UpperCAmelCase = train_labels[validation_size:]
__UpperCAmelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__UpperCAmelCase = _DataSet(snake_case_ , snake_case_ , **snake_case_ )
__UpperCAmelCase = _DataSet(snake_case_ , snake_case_ , **snake_case_ )
__UpperCAmelCase = _DataSet(snake_case_ , snake_case_ , **snake_case_ )
return _Datasets(train=snake_case_ , validation=snake_case_ , test=snake_case_ )
| 332 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 1 |
"""simple docstring"""
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : int , _lowercase : List[str] , _lowercase : bool = True , _lowercase : bool = False ):
__UpperCAmelCase = scheduler
__UpperCAmelCase = optimizers if isinstance(_lowercase , (list, tuple) ) else [optimizers]
__UpperCAmelCase = split_batches
__UpperCAmelCase = step_with_optimizer
__UpperCAmelCase = GradientState()
def a ( self : str , *_lowercase : List[Any] , **_lowercase : Any ):
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_lowercase , **_lowercase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_lowercase , **_lowercase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__UpperCAmelCase = AcceleratorState().num_processes
for _ in range(_lowercase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , '''total_steps''' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_lowercase , **_lowercase )
else:
self.scheduler.step(*_lowercase , **_lowercase )
def a ( self : int ):
return self.scheduler.get_last_lr()
def a ( self : Dict ):
return self.scheduler.state_dict()
def a ( self : List[str] , _lowercase : Optional[Any] ):
self.scheduler.load_state_dict(_lowercase )
def a ( self : Optional[int] ):
return self.scheduler.get_lr()
def a ( self : Tuple , *_lowercase : Union[str, Any] , **_lowercase : str ):
return self.scheduler.print_lr(*_lowercase , **_lowercase )
| 332 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :list ):
__UpperCAmelCase = len(snake_case_ )
for i in range(1 , snake_case_ ):
__UpperCAmelCase = collection[i]
__UpperCAmelCase = 0
__UpperCAmelCase = i - 1
while low <= high:
__UpperCAmelCase = (low + high) // 2
if val < collection[mid]:
__UpperCAmelCase = mid - 1
else:
__UpperCAmelCase = mid + 1
for j in range(snake_case_ , snake_case_ , -1 ):
__UpperCAmelCase = collection[j - 1]
__UpperCAmelCase = val
return collection
if __name__ == "__main__":
_lowercase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip()
_lowercase : str = [int(item) for item in user_input.split(',')]
print(binary_insertion_sort(unsorted))
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 1 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _UpperCAmelCase :
def __init__( self : str , _lowercase : Union[str, Any] , _lowercase : Optional[int]=14 , _lowercase : List[str]=7 , _lowercase : Union[str, Any]=True , _lowercase : int=True , _lowercase : int=False , _lowercase : Dict=True , _lowercase : Optional[int]=99 , _lowercase : Union[str, Any]=32 , _lowercase : Dict=4 , _lowercase : Dict=4 , _lowercase : Optional[int]=4 , _lowercase : Dict=37 , _lowercase : Tuple="gelu" , _lowercase : Dict=0.1 , _lowercase : int=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : Optional[Any]=0.02 , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_input_mask
__UpperCAmelCase = use_token_type_ids
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = rotary_dim
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = None
__UpperCAmelCase = vocab_size - 1
__UpperCAmelCase = vocab_size - 1
__UpperCAmelCase = vocab_size - 1
def a ( self : Union[str, Any] ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def a ( self : int ):
__UpperCAmelCase = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Union[str, Any] ):
__UpperCAmelCase = 20
__UpperCAmelCase = model_class_name(_lowercase )
__UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase )
__UpperCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__UpperCAmelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__UpperCAmelCase = model(
input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , )
__UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
__UpperCAmelCase = model(
input_ids[:, -1:] , attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , position_ids=_lowercase , )
__UpperCAmelCase = model(_lowercase )
__UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def a ( self : Any , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Dict ):
__UpperCAmelCase = 20
__UpperCAmelCase = model_class_name(_lowercase )
__UpperCAmelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase )
__UpperCAmelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__UpperCAmelCase = model(
input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , )
__UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
__UpperCAmelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowercase , position_ids=_lowercase , )
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase )
__UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
@require_flax
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
a__ : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def a ( self : Optional[int] ):
__UpperCAmelCase = FlaxGPTJModelTester(self )
def a ( self : List[Any] ):
for model_class_name in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase , _lowercase )
def a ( self : int ):
for model_class_name in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
_lowercase , _lowercase , _lowercase , _lowercase )
@tooslow
def a ( self : Union[str, Any] ):
__UpperCAmelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
__UpperCAmelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=_lowercase , truncation=_lowercase )
__UpperCAmelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
__UpperCAmelCase = False
__UpperCAmelCase = model.config.eos_token_id
__UpperCAmelCase = jax.jit(model.generate )
__UpperCAmelCase = jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
__UpperCAmelCase = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = [
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(_lowercase , _lowercase )
@is_pt_flax_cross_test
def a ( self : Dict ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase )
__UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__UpperCAmelCase = getattr(_lowercase , _lowercase )
__UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape
__UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_lowercase ):
__UpperCAmelCase = 0
__UpperCAmelCase = 1
__UpperCAmelCase = 0
__UpperCAmelCase = 1
__UpperCAmelCase = pt_model_class(_lowercase ).eval()
__UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa )
__UpperCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase )
__UpperCAmelCase = fx_state
with torch.no_grad():
__UpperCAmelCase = pt_model(**_lowercase ).to_tuple()
__UpperCAmelCase = fx_model(**_lowercase ).to_tuple()
self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(_lowercase , _lowercase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(_lowercase )
__UpperCAmelCase = model_class.from_pretrained(_lowercase , from_pt=_lowercase )
__UpperCAmelCase = fx_model_loaded(**_lowercase ).to_tuple()
self.assertEqual(
len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(_lowercase , _lowercase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def a ( self : List[str] ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase )
__UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__UpperCAmelCase = getattr(_lowercase , _lowercase )
__UpperCAmelCase = pt_model_class(_lowercase ).eval()
__UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa )
__UpperCAmelCase = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params )
__UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape
__UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_lowercase ):
__UpperCAmelCase = 0
__UpperCAmelCase = 1
__UpperCAmelCase = 0
__UpperCAmelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__UpperCAmelCase = pt_model(**_lowercase ).to_tuple()
__UpperCAmelCase = fx_model(**_lowercase ).to_tuple()
self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(_lowercase , _lowercase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(_lowercase )
__UpperCAmelCase = pt_model_class.from_pretrained(_lowercase , from_flax=_lowercase )
with torch.no_grad():
__UpperCAmelCase = pt_model_loaded(**_lowercase ).to_tuple()
self.assertEqual(
len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(_lowercase , _lowercase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def a ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__UpperCAmelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
__UpperCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowercase )
| 332 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 1 |
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowercase : Union[str, Any] = {
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
_lowercase : int = logging.get_logger(__name__)
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[str] = "mask2former"
a__ : Dict = ["swin"]
a__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : List[str] , _lowercase : Optional[Dict] = None , _lowercase : int = 2_56 , _lowercase : int = 2_56 , _lowercase : int = 2_56 , _lowercase : int = 10_24 , _lowercase : str = "relu" , _lowercase : int = 6 , _lowercase : int = 10 , _lowercase : int = 8 , _lowercase : float = 0.0 , _lowercase : int = 20_48 , _lowercase : bool = False , _lowercase : bool = False , _lowercase : int = 4 , _lowercase : int = 2_55 , _lowercase : int = 1_00 , _lowercase : float = 0.1 , _lowercase : float = 2.0 , _lowercase : float = 5.0 , _lowercase : float = 5.0 , _lowercase : int = 1_25_44 , _lowercase : float = 3.0 , _lowercase : float = 0.75 , _lowercase : float = 0.02 , _lowercase : float = 1.0 , _lowercase : bool = True , _lowercase : List[int] = [4, 8, 16, 32] , _lowercase : bool = None , **_lowercase : Union[str, Any] , ):
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' )
__UpperCAmelCase = CONFIG_MAPPING['''swin'''](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_lowercase , _lowercase ):
__UpperCAmelCase = backbone_config.pop('''model_type''' )
__UpperCAmelCase = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase = config_class.from_dict(_lowercase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
F'''Supported model types: {",".join(self.backbones_supported )}''' )
__UpperCAmelCase = backbone_config
__UpperCAmelCase = feature_size
__UpperCAmelCase = mask_feature_size
__UpperCAmelCase = hidden_dim
__UpperCAmelCase = encoder_feedforward_dim
__UpperCAmelCase = activation_function
__UpperCAmelCase = encoder_layers
__UpperCAmelCase = decoder_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = dropout
__UpperCAmelCase = dim_feedforward
__UpperCAmelCase = pre_norm
__UpperCAmelCase = enforce_input_projection
__UpperCAmelCase = common_stride
__UpperCAmelCase = ignore_value
__UpperCAmelCase = num_queries
__UpperCAmelCase = no_object_weight
__UpperCAmelCase = class_weight
__UpperCAmelCase = mask_weight
__UpperCAmelCase = dice_weight
__UpperCAmelCase = train_num_points
__UpperCAmelCase = oversample_ratio
__UpperCAmelCase = importance_sample_ratio
__UpperCAmelCase = init_std
__UpperCAmelCase = init_xavier_std
__UpperCAmelCase = use_auxiliary_loss
__UpperCAmelCase = feature_strides
__UpperCAmelCase = output_auxiliary_logits
__UpperCAmelCase = decoder_layers
super().__init__(**_lowercase )
@classmethod
def a ( cls : str , _lowercase : PretrainedConfig , **_lowercase : str ):
return cls(
backbone_config=_lowercase , **_lowercase , )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = copy.deepcopy(self.__dict__ )
__UpperCAmelCase = self.backbone_config.to_dict()
__UpperCAmelCase = self.__class__.model_type
return output
| 332 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowercase__ ( snake_case_ :str , snake_case_ :str = "cpu" , snake_case_ :Union[str, None] = None ):
__UpperCAmelCase = torch.load(snake_case_ , map_location=snake_case_ )
for k, v in tqdm(state_dict.items() ):
if not isinstance(snake_case_ , torch.Tensor ):
raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' )
__UpperCAmelCase = v.half()
if save_path is None: # overwrite src_path
__UpperCAmelCase = src_path
torch.save(snake_case_ , snake_case_ )
if __name__ == "__main__":
fire.Fire(convert)
| 332 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : float = 0 ):
__UpperCAmelCase , __UpperCAmelCase = row, column
__UpperCAmelCase = [[default_value for c in range(_lowercase )] for r in range(_lowercase )]
def __str__( self : Optional[Any] ):
__UpperCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
__UpperCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
__UpperCAmelCase = max(_lowercase , len(str(_lowercase ) ) )
__UpperCAmelCase = F'''%{max_element_length}s'''
# Make string and return
def single_line(_lowercase : list[float] ) -> str:
nonlocal string_format_identifier
__UpperCAmelCase = '''['''
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(_lowercase ) for row_vector in self.array )
return s
def __repr__( self : Tuple ):
return str(self )
def a ( self : Union[str, Any] , _lowercase : tuple[int, int] ):
if not (isinstance(_lowercase , (list, tuple) ) and len(_lowercase ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : str , _lowercase : tuple[int, int] ):
assert self.validate_indicies(_lowercase )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Any , _lowercase : tuple[int, int] , _lowercase : float ):
assert self.validate_indicies(_lowercase )
__UpperCAmelCase = value
def __add__( self : Dict , _lowercase : Matrix ):
assert isinstance(_lowercase , _lowercase )
assert self.row == another.row and self.column == another.column
# Add
__UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : List[Any] ):
__UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase = -self[r, c]
return result
def __sub__( self : Optional[int] , _lowercase : Matrix ):
return self + (-another)
def __mul__( self : Optional[Any] , _lowercase : int | float | Matrix ):
if isinstance(_lowercase , (int, float) ): # Scalar multiplication
__UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase = self[r, c] * another
return result
elif isinstance(_lowercase , _lowercase ): # Matrix multiplication
assert self.column == another.row
__UpperCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__UpperCAmelCase = F'''Unsupported type given for another ({type(_lowercase )})'''
raise TypeError(_lowercase )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__UpperCAmelCase = self[r, c]
return result
def a ( self : Optional[Any] , _lowercase : Matrix , _lowercase : Matrix ):
assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__UpperCAmelCase = v.transpose()
__UpperCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowercase__ ( ):
# a^(-1)
__UpperCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
__UpperCAmelCase = 1
print(F'''a^(-1) is {ainv}''' )
# u, v
__UpperCAmelCase = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1, 2, -3
__UpperCAmelCase = Matrix(3 , 1 , 0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 4, -2, 5
print(F'''u is {u}''' )
print(F'''v is {v}''' )
print(F'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_ , snake_case_ )}''' )
def lowercase__ ( ):
import doctest
doctest.testmod()
testa()
| 332 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :Optional[Any] ):
# Initialise PyTorch model
__UpperCAmelCase = BertConfig.from_json_file(snake_case_ )
print(F'''Building PyTorch model from configuration: {config}''' )
__UpperCAmelCase = BertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_bert(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , snake_case_ )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--bert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_lowercase : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 1 |
"""simple docstring"""
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : list ):
__UpperCAmelCase = set_counts
__UpperCAmelCase = max(_lowercase )
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = [1] * num_sets
__UpperCAmelCase = list(range(_lowercase ) )
def a ( self : Any , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = self.get_parent(_lowercase )
__UpperCAmelCase = self.get_parent(_lowercase )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
__UpperCAmelCase = 0
__UpperCAmelCase = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
__UpperCAmelCase = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
__UpperCAmelCase = 0
__UpperCAmelCase = src_parent
__UpperCAmelCase = self.set_counts[src_parent]
__UpperCAmelCase = max(self.max_set , _lowercase )
return True
def a ( self : int , _lowercase : int ):
if self.parents[disj_set] == disj_set:
return disj_set
__UpperCAmelCase = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 332 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 1 |
"""simple docstring"""
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
# This gives ~3MB in total for all files.
#
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
#
#
# It will be used then as "stas/tiny-wmt19-en-de"
# Build
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
_lowercase : List[Any] = 'facebook/wmt19-en-de'
_lowercase : str = FSMTTokenizer.from_pretrained(mname)
# get the correct vocab sizes, etc. from the master model
_lowercase : Union[str, Any] = FSMTConfig.from_pretrained(mname)
config.update(
dict(
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
)
_lowercase : Optional[int] = FSMTForConditionalGeneration(config)
print(f"""num of params {tiny_model.num_parameters()}""")
# Test
_lowercase : Dict = tokenizer(['Making tiny model'], return_tensors='pt')
_lowercase : int = tiny_model(**batch)
print('test output:', len(outputs.logits[0]))
# Save
_lowercase : Dict = 'tiny-wmt19-en-de'
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f"""Generated {mname_tiny}""")
# Upload
# transformers-cli upload tiny-wmt19-en-de
| 332 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 1 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase__ ( snake_case_ :int ):
__UpperCAmelCase , __UpperCAmelCase = image.size
__UpperCAmelCase , __UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
__UpperCAmelCase = np.array(snake_case_ ).astype(np.floataa ) / 255.0
__UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 )
__UpperCAmelCase = torch.from_numpy(snake_case_ )
return 2.0 * image - 1.0
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : int , _lowercase : VQModel , _lowercase : UNetaDModel , _lowercase : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ):
super().__init__()
self.register_modules(vqvae=_lowercase , unet=_lowercase , scheduler=_lowercase )
@torch.no_grad()
def __call__( self : Optional[Any] , _lowercase : Union[torch.Tensor, PIL.Image.Image] = None , _lowercase : Optional[int] = 1 , _lowercase : Optional[int] = 1_00 , _lowercase : Optional[float] = 0.0 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
if isinstance(_lowercase , PIL.Image.Image ):
__UpperCAmelCase = 1
elif isinstance(_lowercase , torch.Tensor ):
__UpperCAmelCase = image.shape[0]
else:
raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowercase )}''' )
if isinstance(_lowercase , PIL.Image.Image ):
__UpperCAmelCase = preprocess(_lowercase )
__UpperCAmelCase , __UpperCAmelCase = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width)
__UpperCAmelCase = next(self.unet.parameters() ).dtype
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase )
__UpperCAmelCase = image.to(device=self.device , dtype=_lowercase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__UpperCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__UpperCAmelCase = {}
if accepts_eta:
__UpperCAmelCase = eta
for t in self.progress_bar(_lowercase ):
# concat latents and low resolution image in the channel dimension.
__UpperCAmelCase = torch.cat([latents, image] , dim=1 )
__UpperCAmelCase = self.scheduler.scale_model_input(_lowercase , _lowercase )
# predict the noise residual
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
# decode the image latents with the VQVAE
__UpperCAmelCase = self.vqvae.decode(_lowercase ).sample
__UpperCAmelCase = torch.clamp(_lowercase , -1.0 , 1.0 )
__UpperCAmelCase = image / 2 + 0.5
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowercase )
| 332 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int ):
__UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def lowercase__ ( snake_case_ :int = 100 ):
__UpperCAmelCase = 1
__UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
__UpperCAmelCase = pre_numerator
__UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
__UpperCAmelCase = cur_numerator
__UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(snake_case_ )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 332 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 1 |
"""simple docstring"""
import os
def lowercase__ ( ):
with open(os.path.dirname(snake_case_ ) + '''/p022_names.txt''' ) as file:
__UpperCAmelCase = str(file.readlines()[0] )
__UpperCAmelCase = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
__UpperCAmelCase = 0
__UpperCAmelCase = 0
for i, name in enumerate(snake_case_ ):
for letter in name:
name_score += ord(snake_case_ ) - 64
total_score += (i + 1) * name_score
__UpperCAmelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 332 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
from pathlib import Path
import fire
def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :int ):
__UpperCAmelCase = Path(snake_case_ )
__UpperCAmelCase = Path(snake_case_ )
dest_dir.mkdir(exist_ok=snake_case_ )
for path in src_dir.iterdir():
__UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
__UpperCAmelCase = dest_dir.joinpath(path.name )
print(snake_case_ )
dest_path.open('''w''' ).write('''\n'''.join(snake_case_ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : int = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
_lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :list ):
if any(not isinstance(snake_case_ , snake_case_ ) or x < 0 for x in sequence ):
raise TypeError('''Sequence must be list of non-negative integers''' )
for _ in range(len(snake_case_ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(snake_case_ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 332 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 1 |
"""simple docstring"""
import math
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(snake_case_ )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('''This should never happen''' )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
_lowercase : str = 'Enter the base and the power separated by a comma: '
_lowercase ,_lowercase : Tuple = map(int, input(prompt).split(','))
_lowercase ,_lowercase : int = map(int, input(prompt).split(','))
# We find the log of each number, using the function res(), which takes two
# arguments.
_lowercase : str = res(xa, ya)
_lowercase : Optional[Any] = res(xa, ya)
# We check for the largest number
if resa > resa:
print('Largest number is', xa, '^', ya)
elif resa > resa:
print('Largest number is', xa, '^', ya)
else:
print('Both are equal')
| 332 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 1 |
"""simple docstring"""
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowercase__ ( snake_case_ :Optional[Any] ):
__UpperCAmelCase = filter(lambda snake_case_ : p.requires_grad , model.parameters() )
__UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_lowercase : str = logging.getLogger(__name__)
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Dict ):
if metric == "rouge2":
__UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
__UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
__UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}'''
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
''' function.''' )
__UpperCAmelCase = ModelCheckpoint(
dirpath=snake_case_ , filename=snake_case_ , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def lowercase__ ( snake_case_ :int , snake_case_ :List[str] ):
return EarlyStopping(
monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case_ , verbose=snake_case_ , )
class _UpperCAmelCase ( pl.Callback ):
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : int ):
__UpperCAmelCase = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_lowercase )
@rank_zero_only
def a ( self : Optional[Any] , _lowercase : pl.Trainer , _lowercase : pl.LightningModule , _lowercase : str , _lowercase : Optional[Any]=True ):
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
__UpperCAmelCase = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
__UpperCAmelCase = Path(pl_module.hparams.output_dir )
if type_path == "test":
__UpperCAmelCase = od / '''test_results.txt'''
__UpperCAmelCase = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__UpperCAmelCase = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
__UpperCAmelCase = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_lowercase )
generations_file.parent.mkdir(exist_ok=_lowercase )
with open(_lowercase , '''a+''' ) as writer:
for key in sorted(_lowercase ):
if key in ["log", "progress_bar", "preds"]:
continue
__UpperCAmelCase = metrics[key]
if isinstance(_lowercase , torch.Tensor ):
__UpperCAmelCase = val.item()
__UpperCAmelCase = F'''{key}: {val:.6f}\n'''
writer.write(_lowercase )
if not save_generations:
return
if "preds" in metrics:
__UpperCAmelCase = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(_lowercase )
@rank_zero_only
def a ( self : Dict , _lowercase : Dict , _lowercase : Tuple ):
try:
__UpperCAmelCase = pl_module.model.model.num_parameters()
except AttributeError:
__UpperCAmelCase = pl_module.model.num_parameters()
__UpperCAmelCase = count_trainable_parameters(_lowercase )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} )
@rank_zero_only
def a ( self : str , _lowercase : pl.Trainer , _lowercase : pl.LightningModule ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_lowercase , _lowercase , '''test''' )
@rank_zero_only
def a ( self : str , _lowercase : pl.Trainer , _lowercase : Tuple ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 332 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 1 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 1 |
"""simple docstring"""
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
_lowercase : Optional[int] = pytest.mark.integration
@pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple ):
inspect_dataset(snake_case_ , snake_case_ )
__UpperCAmelCase = path + '''.py'''
assert script_name in os.listdir(snake_case_ )
assert "__pycache__" not in os.listdir(snake_case_ )
@pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.parametrize('''path''' , ['''accuracy'''] )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Dict ):
inspect_metric(snake_case_ , snake_case_ )
__UpperCAmelCase = path + '''.py'''
assert script_name in os.listdir(snake_case_ )
assert "__pycache__" not in os.listdir(snake_case_ )
@pytest.mark.parametrize(
'''path, config_name, expected_splits''' , [
('''squad''', '''plain_text''', ['''train''', '''validation''']),
('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']),
('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']),
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[Any] ):
__UpperCAmelCase = get_dataset_config_info(snake_case_ , config_name=snake_case_ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'''path, config_name, expected_exception''' , [
('''paws''', None, ValueError),
] , )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Dict ):
with pytest.raises(snake_case_ ):
get_dataset_config_info(snake_case_ , config_name=snake_case_ )
@pytest.mark.parametrize(
'''path, expected''' , [
('''squad''', '''plain_text'''),
('''acronym_identification''', '''default'''),
('''lhoestq/squad''', '''plain_text'''),
('''lhoestq/test''', '''default'''),
('''lhoestq/demo1''', '''lhoestq--demo1'''),
('''dalle-mini/wit''', '''dalle-mini--wit'''),
] , )
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = get_dataset_config_names(snake_case_ )
assert expected in config_names
@pytest.mark.parametrize(
'''path, expected_configs, expected_splits_in_first_config''' , [
('''squad''', ['''plain_text'''], ['''train''', '''validation''']),
('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']),
('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']),
] , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :int , snake_case_ :Union[str, Any] ):
__UpperCAmelCase = get_dataset_infos(snake_case_ )
assert list(infos.keys() ) == expected_configs
__UpperCAmelCase = expected_configs[0]
assert expected_config in infos
__UpperCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'''path, expected_config, expected_splits''' , [
('''squad''', '''plain_text''', ['''train''', '''validation''']),
('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']),
('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']),
] , )
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :Optional[Any] ):
__UpperCAmelCase = get_dataset_infos(snake_case_ )
assert expected_config in infos
__UpperCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'''path, config_name, expected_exception''' , [
('''paws''', None, ValueError),
] , )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :int , snake_case_ :Optional[int] ):
with pytest.raises(snake_case_ ):
get_dataset_split_names(snake_case_ , config_name=snake_case_ )
| 332 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[Any] = ["image_processor", "tokenizer"]
a__ : Optional[Any] = "FlavaImageProcessor"
a__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Any , _lowercase : List[Any]=None , _lowercase : List[Any]=None , **_lowercase : Optional[int] ):
__UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _lowercase , )
__UpperCAmelCase = kwargs.pop('''feature_extractor''' )
__UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.image_processor
def __call__( self : int , _lowercase : Optional[ImageInput] = None , _lowercase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , _lowercase : bool = True , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Union[bool, str, TruncationStrategy] = False , _lowercase : Optional[int] = None , _lowercase : int = 0 , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[bool] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : Optional[Union[str, TensorType]] = None , **_lowercase : Any , ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(
text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , )
if images is not None:
__UpperCAmelCase = self.image_processor(
_lowercase , return_image_mask=_lowercase , return_codebook_pixels=_lowercase , return_tensors=_lowercase , **_lowercase , )
if text is not None and images is not None:
encoding.update(_lowercase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase )
def a ( self : Tuple , *_lowercase : Optional[int] , **_lowercase : int ):
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : List[str] , *_lowercase : Union[str, Any] , **_lowercase : Tuple ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
@property
def a ( self : List[Any] ):
__UpperCAmelCase = self.tokenizer.model_input_names
__UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def a ( self : str ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , )
return self.image_processor_class
@property
def a ( self : int ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowercase , )
return self.image_processor
| 332 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
_lowercase : int = False
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def a ( self : Union[str, Any] ):
return 12
@property
def a ( self : str ):
return 12
@property
def a ( self : Optional[Any] ):
return 32
@property
def a ( self : List[str] ):
torch.manual_seed(0 )
__UpperCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def a ( self : int ):
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def a ( self : Tuple ):
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(_lowercase )
@property
def a ( self : List[Any] ):
torch.manual_seed(0 )
__UpperCAmelCase = 12
__UpperCAmelCase = 12
__UpperCAmelCase = {
'''attention_bias''': True,
'''cross_attention_dim''': 32,
'''attention_head_dim''': height * width,
'''num_attention_heads''': 1,
'''num_vector_embeds''': self.num_embed,
'''num_embeds_ada_norm''': self.num_embeds_ada_norm,
'''norm_num_groups''': 32,
'''sample_size''': width,
'''activation_fn''': '''geglu-approximate''',
}
__UpperCAmelCase = TransformeraDModel(**_lowercase )
return model
def a ( self : Tuple ):
__UpperCAmelCase = '''cpu'''
__UpperCAmelCase = self.dummy_vqvae
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = self.dummy_tokenizer
__UpperCAmelCase = self.dummy_transformer
__UpperCAmelCase = VQDiffusionScheduler(self.num_embed )
__UpperCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase )
__UpperCAmelCase = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''teddy bear playing in the pool'''
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''np''' )
__UpperCAmelCase = output.images
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = pipe(
[prompt] , generator=_lowercase , output_type='''np''' , return_dict=_lowercase , num_inference_steps=2 )[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
__UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__UpperCAmelCase = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def a ( self : Any ):
__UpperCAmelCase = '''cpu'''
__UpperCAmelCase = self.dummy_vqvae
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = self.dummy_tokenizer
__UpperCAmelCase = self.dummy_transformer
__UpperCAmelCase = VQDiffusionScheduler(self.num_embed )
__UpperCAmelCase = LearnedClassifierFreeSamplingEmbeddings(
learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__UpperCAmelCase = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''teddy bear playing in the pool'''
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''np''' )
__UpperCAmelCase = output.images
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = pipe(
[prompt] , generator=_lowercase , output_type='''np''' , return_dict=_lowercase , num_inference_steps=2 )[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
__UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__UpperCAmelCase = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Union[str, Any] ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' )
__UpperCAmelCase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' )
__UpperCAmelCase = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = pipeline(
'''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images[0]
assert image.shape == (2_56, 2_56, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
_lowercase : Optional[Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Any=7 , _lowercase : List[Any]=3 , _lowercase : Optional[int]=18 , _lowercase : Dict=30 , _lowercase : Dict=4_00 , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : List[str]=None , ):
__UpperCAmelCase = size if size is not None else {'''height''': 20, '''width''': 20}
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = image_size
__UpperCAmelCase = min_resolution
__UpperCAmelCase = max_resolution
__UpperCAmelCase = size
__UpperCAmelCase = do_normalize
__UpperCAmelCase = do_convert_rgb
__UpperCAmelCase = [5_12, 10_24, 20_48, 40_96]
__UpperCAmelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def a ( self : Any ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
__UpperCAmelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('''RGB''' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None
def a ( self : str ):
__UpperCAmelCase = PixaStructImageProcessingTester(self )
@property
def a ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def a ( self : List[str] ):
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowercase , '''do_convert_rgb''' ) )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.image_processor_tester.prepare_dummy_image()
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
__UpperCAmelCase = 20_48
__UpperCAmelCase = image_processor(_lowercase , return_tensors='''pt''' , max_patches=_lowercase )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1E-3 , rtol=1E-3 ) )
def a ( self : Dict ):
# Initialize image_processor
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , Image.Image )
# Test not batched input
__UpperCAmelCase = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase = image_processor(
_lowercase , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def a ( self : Tuple ):
# Initialize image_processor
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , Image.Image )
# Test not batched input
__UpperCAmelCase = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
__UpperCAmelCase = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(_lowercase ):
__UpperCAmelCase = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
__UpperCAmelCase = '''Hello'''
__UpperCAmelCase = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_lowercase , header_text=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase = image_processor(
_lowercase , return_tensors='''pt''' , max_patches=_lowercase , header_text=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def a ( self : Any ):
# Initialize image_processor
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , np.ndarray )
__UpperCAmelCase = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase = image_processor(
_lowercase , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def a ( self : Any ):
# Initialize image_processor
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , torch.Tensor )
# Test not batched input
__UpperCAmelCase = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase = image_processor(
_lowercase , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = PixaStructImageProcessor if is_vision_available() else None
def a ( self : Any ):
__UpperCAmelCase = PixaStructImageProcessingTester(self , num_channels=4 )
__UpperCAmelCase = 3
@property
def a ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def a ( self : int ):
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowercase , '''do_convert_rgb''' ) )
def a ( self : Union[str, Any] ):
# Initialize image_processor
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , Image.Image )
# Test not batched input
__UpperCAmelCase = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase = image_processor(
_lowercase , return_tensors='''pt''' , max_patches=_lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 1 |
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def lowercase__ ( snake_case_ :SplitDict ):
__UpperCAmelCase = split_dict._to_yaml_list()
assert len(snake_case_ ) == len(snake_case_ )
__UpperCAmelCase = SplitDict._from_yaml_list(snake_case_ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
__UpperCAmelCase = None
# the split name of split_dict takes over the name of the split info object
__UpperCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name='''my_dataset''' )] )
def lowercase__ ( snake_case_ :str ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
__UpperCAmelCase = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 332 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : Tuple = ["torch", "scipy"]
def __init__( self : str , *_lowercase : Union[str, Any] , **_lowercase : Union[str, Any] ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def a ( cls : str , *_lowercase : Union[str, Any] , **_lowercase : Any ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def a ( cls : Tuple , *_lowercase : Any , **_lowercase : Optional[int] ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 332 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowercase : int = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 1 |
"""simple docstring"""
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_lowercase : int = Lock()
def lowercase__ ( snake_case_ :Dict , snake_case_ :Tuple , snake_case_ :str , snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :Union[str, Any] ):
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case_ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
__UpperCAmelCase = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
__UpperCAmelCase = min(snake_case_ , snake_case_ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case_ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
__UpperCAmelCase = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
__UpperCAmelCase = max(snake_case_ , snake_case_ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case_ )
def lowercase__ ( snake_case_ :Optional[int] ):
__UpperCAmelCase = []
__UpperCAmelCase = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
__UpperCAmelCase = Pipe()
__UpperCAmelCase = Pipe()
process_array_.append(
Process(
target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
__UpperCAmelCase = temp_rs
__UpperCAmelCase = temp_rr
for i in range(1 , len(snake_case_ ) - 1 ):
__UpperCAmelCase = Pipe()
__UpperCAmelCase = Pipe()
process_array_.append(
Process(
target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
__UpperCAmelCase = temp_rs
__UpperCAmelCase = temp_rr
process_array_.append(
Process(
target=snake_case_ , args=(
len(snake_case_ ) - 1,
arr[len(snake_case_ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case_ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case_ ) ):
__UpperCAmelCase = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase__ ( ):
__UpperCAmelCase = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*snake_case_ )
__UpperCAmelCase = odd_even_transposition(snake_case_ )
print('''Sorted List\n''' )
print(*snake_case_ )
if __name__ == "__main__":
main()
| 332 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
import warnings
warnings.warn(
'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: '
'`from accelerate import find_executable_batch_size` to avoid this warning.',
FutureWarning,
)
| 332 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowercase : List[Any] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 1 |
"""simple docstring"""
from torch import nn
def lowercase__ ( snake_case_ :Optional[Any] ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'''Unsupported activation function: {act_fn}''' )
| 332 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 1 |
"""simple docstring"""
import math
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = int(math.floor(math.sqrt(snake_case_ ) ) )
__UpperCAmelCase = 0
while arr[min(snake_case_ , snake_case_ ) - 1] < x:
__UpperCAmelCase = step
step += int(math.floor(math.sqrt(snake_case_ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
__UpperCAmelCase = prev + 1
if prev == min(snake_case_ , snake_case_ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
_lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
_lowercase : List[str] = [int(item) for item in user_input.split(',')]
_lowercase : Optional[int] = int(input('Enter the number to be searched:\n'))
_lowercase : List[str] = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(f"""Number {x} is at index {res}""")
| 332 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
_lowercase : str = TypeVar('T')
class _UpperCAmelCase ( Generic[T] ):
def __init__( self : Union[str, Any] , _lowercase : T ):
__UpperCAmelCase = data
__UpperCAmelCase = None
def __str__( self : int ):
return F'''{self.data}'''
class _UpperCAmelCase ( Generic[T] ):
def __init__( self : Any ):
__UpperCAmelCase = None
def __iter__( self : List[str] ):
__UpperCAmelCase = self.top
while node:
yield node.data
__UpperCAmelCase = node.next
def __str__( self : List[Any] ):
return "->".join([str(_lowercase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def a ( self : int ):
return self.top is None
def a ( self : List[Any] , _lowercase : T ):
__UpperCAmelCase = Node(_lowercase )
if not self.is_empty():
__UpperCAmelCase = self.top
__UpperCAmelCase = node
def a ( self : List[Any] ):
if self.is_empty():
raise IndexError('''pop from empty stack''' )
assert isinstance(self.top , _lowercase )
__UpperCAmelCase = self.top
__UpperCAmelCase = self.top.next
return pop_node.data
def a ( self : int ):
if self.is_empty():
raise IndexError('''peek from empty stack''' )
assert self.top is not None
return self.top.data
def a ( self : int ):
__UpperCAmelCase = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 332 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[int | str] ):
create_state_space_tree(snake_case_ , [] , 0 , [0 for i in range(len(snake_case_ ) )] )
def lowercase__ ( snake_case_ :list[int | str] , snake_case_ :list[int | str] , snake_case_ :int , snake_case_ :list[int] , ):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
__UpperCAmelCase = True
create_state_space_tree(snake_case_ , snake_case_ , index + 1 , snake_case_ )
current_sequence.pop()
__UpperCAmelCase = False
_lowercase : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
_lowercase : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int = 600_851_475_143 ):
try:
__UpperCAmelCase = int(snake_case_ )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
__UpperCAmelCase = 1
__UpperCAmelCase = 2
while i * i <= n:
while n % i == 0:
__UpperCAmelCase = i
n //= i
i += 1
if n > 1:
__UpperCAmelCase = n
return int(snake_case_ )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 332 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : torch.FloatTensor
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ):
@register_to_config
def __init__( self : int , _lowercase : int = 3 , _lowercase : int = 3 , _lowercase : Tuple[str] = ("DownEncoderBlock2D",) , _lowercase : Tuple[str] = ("UpDecoderBlock2D",) , _lowercase : Tuple[int] = (64,) , _lowercase : int = 1 , _lowercase : str = "silu" , _lowercase : int = 3 , _lowercase : int = 32 , _lowercase : int = 2_56 , _lowercase : int = 32 , _lowercase : Optional[int] = None , _lowercase : float = 0.18_215 , _lowercase : str = "group" , ):
super().__init__()
# pass init params to Encoder
__UpperCAmelCase = Encoder(
in_channels=_lowercase , out_channels=_lowercase , down_block_types=_lowercase , block_out_channels=_lowercase , layers_per_block=_lowercase , act_fn=_lowercase , norm_num_groups=_lowercase , double_z=_lowercase , )
__UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
__UpperCAmelCase = nn.Convad(_lowercase , _lowercase , 1 )
__UpperCAmelCase = VectorQuantizer(_lowercase , _lowercase , beta=0.25 , remap=_lowercase , sane_index_shape=_lowercase )
__UpperCAmelCase = nn.Convad(_lowercase , _lowercase , 1 )
# pass init params to Decoder
__UpperCAmelCase = Decoder(
in_channels=_lowercase , out_channels=_lowercase , up_block_types=_lowercase , block_out_channels=_lowercase , layers_per_block=_lowercase , act_fn=_lowercase , norm_num_groups=_lowercase , norm_type=_lowercase , )
@apply_forward_hook
def a ( self : Dict , _lowercase : torch.FloatTensor , _lowercase : bool = True ):
__UpperCAmelCase = self.encoder(_lowercase )
__UpperCAmelCase = self.quant_conv(_lowercase )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_lowercase )
@apply_forward_hook
def a ( self : Union[str, Any] , _lowercase : torch.FloatTensor , _lowercase : bool = False , _lowercase : bool = True ):
# also go through quantization layer
if not force_not_quantize:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.quantize(_lowercase )
else:
__UpperCAmelCase = h
__UpperCAmelCase = self.post_quant_conv(_lowercase )
__UpperCAmelCase = self.decoder(_lowercase , quant if self.config.norm_type == '''spatial''' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_lowercase )
def a ( self : Any , _lowercase : torch.FloatTensor , _lowercase : bool = True ):
__UpperCAmelCase = sample
__UpperCAmelCase = self.encode(_lowercase ).latents
__UpperCAmelCase = self.decode(_lowercase ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_lowercase )
| 332 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 1 |
"""simple docstring"""
from typing import Any
def lowercase__ ( snake_case_ :list ):
if not input_list:
return []
__UpperCAmelCase = [input_list.count(snake_case_ ) for value in input_list]
__UpperCAmelCase = max(snake_case_ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case_ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :str , snake_case_ :Optional[Any] ):
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
__UpperCAmelCase = mf_knapsack(i - 1 , snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase = max(
mf_knapsack(i - 1 , snake_case_ , snake_case_ , snake_case_ ) , mf_knapsack(i - 1 , snake_case_ , snake_case_ , j - wt[i - 1] ) + val[i - 1] , )
__UpperCAmelCase = val
return f[i][j]
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Optional[Any] ):
__UpperCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
__UpperCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
__UpperCAmelCase = dp[i - 1][w_]
return dp[n][w_], dp
def lowercase__ ( snake_case_ :int , snake_case_ :list , snake_case_ :list ):
if not (isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) )):
raise ValueError(
'''Both the weights and values vectors must be either lists or tuples''' )
__UpperCAmelCase = len(snake_case_ )
if num_items != len(snake_case_ ):
__UpperCAmelCase = (
'''The number of weights must be the same as the number of values.\n'''
F'''But got {num_items} weights and {len(snake_case_ )} values'''
)
raise ValueError(snake_case_ )
for i in range(snake_case_ ):
if not isinstance(wt[i] , snake_case_ ):
__UpperCAmelCase = (
'''All weights must be integers but got weight of '''
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = set()
_construct_solution(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
return optimal_val, example_optional_set
def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :int , snake_case_ :int , snake_case_ :set ):
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(snake_case_ , snake_case_ , i - 1 , snake_case_ , snake_case_ )
else:
optimal_set.add(snake_case_ )
_construct_solution(snake_case_ , snake_case_ , i - 1 , j - wt[i - 1] , snake_case_ )
if __name__ == "__main__":
_lowercase : Union[str, Any] = [3, 2, 4, 4]
_lowercase : Optional[int] = [4, 3, 2, 3]
_lowercase : Optional[int] = 4
_lowercase : int = 6
_lowercase : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
_lowercase ,_lowercase : List[Any] = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
_lowercase ,_lowercase : int = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print('optimal_value = ', optimal_solution)
print('An optimal subset corresponding to the optimal value', optimal_subset)
| 332 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 1 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase__ = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
UpperCAmelCase__ = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase__ = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase__ = sorted(arg_to_scheduler.keys())
UpperCAmelCase__ = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class lowercase_ ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : str , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]="base" , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[int] , ) ->Tuple:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
a = 0
a = Path(self.hparams.output_dir )
a = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
a = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
a = config
a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F"""model config doesn't have a `{p}` attribute"""
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
a = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
a = tokenizer
a = MODEL_MODES[mode]
if model is None:
a = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
a = model
def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str:
"""simple docstring"""
a = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
a = arg_to_scheduler[self.hparams.lr_scheduler]
a = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def __lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
a = self.model
a = ['''bias''', '''LayerNorm.weight''']
a = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
a = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
a = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
a = optimizer
a = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Dict:
"""simple docstring"""
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Any:
"""simple docstring"""
return self.validation_end(__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ) ->Optional[int]:
"""simple docstring"""
if stage == "test":
a = len(self.test_dataloader().dataset )
else:
a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
a = len(self.train_dataloader().dataset )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) ->str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
return self.train_loader
def __lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict[str, Any] ) ->None:
"""simple docstring"""
a = self.output_dir.joinpath('''best_tfmr''' )
a = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def __lowerCAmelCase ( __UpperCAmelCase : Dict , __UpperCAmelCase : int ) ->int:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=__UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''cache''' ) , type=__UpperCAmelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=__UpperCAmelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=__UpperCAmelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=__UpperCAmelCase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=__UpperCAmelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5e-5 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=__UpperCAmelCase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=__UpperCAmelCase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__UpperCAmelCase )
parser.add_argument('''--train_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) ->int:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class lowercase_ ( pl.Callback ):
'''simple docstring'''
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->int:
"""simple docstring"""
a = trainer.lr_schedulers[0]['''scheduler''']
a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Union[str, Any]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
a = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Optional[int]:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
a = trainer.callback_metrics
# Log and save results to file
a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(__UpperCAmelCase , '''w''' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def _a ( a :Union[str, Any] , a :int ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=a , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( a :BaseTransformer , a :argparse.Namespace , a :Tuple=None , a :Any=True , a :List[str]=[] , a :List[Any]=None , a :Union[str, Any]=None , **a :Optional[Any] , ) -> List[str]:
pl.seed_everything(args.seed )
# init model
a = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=a )
# add custom checkpoints
if checkpoint_callback is None:
a = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(a )
if logging_callback is None:
a = LoggingCallback()
a = {}
if args.fpaa:
a = 16
if args.gpus > 1:
a = '''auto'''
a = '''ddp'''
a = args.accumulate_grad_batches
a = None
a = '''auto'''
a = pl.Trainer.from_argparse_args(
a , weights_summary=a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a , val_check_interval=1 , num_sanity_val_steps=2 , **a , )
if args.do_train:
trainer.fit(a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 0 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.