code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase_ : str =1
@register_to_config
def __init__( self ,A__=2_0_0_0 ,A__=0.1 ,A__=2_0 ,A__=1E-3):
lowercase = None
lowercase = None
lowercase = None
def A__ ( self ,A__ ,A__ = None):
lowercase = torch.linspace(1 ,self.config.sampling_eps ,A__ ,device=A__)
def A__ ( self ,A__ ,A__ ,A__ ,A__=None):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''')
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
lowercase = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
lowercase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff))
lowercase = std.flatten()
while len(std.shape) < len(score.shape):
lowercase = std.unsqueeze(-1)
lowercase = -score / std
# compute
lowercase = -1.0 / len(self.timesteps)
lowercase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
lowercase = beta_t.flatten()
while len(beta_t.shape) < len(x.shape):
lowercase = beta_t.unsqueeze(-1)
lowercase = -0.5 * beta_t * x
lowercase = torch.sqrt(A__)
lowercase = drift - diffusion**2 * score
lowercase = x + drift * dt
# add noise
lowercase = randn_tensor(x.shape ,layout=x.layout ,generator=A__ ,device=x.device ,dtype=x.dtype)
lowercase = x_mean + diffusion * math.sqrt(-dt) * noise
return x, x_mean
def __len__( self):
return self.config.num_train_timesteps
| 101 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 0 |
"""simple docstring"""
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE : List[str] = getLogger(__name__)
def lowercase ( _snake_case : Tuple , _snake_case : str , _snake_case : str , _snake_case : int = 8 , _snake_case : int = 1_024 , _snake_case : Any="val" , _snake_case : Tuple=None , _snake_case : Any=False , _snake_case : str="summarization" , _snake_case : Dict=None , _snake_case : Optional[Any]=1 , _snake_case : Dict = None , _snake_case : List[Any]="" , **_snake_case : int , ) ->Dict:
"""simple docstring"""
__snake_case : int = str(_snake_case )
assert local_rank is not None
torch.distributed.init_process_group(backend='''nccl''' , rank=_snake_case )
__snake_case : Optional[Any] = Path(_snake_case )
__snake_case : str = save_dir.joinpath(f"""rank_{local_rank}_output.json""" )
torch.cuda.set_device(_snake_case )
__snake_case : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).cuda()
if fpaa:
__snake_case : List[str] = model.half()
# determine if we need to increase num_beams
use_task_specific_params(_snake_case , _snake_case ) # update config with task specific params
__snake_case : Dict = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
__snake_case : Optional[Any] = num_return_sequences
__snake_case : Dict = AutoTokenizer.from_pretrained(_snake_case )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
if max_source_length is None:
__snake_case : List[str] = tokenizer.model_max_length
if prefix is None:
__snake_case : List[str] = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
__snake_case : List[str] = SeqaSeqDataset(
_snake_case , _snake_case , _snake_case , max_target_length=1_024 , type_path=_snake_case , n_obs=_snake_case , prefix=_snake_case , **_snake_case , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
__snake_case : Union[str, Any] = ds.make_sortish_sampler(_snake_case , distributed=_snake_case , add_extra_examples=_snake_case , shuffle=_snake_case )
__snake_case : List[Any] = DataLoader(_snake_case , sampler=_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn )
__snake_case : Union[str, Any] = []
for batch in tqdm(_snake_case ):
__snake_case : Tuple = model.generate(
input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_snake_case , num_beams=_snake_case , **_snake_case , )
__snake_case : List[Any] = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case )
__snake_case : List[str] = batch['''ids''']
if num_return_sequences > 1:
__snake_case : Dict = chunks(_snake_case , _snake_case ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(_snake_case ):
results.append({'''pred''': pred, '''id''': ids[i].item()} )
save_json(_snake_case , _snake_case )
return results, sampler.num_replicas
def lowercase ( ) ->int:
"""simple docstring"""
__snake_case : Any = argparse.ArgumentParser(
epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' )
parser.add_argument('''--data_dir''' , type=_snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument(
'''--model_name''' , type=_snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , )
parser.add_argument('''--save_dir''' , type=_snake_case , help='''where to save''' , default='''tmp_gen''' )
parser.add_argument('''--max_source_length''' , type=_snake_case , default=_snake_case )
parser.add_argument(
'''--type_path''' , type=_snake_case , default='''test''' , help='''which subset to evaluate typically train/val/test''' )
parser.add_argument('''--task''' , type=_snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=_snake_case , default=8 , required=_snake_case , help='''batch size''' )
parser.add_argument(
'''--local_rank''' , type=_snake_case , default=-1 , required=_snake_case , help='''should be passed by distributed.launch''' )
parser.add_argument(
'''--n_obs''' , type=_snake_case , default=_snake_case , required=_snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument(
'''--num_return_sequences''' , type=_snake_case , default=1 , required=_snake_case , help='''How many sequences to return''' )
parser.add_argument(
'''--sync_timeout''' , type=_snake_case , default=600 , required=_snake_case , help='''How long should master process wait for other processes to finish.''' , )
parser.add_argument('''--src_lang''' , type=_snake_case , default=_snake_case , required=_snake_case )
parser.add_argument('''--tgt_lang''' , type=_snake_case , default=_snake_case , required=_snake_case )
parser.add_argument(
'''--prefix''' , type=_snake_case , required=_snake_case , default=_snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--debug''' , action='''store_true''' )
__snake_case : str = time.time()
__snake_case , __snake_case : Any = parser.parse_known_args()
__snake_case : List[Any] = parse_numeric_n_bool_cl_kwargs(_snake_case )
if generate_kwargs and args.local_rank <= 0:
print(f"""parsed the following generate kwargs: {generate_kwargs}""" )
__snake_case : List[Any] = Path(args.save_dir + '''_tmp''' )
Path(_snake_case ).mkdir(exist_ok=_snake_case ) # this handles locking.
__snake_case : Optional[int] = list(json_save_dir.glob('''rank_*.json''' ) )
if intermediate_files:
raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
__snake_case : Dict = {}
if args.src_lang is not None:
__snake_case : Dict = args.src_lang
if args.tgt_lang is not None:
__snake_case : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=_snake_case )
__snake_case , __snake_case : List[Any] = eval_data_dir(
args.data_dir , _snake_case , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_snake_case , **_snake_case , )
if args.local_rank <= 0:
__snake_case : int = Path(args.save_dir )
save_dir.mkdir(exist_ok=_snake_case )
__snake_case : Optional[Any] = gather_results_from_each_node(_snake_case , _snake_case , args.sync_timeout )
__snake_case : str = combine_partial_results(_snake_case )
if args.num_return_sequences > 1:
__snake_case : List[Any] = save_dir.joinpath('''pseudolabel_results.json''' )
print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" )
save_json(_snake_case , _snake_case )
return
__snake_case : Tuple = Path(args.data_dir ).joinpath(args.type_path + '''.target''' )
with open(_snake_case ) as f:
__snake_case : Optional[Any] = [x.rstrip() for x in f.readlines()][: len(_snake_case )]
# Calculate metrics, save metrics, and save _generations.txt
__snake_case : List[str] = '''translation''' in args.task
__snake_case : List[Any] = calculate_bleu if calc_bleu else calculate_rouge
__snake_case : Dict = '''bleu''' if calc_bleu else '''rouge'''
__snake_case : Dict = score_fn(_snake_case , _snake_case )
__snake_case : int = len(_snake_case )
__snake_case : Dict = time.time() - start_time
__snake_case : Optional[Any] = round(runtime / metrics['''n_obs'''] , 4 )
__snake_case : List[Any] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
__snake_case : int = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" )
save_json(_snake_case , _snake_case , indent=_snake_case )
print(_snake_case )
write_txt_file(_snake_case , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) )
if args.debug:
write_txt_file(_snake_case , save_dir.joinpath(f"""{args.type_path}.target""" ) )
else:
shutil.rmtree(_snake_case )
def lowercase ( _snake_case : Union[str, Any] ) ->List:
"""simple docstring"""
__snake_case : List[Any] = []
for partial_result in partial_results:
records.extend(_snake_case )
__snake_case : List[str] = sorted(_snake_case , key=lambda _snake_case : x["id"] )
__snake_case : Tuple = [x['''pred'''] for x in records]
return preds
def lowercase ( _snake_case : int , _snake_case : List[str] , _snake_case : List[Any] ) ->List[Dict[str, List]]:
"""simple docstring"""
__snake_case : List[str] = time.time()
logger.info('''waiting for all nodes to finish''' )
__snake_case : List[str] = None
while (time.time() - start_wait) < timeout:
__snake_case : Any = list(save_dir.glob('''rank_*.json''' ) )
if len(_snake_case ) < num_replicas:
continue
try:
# make sure all json files are fully saved
__snake_case : Tuple = lmap(_snake_case , _snake_case )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError('''Rank 0 gave up on waiting for other processes''' )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 102 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 0 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def UpperCamelCase( __UpperCamelCase : int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(__UpperCamelCase : float ,__UpperCamelCase : float ) -> bool:
lowerCAmelCase_ : int = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
lowerCAmelCase_ : Optional[int] = mean(
int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) )
for _ in range(__UpperCamelCase ) )
# The ratio of the area for circle to square is pi/4.
lowerCAmelCase_ : str = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : Callable[[float], float] ,__UpperCamelCase : float = 0.0 ,__UpperCamelCase : float = 1.0 ,):
return mean(
function_to_integrate(uniform(__UpperCamelCase ,__UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value)
def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : float = 0.0 ,__UpperCamelCase : float = 1.0 ):
def identity_function(__UpperCamelCase : float ) -> float:
return x
lowerCAmelCase_ : Optional[int] = area_under_curve_estimator(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
lowerCAmelCase_ : int = (max_value * max_value - min_value * min_value) / 2
print('''******************''' )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print('''******************''' )
def UpperCamelCase( __UpperCamelCase : int ):
def function_to_integrate(__UpperCamelCase : float ) -> float:
return sqrt(4.0 - x * x )
lowerCAmelCase_ : Optional[int] = area_under_curve_estimator(
__UpperCamelCase ,__UpperCamelCase ,0.0 ,2.0 )
print('''******************''' )
print('''Estimating pi using area_under_curve_estimator''' )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print('''******************''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 103 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 0 |
'''simple docstring'''
import datasets
lowerCAmelCase__ = '''\
@InProceedings{conneau2018xnli,
author = "Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin",
title = "XNLI: Evaluating Cross-lingual Sentence Representations",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing",
year = "2018",
publisher = "Association for Computational Linguistics",
location = "Brussels, Belgium",
}
'''
lowerCAmelCase__ = '''\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
'''
lowerCAmelCase__ = '''
Computes XNLI score which is just simple accuracy.
Args:
predictions: Predicted labels.
references: Ground truth labels.
Returns:
\'accuracy\': accuracy
Examples:
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> xnli_metric = datasets.load_metric("xnli")
>>> results = xnli_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
'''
def _A ( A__ , A__ ):
"""simple docstring"""
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ),
} ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,)
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ):
return {"accuracy": simple_accuracy(lowercase__ ,lowercase__ )}
| 104 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 0 |
"""simple docstring"""
from __future__ import annotations
class __UpperCamelCase :
def __init__( self , lowerCAmelCase__ ) -> None:
a : str = order
# a_{0} ... a_{k}
a : int = [1.0] + [0.0] * order
# b_{0} ... b_{k}
a : Union[str, Any] = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
a : Any = [0.0] * self.order
# y[n-1] ... y[n-k]
a : Tuple = [0.0] * self.order
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if len(lowerCAmelCase__ ) < self.order:
a : Dict = [1.0, *a_coeffs]
if len(lowerCAmelCase__ ) != self.order + 1:
a : Optional[int] = (
f"""Expected a_coeffs to have {self.order + 1} elements """
f"""for {self.order}-order filter, got {len(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) != self.order + 1:
a : Optional[Any] = (
f"""Expected b_coeffs to have {self.order + 1} elements """
f"""for {self.order}-order filter, got {len(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
a : Any = a_coeffs
a : int = b_coeffs
def __a ( self , lowerCAmelCase__ ) -> float:
a : List[str] = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
a : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
a : Optional[Any] = self.input_history[:-1]
a : str = self.output_history[:-1]
a : int = sample
a : List[Any] = result
return result
| 105 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 0 |
"""simple docstring"""
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 106 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 0 |
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
__lowerCAmelCase : Union[str, Any] = {
'<': operator.lt,
'<=': operator.le,
'==': operator.eq,
'!=': operator.ne,
'>=': operator.ge,
'>': operator.gt,
}
def __magic_name__ ( A : List[Any], A : List[Any], A : str, A : List[str], A : Optional[Any], A : Union[str, Any] ):
'''simple docstring'''
if got_ver is None or want_ver is None:
raise ValueError(
F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider"""
F""" reinstalling {pkg}.""" )
if not ops[op](version.parse(A ), version.parse(A ) ):
raise ImportError(
F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" )
def __magic_name__ ( A : str, A : Optional[str] = None ):
'''simple docstring'''
a = F"""\n{hint}""" if hint is not None else ""
# non-versioned check
if re.match(R"^[\w_\-\d]+$", A ):
a , a , a = requirement, None, None
else:
a = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)", A )
if not match:
raise ValueError(
"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but"
F""" got {requirement}""" )
a , a = match[0]
a = want_full.split("," ) # there could be multiple requirements
a = {}
for w in want_range:
a = re.findall(R"^([\s!=<>]{1,2})(.+)", A )
if not match:
raise ValueError(
"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,"
F""" but got {requirement}""" )
a , a = match[0]
a = want_ver
if op not in ops:
raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" )
# special case
if pkg == "python":
a = ".".join([str(A ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(A, A, A, A, A, A )
return
# check if any version is installed
try:
a = importlib.metadata.version(A )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(A, A, A, A, A, A )
def __magic_name__ ( A : Optional[int] ):
'''simple docstring'''
a = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main"
return require_version(A, A )
| 107 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''',
'''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''',
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : Optional[int] ="longformer"
def __init__( self , snake_case__ = 512 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 0 , snake_case__ = 2 , snake_case__ = 30_522 , snake_case__ = 768 , snake_case__ = 12 , snake_case__ = 12 , snake_case__ = 3_072 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 512 , snake_case__ = 2 , snake_case__ = 0.02 , snake_case__ = 1e-12 , snake_case__ = False , **snake_case__ , ):
"""simple docstring"""
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
lowerCAmelCase : Union[str, Any] = attention_window
lowerCAmelCase : List[Any] = sep_token_id
lowerCAmelCase : Dict = bos_token_id
lowerCAmelCase : int = eos_token_id
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : Dict = hidden_size
lowerCAmelCase : Optional[Any] = num_hidden_layers
lowerCAmelCase : Tuple = num_attention_heads
lowerCAmelCase : Union[str, Any] = hidden_act
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : Dict = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Tuple = max_position_embeddings
lowerCAmelCase : Optional[int] = type_vocab_size
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : List[str] = onnx_export
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None ):
"""simple docstring"""
super().__init__(snake_case__ , snake_case__ , snake_case__ )
lowerCAmelCase : Any = True
@property
def lowercase__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowerCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCAmelCase : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("global_attention_mask", dynamic_axis),
] )
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Tuple = super().outputs
if self.task == "default":
lowerCAmelCase : Tuple = {0: "batch"}
return outputs
@property
def lowercase__ ( self ):
"""simple docstring"""
return 1e-4
@property
def lowercase__ ( self ):
"""simple docstring"""
return max(super().default_onnx_opset , 14 )
def lowercase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ):
"""simple docstring"""
lowerCAmelCase : Dict = super().generate_dummy_inputs(
preprocessor=snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
lowerCAmelCase : Dict = torch.zeros_like(inputs["input_ids"] )
# make every second token global
lowerCAmelCase : List[Any] = 1
return inputs
| 108 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 0 |
"""simple docstring"""
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
A: str = logging.get_logger(__name__)
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = UNetaDModel
__lowerCAmelCase : Tuple = 'sample'
@property
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Optional[int] = 4
UpperCAmelCase : Dict = 3
UpperCAmelCase : Optional[Any] = (32, 32)
UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = torch.tensor([10] ).to(_SCREAMING_SNAKE_CASE )
return {"sample": noise, "timestep": time_step}
@property
def SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
return (3, 32, 32)
@property
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
'''simple docstring'''
return (3, 32, 32)
def SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : int = {
"""block_out_channels""": (32, 64),
"""down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""),
"""up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""),
"""attention_head_dim""": 3,
"""out_channels""": 3,
"""in_channels""": 3,
"""layers_per_block""": 2,
"""sample_size""": 32,
}
UpperCAmelCase : List[str] = self.dummy_input
return init_dict, inputs_dict
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__lowerCAmelCase : int = UNetaDModel
__lowerCAmelCase : List[str] = 'sample'
@property
def SCREAMING_SNAKE_CASE ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : str = 4
UpperCAmelCase : str = 4
UpperCAmelCase : Any = (32, 32)
UpperCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = torch.tensor([10] ).to(_SCREAMING_SNAKE_CASE )
return {"sample": noise, "timestep": time_step}
@property
def SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
return (4, 32, 32)
@property
def SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
return (4, 32, 32)
def SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : int = {
"""sample_size""": 32,
"""in_channels""": 4,
"""out_channels""": 4,
"""layers_per_block""": 2,
"""block_out_channels""": (32, 64),
"""attention_head_dim""": 32,
"""down_block_types""": ("""DownBlock2D""", """DownBlock2D"""),
"""up_block_types""": ("""UpBlock2D""", """UpBlock2D"""),
}
UpperCAmelCase : Tuple = self.dummy_input
return init_dict, inputs_dict
def SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" )
def SCREAMING_SNAKE_CASE ( self ) -> str:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Dict = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" )
def SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Optional[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=_SCREAMING_SNAKE_CASE )
model_accelerate.to(_SCREAMING_SNAKE_CASE )
model_accelerate.eval()
UpperCAmelCase : Union[str, Any] = torch.randn(
1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , )
UpperCAmelCase : Dict = noise.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = torch.tensor([10] * noise.shape[0] ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = model_accelerate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["""sample"""]
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(
"""fusing/unet-ldm-dummy-update""" , output_loading_info=_SCREAMING_SNAKE_CASE , low_cpu_mem_usage=_SCREAMING_SNAKE_CASE )
model_normal_load.to(_SCREAMING_SNAKE_CASE )
model_normal_load.eval()
UpperCAmelCase : int = model_normal_load(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["""sample"""]
assert torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 )
def SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" )
model.eval()
model.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
UpperCAmelCase : Optional[Any] = noise.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_SCREAMING_SNAKE_CASE )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample
UpperCAmelCase : Tuple = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
UpperCAmelCase : List[Any] = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] )
# fmt: on
self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) )
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__lowerCAmelCase : List[str] = UNetaDModel
__lowerCAmelCase : List[str] = 'sample'
@property
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=(32, 32) ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Tuple = 3
UpperCAmelCase : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_SCREAMING_SNAKE_CASE )
return {"sample": noise, "timestep": time_step}
@property
def SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
return (3, 32, 32)
@property
def SCREAMING_SNAKE_CASE ( self ) -> str:
'''simple docstring'''
return (3, 32, 32)
def SCREAMING_SNAKE_CASE ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int = {
"""block_out_channels""": [32, 64, 64, 64],
"""in_channels""": 3,
"""layers_per_block""": 1,
"""out_channels""": 3,
"""time_embedding_type""": """fourier""",
"""norm_eps""": 1E-6,
"""mid_block_scale_factor""": math.sqrt(2.0 ),
"""norm_num_groups""": None,
"""down_block_types""": [
"""SkipDownBlock2D""",
"""AttnSkipDownBlock2D""",
"""SkipDownBlock2D""",
"""SkipDownBlock2D""",
],
"""up_block_types""": [
"""SkipUpBlock2D""",
"""SkipUpBlock2D""",
"""AttnSkipUpBlock2D""",
"""SkipUpBlock2D""",
],
}
UpperCAmelCase : Optional[Any] = self.dummy_input
return init_dict, inputs_dict
@slow
def SCREAMING_SNAKE_CASE ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = self.dummy_input
UpperCAmelCase : int = floats_tensor((4, 3) + (256, 256) ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = noise
UpperCAmelCase : Optional[int] = model(**_SCREAMING_SNAKE_CASE )
assert image is not None, "Make sure output is not None"
@slow
def SCREAMING_SNAKE_CASE ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : int = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" )
model.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Optional[Any] = 3
UpperCAmelCase : List[Any] = (256, 256)
UpperCAmelCase : int = torch.ones((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = torch.tensor(batch_size * [1E-4] ).to(_SCREAMING_SNAKE_CASE )
with torch.no_grad():
UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample
UpperCAmelCase : str = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
UpperCAmelCase : Optional[int] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] )
# fmt: on
self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-2 ) )
def SCREAMING_SNAKE_CASE ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" )
model.to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = 4
UpperCAmelCase : Optional[int] = 3
UpperCAmelCase : Optional[Any] = (32, 32)
UpperCAmelCase : List[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = torch.tensor(batch_size * [1E-4] ).to(_SCREAMING_SNAKE_CASE )
with torch.no_grad():
UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample
UpperCAmelCase : Any = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
UpperCAmelCase : int = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] )
# fmt: on
self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-2 ) )
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
| 109 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 275 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 0 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
a_ = logging.getLogger(__name__)
def _a( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int] ):
'''simple docstring'''
return (preds == labels).mean()
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
snake_case_ = field(
default=_lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
snake_case_ = field(
default=_lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
snake_case_ = field(
default=_lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
snake_case_ = field(metadata={"""help""": """Should contain the data files for the task."""} )
snake_case_ = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
snake_case_ = field(
default=_lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''', snake_case_ )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE__ : Dict =processors[data_args.task_name]()
SCREAMING_SNAKE_CASE__ : Any =processor.get_labels()
SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(snake_case_ )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ : str =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=snake_case_, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, )
SCREAMING_SNAKE_CASE__ : Dict =AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, )
SCREAMING_SNAKE_CASE__ : int =AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=snake_case_, cache_dir=model_args.cache_dir, )
# Get datasets
SCREAMING_SNAKE_CASE__ : Any =(
MultipleChoiceDataset(
data_dir=data_args.data_dir, tokenizer=snake_case_, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE__ : Dict =(
MultipleChoiceDataset(
data_dir=data_args.data_dir, tokenizer=snake_case_, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, )
if training_args.do_eval
else None
)
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
SCREAMING_SNAKE_CASE__ : Optional[int] =np.argmax(p.predictions, axis=1 )
return {"acc": simple_accuracy(snake_case_, p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE__ : int =DataCollatorWithPadding(snake_case_, pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ : Optional[int] =Trainer(
model=snake_case_, args=snake_case_, train_dataset=snake_case_, eval_dataset=snake_case_, compute_metrics=snake_case_, data_collator=snake_case_, )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE__ : Any ={}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
SCREAMING_SNAKE_CASE__ : List[Any] =trainer.evaluate()
SCREAMING_SNAKE_CASE__ : Tuple =os.path.join(training_args.output_dir, '''eval_results.txt''' )
if trainer.is_world_master():
with open(snake_case_, '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''', snake_case_, snake_case_ )
writer.write('''%s = %s\n''' % (key, value) )
results.update(snake_case_ )
return results
def _a( UpperCamelCase__ : Optional[int] ):
'''simple docstring'''
main()
if __name__ == "__main__":
main() | 152 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 0 |
"""simple docstring"""
def _A (__a , __a , __a ) -> Dict:
"""simple docstring"""
if principal <= 0:
raise Exception('''Principal borrowed must be > 0''' )
if rate_per_annum < 0:
raise Exception('''Rate of interest must be >= 0''' )
if years_to_repay <= 0 or not isinstance(snake_case_ , snake_case_ ):
raise Exception('''Years to repay must be an integer > 0''' )
# Yearly rate is divided by 12 to get monthly rate
SCREAMING_SNAKE_CASE_ : Optional[Any] = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
SCREAMING_SNAKE_CASE_ : Optional[int] = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 91 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class A__ ( _lowerCAmelCase):
A_ : torch.FloatTensor
A_ : torch.FloatTensor
A_ : Optional[torch.FloatTensor] = None
class A__ ( _lowerCAmelCase , _lowerCAmelCase):
A_ : int = 2
@register_to_config
def __init__( self , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 1_00 , _SCREAMING_SNAKE_CASE = 1.007 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.05 , _SCREAMING_SNAKE_CASE = 50 , ):
# standard deviation of the initial noise distribution
__lowerCAmelCase : Optional[int] = sigma_max
# setable values
__lowerCAmelCase : Any = None
__lowerCAmelCase : List[Any] = None
__lowerCAmelCase : int = None # sigma(t_i)
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ):
return sample
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ):
__lowerCAmelCase : Optional[int] = num_inference_steps
__lowerCAmelCase : Optional[int] = np.arange(0 , self.num_inference_steps )[::-1].copy()
__lowerCAmelCase : Optional[int] = torch.from_numpy(_lowercase ).to(_lowercase )
__lowerCAmelCase : int = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
__lowerCAmelCase : List[str] = torch.tensor(_lowercase , dtype=torch.floataa , device=_lowercase )
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ):
if self.config.s_min <= sigma <= self.config.s_max:
__lowerCAmelCase : Union[str, Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
__lowerCAmelCase : Tuple = 0
# sample eps ~ N(0, S_noise^2 * I)
__lowerCAmelCase : Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=_lowercase ).to(sample.device )
__lowerCAmelCase : Tuple = sigma + gamma * sigma
__lowerCAmelCase : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ):
__lowerCAmelCase : List[Any] = sample_hat + sigma_hat * model_output
__lowerCAmelCase : Any = (sample_hat - pred_original_sample) / sigma_hat
__lowerCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase )
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ):
__lowerCAmelCase : Any = sample_prev + sigma_prev * model_output
__lowerCAmelCase : int = (sample_prev - pred_original_sample) / sigma_prev
__lowerCAmelCase : List[str] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase )
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise NotImplementedError() | 86 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 0 |
from __future__ import annotations
def lowerCAmelCase_ ( __A ) -> Optional[Any]:
'''simple docstring'''
create_state_space_tree(snake_case_, [], 0, [0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( __A, __A, __A, __A, ) -> Any:
'''simple docstring'''
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
UpperCAmelCase__ = True
create_state_space_tree(snake_case_, snake_case_, index + 1, snake_case_ )
current_sequence.pop()
UpperCAmelCase__ = False
UpperCamelCase__ = [3, 1, 2, 4]
generate_all_permutations(sequence)
UpperCamelCase__ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 65 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 0 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : str=7 , lowerCAmelCase : int=True , lowerCAmelCase : str=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=99 , lowerCAmelCase : str=32 , lowerCAmelCase : Dict=5 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : str=16 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Tuple=None , ):
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def __lowercase ( self : str ):
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __lowercase ( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , *lowerCAmelCase : Tuple ):
lowerCAmelCase = OpenAIGPTModel(config=_lowercase )
model.to(_lowercase )
model.eval()
lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase )
lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase )
lowerCAmelCase = model(_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowercase ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , *lowerCAmelCase : List[Any] ):
lowerCAmelCase = OpenAIGPTLMHeadModel(_lowercase )
model.to(_lowercase )
model.eval()
lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowercase ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str , *lowerCAmelCase : Dict ):
lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_lowercase )
model.to(_lowercase )
model.eval()
lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowercase ( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , *lowerCAmelCase : Any ):
lowerCAmelCase = self.num_labels
lowerCAmelCase = OpenAIGPTForSequenceClassification(_lowercase )
model.to(_lowercase )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowercase ( self : Union[str, Any] ):
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
_a = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
_a = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
_a = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __lowercase ( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int=False ):
lowerCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase , )
lowerCAmelCase = inputs_dict["""labels"""]
lowerCAmelCase = inputs_dict["""labels"""]
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowercase , )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowercase )
return inputs_dict
def __lowercase ( self : Optional[Any] ):
lowerCAmelCase = OpenAIGPTModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 )
def __lowercase ( self : Optional[int] ):
self.config_tester.run_common_tests()
def __lowercase ( self : int ):
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_lowercase )
def __lowercase ( self : Any ):
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_lowercase )
def __lowercase ( self : int ):
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_lowercase )
def __lowercase ( self : Optional[Any] ):
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowercase )
@slow
def __lowercase ( self : Union[str, Any] ):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = OpenAIGPTModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def __lowercase ( self : str ):
lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(_lowercase )
lowerCAmelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_lowercase ) # the president is
lowerCAmelCase = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
4_0477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCAmelCase = model.generate(_lowercase , do_sample=_lowercase )
self.assertListEqual(output_ids[0].tolist() , _lowercase )
| 155 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 0 |
"""simple docstring"""
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
_UpperCamelCase : str = 'bert-base-cased'
_UpperCamelCase : Any = 'google/pegasus-xsum'
_UpperCamelCase : Any = [' Sam ate lunch today.', 'Sams lunch ingredients.']
_UpperCamelCase : List[str] = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee']
_UpperCamelCase : Any = 'patrickvonplaten/t5-tiny-random'
_UpperCamelCase : str = 'sshleifer/bart-tiny-random'
_UpperCamelCase : Dict = 'sshleifer/tiny-mbart'
_UpperCamelCase : Dict = 'sshleifer/tiny-marian-en-de'
def _SCREAMING_SNAKE_CASE ( __snake_case : Path , __snake_case : list ):
'''simple docstring'''
lowercase = '\n'.join(snake_case_ )
Path(snake_case_ ).open('w' ).writelines(snake_case_ )
def _SCREAMING_SNAKE_CASE ( __snake_case : Any ):
'''simple docstring'''
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(snake_case_ , f'{split}.source' ) , snake_case_ )
_dump_articles(os.path.join(snake_case_ , f'{split}.target' ) , snake_case_ )
return tmp_dir
class a ( _lowerCAmelCase ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = AutoTokenizer.from_pretrained(_lowercase )
lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowercase = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES )
lowercase = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES )
lowercase = 4
lowercase = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
lowercase , lowercase = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error.
lowercase = SeqaSeqDataset(
_lowercase , data_dir=_lowercase , type_path='train' , max_source_length=_lowercase , max_target_length=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , )
lowercase = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_lowercase , _lowercase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
lowercase = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = AutoTokenizer.from_pretrained(_lowercase )
lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowercase = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES )
lowercase = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES )
lowercase = 4
lowercase = LegacySeqaSeqDataset(
_lowercase , data_dir=_lowercase , type_path='train' , max_source_length=2_0 , max_target_length=_lowercase , )
lowercase = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def UpperCamelCase_ ( self ):
lowercase = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' )
lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
lowercase = tmp_dir.joinpath('train.source' ).open().readlines()
lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_lowercase , _lowercase , 1_2_8 , _lowercase )
lowercase = {x.name for x in tmp_dir.iterdir()}
lowercase = {x.name for x in save_dir.iterdir()}
lowercase = save_dir.joinpath('train.source' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_lowercase ) < len(_lowercase )
assert len(_lowercase ) == 1
assert len(packed_examples[0] ) == sum(len(_lowercase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' )
def UpperCamelCase_ ( self ):
if not FAIRSEQ_AVAILABLE:
return
lowercase , lowercase , lowercase = self._get_dataset(max_len=6_4 )
lowercase = 6_4
lowercase = ds.make_dynamic_sampler(_lowercase , required_batch_size_multiple=_lowercase )
lowercase = [len(_lowercase ) for x in batch_sampler]
assert len(set(_lowercase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_lowercase ) == len(_lowercase ) # no dropped or added examples
lowercase = DataLoader(_lowercase , batch_sampler=_lowercase , collate_fn=ds.collate_fn , num_workers=2 )
lowercase = []
lowercase = []
for batch in data_loader:
lowercase = batch['input_ids'].shape
lowercase = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
lowercase = np.product(batch['input_ids'].shape )
num_src_per_batch.append(_lowercase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_lowercase )
assert num_src_per_batch[0] == max(_lowercase )
if failures:
raise AssertionError(F'too many tokens in {len(_lowercase )} batches' )
def UpperCamelCase_ ( self ):
lowercase , lowercase , lowercase = self._get_dataset(max_len=5_1_2 )
lowercase = 2
lowercase = ds.make_sortish_sampler(_lowercase , shuffle=_lowercase )
lowercase = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 )
lowercase = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowercase )
lowercase = tokenizer.pad_token_id
def count_pad_tokens(_lowerCamelCase , _lowerCamelCase="input_ids" ):
return [batch[k].eq(_lowercase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_lowercase , k='labels' ) ) < sum(count_pad_tokens(_lowercase , k='labels' ) )
assert sum(count_pad_tokens(_lowercase ) ) < sum(count_pad_tokens(_lowercase ) )
assert len(_lowercase ) == len(_lowercase )
def UpperCamelCase_ ( self , _lowerCamelCase=1_0_0_0 , _lowerCamelCase=1_2_8 ):
if os.getenv('USE_REAL_DATA' , _lowercase ):
lowercase = 'examples/seq2seq/wmt_en_ro'
lowercase = max_len * 2 * 6_4
if not Path(_lowercase ).joinpath('train.len' ).exists():
save_len_file(_lowercase , _lowercase )
else:
lowercase = 'examples/seq2seq/test_data/wmt_en_ro'
lowercase = max_len * 4
save_len_file(_lowercase , _lowercase )
lowercase = AutoTokenizer.from_pretrained(_lowercase )
lowercase = SeqaSeqDataset(
_lowercase , data_dir=_lowercase , type_path='train' , max_source_length=_lowercase , max_target_length=_lowercase , n_obs=_lowercase , )
return ds, max_tokens, tokenizer
def UpperCamelCase_ ( self ):
lowercase , lowercase , lowercase = self._get_dataset()
lowercase = set(DistributedSortishSampler(_lowercase , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_lowercase ) )
lowercase = set(DistributedSortishSampler(_lowercase , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_lowercase ) )
assert idsa.intersection(_lowercase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def UpperCamelCase_ ( self , _lowerCamelCase ):
lowercase = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase )
if tok_name == MBART_TINY:
lowercase = SeqaSeqDataset(
_lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , )
lowercase = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
lowercase = SeqaSeqDataset(
_lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , )
lowercase = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_lowercase ) == 1 if tok_name == BART_TINY else len(_lowercase ) == 0
| 220 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 0 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __a ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=4 , ) -> int:
'''simple docstring'''
lowercase__: List[str] = parent
lowercase__: List[Any] = batch_size
lowercase__: Optional[int] = seq_length
lowercase__: Optional[int] = is_training
lowercase__: List[str] = use_attention_mask
lowercase__: List[str] = use_token_type_ids
lowercase__: Any = use_labels
lowercase__: Any = vocab_size
lowercase__: List[Any] = hidden_size
lowercase__: List[str] = num_hidden_layers
lowercase__: List[Any] = num_attention_heads
lowercase__: List[Any] = intermediate_size
lowercase__: str = hidden_act
lowercase__: Optional[Any] = hidden_dropout_prob
lowercase__: Optional[Any] = attention_probs_dropout_prob
lowercase__: int = max_position_embeddings
lowercase__: Dict = type_vocab_size
lowercase__: Tuple = type_sequence_label_size
lowercase__: Tuple = initializer_range
lowercase__: int = num_choices
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__: Tuple = None
if self.use_attention_mask:
lowercase__: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__: List[str] = None
if self.use_token_type_ids:
lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase__: List[str] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: List[str] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ , lowercase__: Optional[Any] = config_and_inputs
lowercase__: List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class __a ( _lowerCAmelCase , unittest.TestCase ):
__lowercase : Union[str, Any] = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: str = FlaxAlbertModelTester(self )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__: Dict = model_class_name.from_pretrained('albert-base-v2' )
lowercase__: List[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowercase )
@require_flax
class __a ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase__: Any = FlaxAlbertModel.from_pretrained('albert-base-v2' )
lowercase__: List[str] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
lowercase__: Any = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowercase__: str = model(_lowercase , attention_mask=_lowercase )[0]
lowercase__: Optional[Any] = (1, 11, 768)
self.assertEqual(output.shape , _lowercase )
lowercase__: str = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
| 196 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 0 |
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion'
)
__a :Optional[int] = None
__a :Optional[Any] = {
'7B': 1_1008,
'13B': 1_3824,
'30B': 1_7920,
'65B': 2_2016,
'70B': 2_8672,
}
__a :Tuple = {
'7B': 1,
'7Bf': 1,
'13B': 2,
'13Bf': 2,
'30B': 4,
'65B': 8,
'70B': 8,
'70Bf': 8,
}
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any]=1 ,__UpperCamelCase : str=256 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
with open(snake_case_ ,"r" ) as f:
return json.load(snake_case_ )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : str ):
"""simple docstring"""
with open(snake_case_ ,"w" ) as f:
json.dump(snake_case_ ,snake_case_ )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=True ):
"""simple docstring"""
os.makedirs(snake_case_ ,exist_ok=snake_case_ )
A_ = os.path.join(snake_case_ ,"tmp" )
os.makedirs(snake_case_ ,exist_ok=snake_case_ )
A_ = read_json(os.path.join(snake_case_ ,"params.json" ) )
A_ = NUM_SHARDS[model_size]
A_ = params["n_layers"]
A_ = params["n_heads"]
A_ = n_heads // num_shards
A_ = params["dim"]
A_ = dim // n_heads
A_ = 1_0000.0
A_ = 1.0 / (base ** (torch.arange(0 ,snake_case_ ,2 ).float() / dims_per_head))
if "n_kv_heads" in params:
A_ = params["n_kv_heads"] # for GQA / MQA
A_ = n_heads_per_shard // num_key_value_heads
A_ = dim // num_key_value_heads
else: # compatibility with other checkpoints
A_ = n_heads
A_ = n_heads_per_shard
A_ = dim
# permute for sliced rotary
def permute(__UpperCamelCase : int ,__UpperCamelCase : List[str]=n_heads ,__UpperCamelCase : List[Any]=dim ,__UpperCamelCase : Dict=dim ):
return w.view(snake_case_ ,dima // n_heads // 2 ,2 ,snake_case_ ).transpose(1 ,2 ).reshape(snake_case_ ,snake_case_ )
print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
A_ = torch.load(os.path.join(snake_case_ ,"consolidated.00.pth" ) ,map_location="cpu" )
else:
# Sharded
A_ = [
torch.load(os.path.join(snake_case_ ,f'''consolidated.{i:02d}.pth''' ) ,map_location="cpu" )
for i in range(snake_case_ )
]
A_ = 0
A_ = {"weight_map": {}}
for layer_i in range(snake_case_ ):
A_ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'''
if model_size == "7B":
# Unsharded
A_ = {
f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute(
loaded[f'''layers.{layer_i}.attention.wq.weight'''] ),
f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute(
loaded[f'''layers.{layer_i}.attention.wk.weight'''] ),
f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''],
f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''],
f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''],
f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''],
f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''],
f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''],
f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
A_ = {
f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][
f'''layers.{layer_i}.attention_norm.weight'''
].clone(),
f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][
f'''layers.{layer_i}.ffn_norm.weight'''
].clone(),
}
A_ = permute(
torch.cat(
[
loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(snake_case_ ,snake_case_ ,snake_case_ )
for i in range(snake_case_ )
] ,dim=0 ,).reshape(snake_case_ ,snake_case_ ) )
A_ = permute(
torch.cat(
[
loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view(
snake_case_ ,snake_case_ ,snake_case_ )
for i in range(snake_case_ )
] ,dim=0 ,).reshape(snake_case_ ,snake_case_ ) ,snake_case_ ,snake_case_ ,snake_case_ ,)
A_ = torch.cat(
[
loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view(
snake_case_ ,snake_case_ ,snake_case_ )
for i in range(snake_case_ )
] ,dim=0 ,).reshape(snake_case_ ,snake_case_ )
A_ = torch.cat(
[loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(snake_case_ )] ,dim=1 )
A_ = torch.cat(
[loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(snake_case_ )] ,dim=0 )
A_ = torch.cat(
[loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(snake_case_ )] ,dim=1 )
A_ = torch.cat(
[loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(snake_case_ )] ,dim=0 )
A_ = inv_freq
for k, v in state_dict.items():
A_ = filename
param_count += v.numel()
torch.save(snake_case_ ,os.path.join(snake_case_ ,snake_case_ ) )
A_ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'''
if model_size == "7B":
# Unsharded
A_ = {
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
"model.norm.weight": loaded["norm.weight"],
"lm_head.weight": loaded["output.weight"],
}
else:
A_ = {
"model.norm.weight": loaded[0]["norm.weight"],
"model.embed_tokens.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(snake_case_ )] ,dim=1 ),
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(snake_case_ )] ,dim=0 ),
}
for k, v in state_dict.items():
A_ = filename
param_count += v.numel()
torch.save(snake_case_ ,os.path.join(snake_case_ ,snake_case_ ) )
# Write configs
A_ = {"total_size": param_count * 2}
write_json(snake_case_ ,os.path.join(snake_case_ ,"pytorch_model.bin.index.json" ) )
A_ = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
A_ = params["multiple_of"] if "multiple_of" in params else 256
A_ = LlamaConfig(
hidden_size=snake_case_ ,intermediate_size=compute_intermediate_size(snake_case_ ,snake_case_ ,snake_case_ ) ,num_attention_heads=params["n_heads"] ,num_hidden_layers=params["n_layers"] ,rms_norm_eps=params["norm_eps"] ,num_key_value_heads=snake_case_ ,)
config.save_pretrained(snake_case_ )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("Loading the checkpoint in a Llama model." )
A_ = LlamaForCausalLM.from_pretrained(snake_case_ ,torch_dtype=torch.floataa ,low_cpu_mem_usage=snake_case_ )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("Saving in the Transformers format." )
model.save_pretrained(snake_case_ ,safe_serialization=snake_case_ )
shutil.rmtree(snake_case_ )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' )
A_ = tokenizer_class(snake_case_ )
tokenizer.save_pretrained(snake_case_ )
def __snake_case ( ):
"""simple docstring"""
A_ = argparse.ArgumentParser()
parser.add_argument(
"--input_dir" ,help="Location of LLaMA weights, which contains tokenizer.model and model folders" ,)
parser.add_argument(
"--model_size" ,choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] ,)
parser.add_argument(
"--output_dir" ,help="Location to write HF model and tokenizer" ,)
parser.add_argument("--safe_serialization" ,type=snake_case_ ,help="Whether or not to save using `safetensors`." )
A_ = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,)
A_ = os.path.join(args.input_dir ,"tokenizer.model" )
write_tokenizer(args.output_dir ,snake_case_ )
if __name__ == "__main__":
main() | 312 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a = logging.get_logger(__name__)
class UpperCAmelCase_ ( _lowerCAmelCase ):
"""simple docstring"""
def __init__( self : Union[str, Any] , *snake_case_ : Any , **snake_case_ : List[Any] ):
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 35 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 0 |
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : list[str] | None = None , _lowerCamelCase : dict[str, float] | None = None , _lowerCamelCase : bool = False , ) -> int:
'''simple docstring'''
__UpperCamelCase : Dict = cipher_alphabet or [chr(snake_case_) for i in range(97 , 123)]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
__UpperCamelCase : Optional[Any] = {
"a": 0.0_8_4_9_7,
"b": 0.0_1_4_9_2,
"c": 0.0_2_2_0_2,
"d": 0.0_4_2_5_3,
"e": 0.1_1_1_6_2,
"f": 0.0_2_2_2_8,
"g": 0.0_2_0_1_5,
"h": 0.0_6_0_9_4,
"i": 0.0_7_5_4_6,
"j": 0.0_0_1_5_3,
"k": 0.0_1_2_9_2,
"l": 0.0_4_0_2_5,
"m": 0.0_2_4_0_6,
"n": 0.0_6_7_4_9,
"o": 0.0_7_5_0_7,
"p": 0.0_1_9_2_9,
"q": 0.0_0_0_9_5,
"r": 0.0_7_5_8_7,
"s": 0.0_6_3_2_7,
"t": 0.0_9_3_5_6,
"u": 0.0_2_7_5_8,
"v": 0.0_0_9_7_8,
"w": 0.0_2_5_6_0,
"x": 0.0_0_1_5_0,
"y": 0.0_1_9_9_4,
"z": 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
__UpperCamelCase : Any = frequencies_dict
if not case_sensitive:
__UpperCamelCase : int = ciphertext.lower()
# Chi squared statistic values
__UpperCamelCase : Any = {}
# cycle through all of the shifts
for shift in range(len(snake_case_)):
__UpperCamelCase : int = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
__UpperCamelCase : Optional[int] = (alphabet_letters.index(letter.lower()) - shift) % len(
snake_case_)
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
__UpperCamelCase : List[Any] = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
__UpperCamelCase : List[Any] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
__UpperCamelCase : str = decrypted_with_shift.lower().count(snake_case_)
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__UpperCamelCase : Any = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__UpperCamelCase : Dict = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
__UpperCamelCase : Tuple = decrypted_with_shift.count(snake_case_)
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__UpperCamelCase : List[str] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__UpperCamelCase : List[str] = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
__UpperCamelCase : Tuple = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_lowerCamelCase : int) -> tuple[float, str]:
return chi_squared_statistic_values[key]
__UpperCamelCase : Union[str, Any] = min(
snake_case_ , key=snake_case_ , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) : Tuple = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
) | 232 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 0 |
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class __lowercase (unittest.TestCase ):
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : List[Any] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
__lowerCAmelCase : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
__lowerCAmelCase : List[Any] = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
__lowerCAmelCase : Optional[int] = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 1_6000,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
__lowerCAmelCase : List[str] = tempfile.mkdtemp()
__lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , _lowercase )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
# load decoder from hub
__lowerCAmelCase : Any = '''hf-internal-testing/ngram-beam-search-decoder'''
def UpperCamelCase__ ( self , **A_ ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Optional[int] = self.add_kwargs_tokens_map.copy()
kwargs.update(_lowercase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowercase )
def UpperCamelCase__ ( self , **A_ ) ->Optional[int]:
'''simple docstring'''
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowercase )
def UpperCamelCase__ ( self , **A_ ) ->Optional[Any]:
'''simple docstring'''
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowercase )
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
__lowerCAmelCase : int = self.get_tokenizer()
__lowerCAmelCase : Tuple = self.get_feature_extractor()
__lowerCAmelCase : Union[str, Any] = self.get_decoder()
__lowerCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowercase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _lowercase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _lowercase )
def UpperCamelCase__ ( self ) ->List[Any]:
'''simple docstring'''
__lowerCAmelCase : List[str] = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__lowerCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def UpperCamelCase__ ( self ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Dict = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(_lowercase , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=_lowercase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
__lowerCAmelCase : str = self.get_feature_extractor()
__lowerCAmelCase : Optional[int] = self.get_tokenizer()
__lowerCAmelCase : Optional[Any] = self.get_decoder()
__lowerCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__lowerCAmelCase : List[str] = floats_list((3, 1000) )
__lowerCAmelCase : Any = feature_extractor(_lowercase , return_tensors='''np''' )
__lowerCAmelCase : str = processor(_lowercase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : int = self.get_feature_extractor()
__lowerCAmelCase : Optional[Any] = self.get_tokenizer()
__lowerCAmelCase : Optional[int] = self.get_decoder()
__lowerCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__lowerCAmelCase : Optional[Any] = '''This is a test string'''
__lowerCAmelCase : Optional[int] = processor(text=_lowercase )
__lowerCAmelCase : Optional[Any] = tokenizer(_lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCamelCase__ ( self , A_=(2, 10, 16) , A_=77 ) ->int:
'''simple docstring'''
np.random.seed(_lowercase )
return np.random.rand(*_lowercase )
def UpperCamelCase__ ( self ) ->Union[str, Any]:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = self.get_feature_extractor()
__lowerCAmelCase : str = self.get_tokenizer()
__lowerCAmelCase : int = self.get_decoder()
__lowerCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__lowerCAmelCase : List[Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__lowerCAmelCase : Optional[int] = processor.decode(_lowercase )
__lowerCAmelCase : Dict = decoder.decode_beams(_lowercase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def UpperCamelCase__ ( self , A_ ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : int = self.get_feature_extractor()
__lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
__lowerCAmelCase : List[Any] = self.get_decoder()
__lowerCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__lowerCAmelCase : Any = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__lowerCAmelCase : Optional[Any] = processor.batch_decode(_lowercase )
else:
with get_context(_lowercase ).Pool() as pool:
__lowerCAmelCase : int = processor.batch_decode(_lowercase , _lowercase )
__lowerCAmelCase : int = list(_lowercase )
with get_context('''fork''' ).Pool() as p:
__lowerCAmelCase : Tuple = decoder.decode_beams_batch(_lowercase , _lowercase )
__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : str = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_lowercase , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(_lowercase , decoded_processor.logit_score )
self.assertListEqual(_lowercase , decoded_processor.lm_score )
def UpperCamelCase__ ( self ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Optional[int] = self.get_feature_extractor()
__lowerCAmelCase : Tuple = self.get_tokenizer()
__lowerCAmelCase : int = self.get_decoder()
__lowerCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__lowerCAmelCase : int = self._get_dummy_logits()
__lowerCAmelCase : Tuple = 15
__lowerCAmelCase : int = -20.0
__lowerCAmelCase : Tuple = -4.0
__lowerCAmelCase : List[str] = processor.batch_decode(
_lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , )
__lowerCAmelCase : Dict = decoded_processor_out.text
__lowerCAmelCase : Optional[int] = list(_lowercase )
with get_context('''fork''' ).Pool() as pool:
__lowerCAmelCase : Optional[int] = decoder.decode_beams_batch(
_lowercase , _lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , )
__lowerCAmelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out]
__lowerCAmelCase : Any = [d[0][2] for d in decoded_decoder_out]
__lowerCAmelCase : int = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_lowercase , _lowercase )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _lowercase )
self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _lowercase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , _lowercase , atol=1e-3 ) )
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : List[Any] = self.get_feature_extractor()
__lowerCAmelCase : List[Any] = self.get_tokenizer()
__lowerCAmelCase : Optional[int] = self.get_decoder()
__lowerCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
__lowerCAmelCase : Dict = self._get_dummy_logits()
__lowerCAmelCase : List[str] = 2.0
__lowerCAmelCase : Dict = 5.0
__lowerCAmelCase : int = -20.0
__lowerCAmelCase : Dict = True
__lowerCAmelCase : List[Any] = processor.batch_decode(
_lowercase , alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , )
__lowerCAmelCase : Optional[int] = decoded_processor_out.text
__lowerCAmelCase : Optional[Any] = list(_lowercase )
decoder.reset_params(
alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , )
with get_context('''fork''' ).Pool() as pool:
__lowerCAmelCase : str = decoder.decode_beams_batch(
_lowercase , _lowercase , )
__lowerCAmelCase : int = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_lowercase , _lowercase )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _lowercase )
__lowerCAmelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _lowercase )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__lowerCAmelCase : Dict = processor.decoder.model_container[processor.decoder._model_key]
__lowerCAmelCase : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
__lowerCAmelCase : Any = os.listdir(_lowercase )
__lowerCAmelCase : Optional[int] = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_lowercase , _lowercase )
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : int = snapshot_download('''hf-internal-testing/processor_with_lm''' )
__lowerCAmelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(_lowercase )
__lowerCAmelCase : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
__lowerCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
__lowerCAmelCase : List[str] = os.listdir(_lowercase )
__lowerCAmelCase : Tuple = os.listdir(_lowercase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_lowercase , _lowercase )
def UpperCamelCase__ ( self ) ->str:
'''simple docstring'''
__lowerCAmelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__lowerCAmelCase : int = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__lowerCAmelCase : List[Any] = floats_list((3, 1000) )
__lowerCAmelCase : Union[str, Any] = processor_wavaveca(_lowercase , return_tensors='''np''' )
__lowerCAmelCase : int = processor_auto(_lowercase , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__lowerCAmelCase : str = self._get_dummy_logits()
__lowerCAmelCase : Optional[Any] = processor_wavaveca.batch_decode(_lowercase )
__lowerCAmelCase : Tuple = processor_auto.batch_decode(_lowercase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
__lowerCAmelCase : List[str] = self.get_feature_extractor()
__lowerCAmelCase : Optional[Any] = self.get_tokenizer()
__lowerCAmelCase : Optional[int] = self.get_decoder()
__lowerCAmelCase : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def UpperCamelCase__ ( A_ , A_ ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = [d[key] for d in offsets]
return retrieved_list
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__lowerCAmelCase : List[Any] = self._get_dummy_logits()[0]
__lowerCAmelCase : str = processor.decode(_lowercase , output_word_offsets=_lowercase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(_lowercase , _lowercase ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def UpperCamelCase__ ( self ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
__lowerCAmelCase : Dict = self._get_dummy_logits()
__lowerCAmelCase : Optional[Any] = processor.batch_decode(_lowercase , output_word_offsets=_lowercase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(_lowercase , _lowercase ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
import torch
__lowerCAmelCase : Optional[Any] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_lowercase )
__lowerCAmelCase : Optional[int] = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6000 ) )
__lowerCAmelCase : int = iter(_lowercase )
__lowerCAmelCase : int = next(_lowercase )
__lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
__lowerCAmelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__lowerCAmelCase : List[Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
__lowerCAmelCase : Optional[int] = model(_lowercase ).logits.cpu().numpy()
__lowerCAmelCase : Optional[Any] = processor.decode(logits[0] , output_word_offsets=_lowercase )
__lowerCAmelCase : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__lowerCAmelCase : List[str] = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
__lowerCAmelCase : List[Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , _lowercase )
self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , output.text )
# output times
__lowerCAmelCase : Optional[int] = torch.tensor(self.get_from_offsets(_lowercase , '''start_time''' ) )
__lowerCAmelCase : Optional[int] = torch.tensor(self.get_from_offsets(_lowercase , '''end_time''' ) )
# fmt: off
__lowerCAmelCase : Any = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
__lowerCAmelCase : int = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) )
self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) )
| 275 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
a_ = TypeVar('KT')
a_ = TypeVar('VT')
class __SCREAMING_SNAKE_CASE ( Generic[KT, VT] ):
def __init__( self : Optional[Any] , __lowercase : KT | str = "root" , __lowercase : VT | None = None ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =key
SCREAMING_SNAKE_CASE__ : Union[str, Any] =value
SCREAMING_SNAKE_CASE__ : Optional[Any] =[]
def __repr__( self : Union[str, Any] ) -> Any:
return F"Node({self.key}: {self.value})"
@property
def __magic_name__ ( self : Optional[int] ) -> Dict:
return len(self.forward )
class __SCREAMING_SNAKE_CASE ( Generic[KT, VT] ):
def __init__( self : Union[str, Any] , __lowercase : float = 0.5 , __lowercase : int = 16 ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : List[str] =Node[KT, VT]()
SCREAMING_SNAKE_CASE__ : List[Any] =0
SCREAMING_SNAKE_CASE__ : List[str] =p
SCREAMING_SNAKE_CASE__ : Dict =max_level
def __str__( self : str ) -> Any:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =list(self )
if len(_lowercase ) == 0:
return F"SkipList(level={self.level})"
SCREAMING_SNAKE_CASE__ : List[str] =max((len(str(_lowercase ) ) for item in items) , default=4 )
SCREAMING_SNAKE_CASE__ : Any =max(_lowercase , 4 ) + 4
SCREAMING_SNAKE_CASE__ : List[Any] =self.head
SCREAMING_SNAKE_CASE__ : Dict =[]
SCREAMING_SNAKE_CASE__ : Dict =node.forward.copy()
lines.append(F"[{node.key}]".ljust(_lowercase , '''-''' ) + '''* ''' * len(_lowercase ) )
lines.append(''' ''' * label_size + '''| ''' * len(_lowercase ) )
while len(node.forward ) != 0:
SCREAMING_SNAKE_CASE__ : Any =node.forward[0]
lines.append(
F"[{node.key}]".ljust(_lowercase , '''-''' )
+ ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) )
lines.append(''' ''' * label_size + '''| ''' * len(_lowercase ) )
SCREAMING_SNAKE_CASE__ : Dict =node.forward
lines.append('''None'''.ljust(_lowercase ) + '''* ''' * len(_lowercase ) )
return F"SkipList(level={self.level})\n" + "\n".join(_lowercase )
def __iter__( self : Dict ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.head
while len(node.forward ) != 0:
yield node.forward[0].key
SCREAMING_SNAKE_CASE__ : Tuple =node.forward[0]
def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : Any =1
while random() < self.p and level < self.max_level:
level += 1
return level
def __magic_name__ ( self : List[str] , __lowercase : int ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Dict =[]
SCREAMING_SNAKE_CASE__ : List[str] =self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
SCREAMING_SNAKE_CASE__ : Tuple =node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(_lowercase )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def __magic_name__ ( self : str , __lowercase : KT ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self._locate_node(_lowercase )
if node is not None:
for i, update_node in enumerate(_lowercase ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
SCREAMING_SNAKE_CASE__ : int =node.forward[i]
else:
SCREAMING_SNAKE_CASE__ : List[str] =update_node.forward[:i]
def __magic_name__ ( self : Any , __lowercase : KT , __lowercase : VT ) -> str:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =self._locate_node(_lowercase )
if node is not None:
SCREAMING_SNAKE_CASE__ : int =value
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , _lowercase ):
update_vector.append(self.head )
SCREAMING_SNAKE_CASE__ : int =level
SCREAMING_SNAKE_CASE__ : str =Node(_lowercase , _lowercase )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(_lowercase )
else:
SCREAMING_SNAKE_CASE__ : Optional[int] =new_node
def __magic_name__ ( self : Optional[Any] , __lowercase : VT ) -> Dict:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self._locate_node(_lowercase )
if node is not None:
return node.value
return None
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] =SkipList()
skip_list.insert('''Key1''', 3 )
skip_list.insert('''Key2''', 1_2 )
skip_list.insert('''Key3''', 4_1 )
skip_list.insert('''Key4''', -1_9 )
SCREAMING_SNAKE_CASE__ : Tuple =skip_list.head
SCREAMING_SNAKE_CASE__ : Union[str, Any] ={}
while node.level != 0:
SCREAMING_SNAKE_CASE__ : int =node.forward[0]
SCREAMING_SNAKE_CASE__ : Dict =node.value
assert len(snake_case_ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 1_2
assert all_values["Key3"] == 4_1
assert all_values["Key4"] == -1_9
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any =SkipList()
skip_list.insert('''Key1''', 1_0 )
skip_list.insert('''Key1''', 1_2 )
skip_list.insert('''Key5''', 7 )
skip_list.insert('''Key7''', 1_0 )
skip_list.insert('''Key10''', 5 )
skip_list.insert('''Key7''', 7 )
skip_list.insert('''Key5''', 5 )
skip_list.insert('''Key10''', 1_0 )
SCREAMING_SNAKE_CASE__ : Dict =skip_list.head
SCREAMING_SNAKE_CASE__ : Dict ={}
while node.level != 0:
SCREAMING_SNAKE_CASE__ : int =node.forward[0]
SCREAMING_SNAKE_CASE__ : Optional[int] =node.value
if len(snake_case_ ) != 4:
print()
assert len(snake_case_ ) == 4
assert all_values["Key1"] == 1_2
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 1_0
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] =SkipList()
assert skip_list.find('''Some key''' ) is None
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] =SkipList()
skip_list.insert('''Key2''', 2_0 )
assert skip_list.find('''Key2''' ) == 2_0
skip_list.insert('''Some Key''', 1_0 )
skip_list.insert('''Key2''', 8 )
skip_list.insert('''V''', 1_3 )
assert skip_list.find('''Y''' ) is None
assert skip_list.find('''Key2''' ) == 8
assert skip_list.find('''Some Key''' ) == 1_0
assert skip_list.find('''V''' ) == 1_3
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int =SkipList()
skip_list.delete('''Some key''' )
assert len(skip_list.head.forward ) == 0
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any =SkipList()
skip_list.insert('''Key1''', 1_2 )
skip_list.insert('''V''', 1_3 )
skip_list.insert('''X''', 1_4 )
skip_list.insert('''Key2''', 1_5 )
skip_list.delete('''V''' )
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''Key2''' ) is None
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any =SkipList()
skip_list.insert('''Key1''', 1_2 )
skip_list.insert('''V''', 1_3 )
skip_list.insert('''X''', 1_4 )
skip_list.insert('''Key2''', 1_5 )
skip_list.delete('''V''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) == 1_4
assert skip_list.find('''Key1''' ) == 1_2
assert skip_list.find('''Key2''' ) == 1_5
skip_list.delete('''X''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) == 1_2
assert skip_list.find('''Key2''' ) == 1_5
skip_list.delete('''Key1''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) == 1_5
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) is None
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple =SkipList()
skip_list.insert('''Key1''', 1_2 )
skip_list.insert('''V''', 1_3 )
skip_list.insert('''X''', 1_4_2 )
skip_list.insert('''Key2''', 1_5 )
skip_list.delete('''X''' )
def traverse_keys(UpperCamelCase__ : int ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(snake_case_ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def _a( ):
'''simple docstring'''
def is_sorted(UpperCamelCase__ : Dict ):
return all(next_item >= item for item, next_item in zip(snake_case_, lst[1:] ) )
SCREAMING_SNAKE_CASE__ : List[Any] =SkipList()
for i in range(1_0 ):
skip_list.insert(snake_case_, snake_case_ )
assert is_sorted(list(snake_case_ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(snake_case_ ) )
skip_list.insert(-1_2, -1_2 )
skip_list.insert(7_7, 7_7 )
assert is_sorted(list(snake_case_ ) )
def _a( ):
'''simple docstring'''
for _ in range(1_0_0 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any =SkipList()
skip_list.insert(2, '''2''' )
skip_list.insert(4, '''4''' )
skip_list.insert(6, '''4''' )
skip_list.insert(4, '''5''' )
skip_list.insert(8, '''4''' )
skip_list.insert(9, '''4''' )
skip_list.delete(4 )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 152 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 0 |
"""simple docstring"""
def _A (__a , __a ) -> Dict:
"""simple docstring"""
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) )
else:
return a * actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) )
def _A (__a , __a ) -> List[Any]:
"""simple docstring"""
if b < 0:
return 1 / actual_power(snake_case_ , snake_case_ )
return actual_power(snake_case_ , snake_case_ )
if __name__ == "__main__":
print(power(-2, -3))
| 91 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 0 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : int = SwinConfig.from_pretrained(
'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
__lowerCAmelCase : Dict = MaskFormerConfig(backbone_config=snake_case_ )
__lowerCAmelCase : int = 'huggingface/label-files'
if "ade20k-full" in model_name:
# this should be ok
__lowerCAmelCase : List[Any] = 847
__lowerCAmelCase : List[str] = 'maskformer-ade20k-full-id2label.json'
elif "ade" in model_name:
# this should be ok
__lowerCAmelCase : Union[str, Any] = 150
__lowerCAmelCase : Any = 'ade20k-id2label.json'
elif "coco-stuff" in model_name:
# this should be ok
__lowerCAmelCase : List[str] = 171
__lowerCAmelCase : Union[str, Any] = 'maskformer-coco-stuff-id2label.json'
elif "coco" in model_name:
# TODO
__lowerCAmelCase : Any = 133
__lowerCAmelCase : List[str] = 'coco-panoptic-id2label.json'
elif "cityscapes" in model_name:
# this should be ok
__lowerCAmelCase : Tuple = 19
__lowerCAmelCase : Optional[int] = 'cityscapes-id2label.json'
elif "vistas" in model_name:
# this should be ok
__lowerCAmelCase : str = 65
__lowerCAmelCase : Union[str, Any] = 'mapillary-vistas-id2label.json'
__lowerCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='dataset' ) , 'r' ) )
__lowerCAmelCase : int = {int(snake_case_ ): v for k, v in idalabel.items()}
return config
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Optional[Any] = []
# stem
# fmt: off
rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") )
if i < 3:
rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") )
rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") )
rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") )
rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") )
rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") )
# FPN
rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") )
rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") )
rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") )
rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") )
rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") )
rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") )
rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') )
rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") )
# cross-attention out projection
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") )
# MLP 1
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") )
# MLP 2
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") )
# layernorm 3 (final layernorm)
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') )
# heads on top
rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') )
rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') )
rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') )
for i in range(3 ):
rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") )
rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") )
# fmt: on
return rename_keys
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Dict = dct.pop(snake_case_ )
__lowerCAmelCase : Union[str, Any] = val
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__lowerCAmelCase : int = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__lowerCAmelCase : Tuple = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" )
__lowerCAmelCase : List[str] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase : int = in_proj_weight[:dim, :]
__lowerCAmelCase : List[Any] = in_proj_bias[: dim]
__lowerCAmelCase : Optional[Any] = in_proj_weight[
dim : dim * 2, :
]
__lowerCAmelCase : Optional[int] = in_proj_bias[
dim : dim * 2
]
__lowerCAmelCase : Optional[int] = in_proj_weight[
-dim :, :
]
__lowerCAmelCase : Union[str, Any] = in_proj_bias[-dim :]
# fmt: on
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ):
# fmt: off
__lowerCAmelCase : int = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
__lowerCAmelCase : List[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" )
__lowerCAmelCase : Optional[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase : Union[str, Any] = in_proj_weight[: hidden_size, :]
__lowerCAmelCase : Optional[int] = in_proj_bias[:config.hidden_size]
__lowerCAmelCase : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :]
__lowerCAmelCase : int = in_proj_bias[hidden_size : hidden_size * 2]
__lowerCAmelCase : List[Any] = in_proj_weight[-hidden_size :, :]
__lowerCAmelCase : Optional[Any] = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
__lowerCAmelCase : Optional[int] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" )
__lowerCAmelCase : str = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase : Optional[int] = in_proj_weight[: hidden_size, :]
__lowerCAmelCase : Any = in_proj_bias[:config.hidden_size]
__lowerCAmelCase : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :]
__lowerCAmelCase : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2]
__lowerCAmelCase : int = in_proj_weight[-hidden_size :, :]
__lowerCAmelCase : List[Any] = in_proj_bias[-hidden_size :]
# fmt: on
def __lowerCAmelCase ():
__lowerCAmelCase : str = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCAmelCase : Dict = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
return im
@torch.no_grad()
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ):
__lowerCAmelCase : Any = get_maskformer_config(snake_case_ )
# load original state_dict
with open(snake_case_ , 'rb' ) as f:
__lowerCAmelCase : int = pickle.load(snake_case_ )
__lowerCAmelCase : Dict = data['model']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
__lowerCAmelCase : Any = create_rename_keys(snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_ , snake_case_ , snake_case_ )
read_in_swin_q_k_v(snake_case_ , config.backbone_config )
read_in_decoder_q_k_v(snake_case_ , snake_case_ )
# update to torch tensors
for key, value in state_dict.items():
__lowerCAmelCase : List[Any] = torch.from_numpy(snake_case_ )
# load 🤗 model
__lowerCAmelCase : Optional[Any] = MaskFormerForInstanceSegmentation(snake_case_ )
model.eval()
for name, param in model.named_parameters():
print(snake_case_ , param.shape )
__lowerCAmelCase , __lowerCAmelCase : List[str] = model.load_state_dict(snake_case_ , strict=snake_case_ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(snake_case_ ) == 0, F"Unexpected keys: {unexpected_keys}"
# verify results
__lowerCAmelCase : List[Any] = prepare_img()
if "vistas" in model_name:
__lowerCAmelCase : str = 65
elif "cityscapes" in model_name:
__lowerCAmelCase : Any = 6_5535
else:
__lowerCAmelCase : List[str] = 255
__lowerCAmelCase : Union[str, Any] = True if 'ade' in model_name else False
__lowerCAmelCase : Tuple = MaskFormerImageProcessor(ignore_index=snake_case_ , reduce_labels=snake_case_ )
__lowerCAmelCase : Dict = image_processor(snake_case_ , return_tensors='pt' )
__lowerCAmelCase : Dict = model(**snake_case_ )
print('Logits:' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
__lowerCAmelCase : str = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"Saving model and image processor to {pytorch_dump_folder_path}" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print('Pushing model and image processor to the hub...' )
model.push_to_hub(F"nielsr/{model_name}" )
image_processor.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you\'d like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase__ = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 86 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 0 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A ( _lowerCAmelCase , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
__UpperCAmelCase : int = "ssube/stable-diffusion-x4-upscaler-onnx"
def lowercase_ (self : Any , __UpperCAmelCase : Optional[int]=0 ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(_lowercase ) )
UpperCAmelCase__ = torch.manual_seed(_lowercase )
UpperCAmelCase__ = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def lowercase_ (self : Union[str, Any] ) -> str:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**_lowercase ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def lowercase_ (self : str ) -> int:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
UpperCAmelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**_lowercase ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array(
[0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def lowercase_ (self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
UpperCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**_lowercase ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array(
[0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def lowercase_ (self : Any ) -> str:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
UpperCAmelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**_lowercase ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def lowercase_ (self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
UpperCAmelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**_lowercase ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array(
[0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class A ( unittest.TestCase ):
@property
def lowercase_ (self : List[Any] ) -> str:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase_ (self : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = ort.SessionOptions()
UpperCAmelCase__ = False
return options
def lowercase_ (self : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
UpperCAmelCase__ = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = "A fantasy landscape, trending on artstation"
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=_lowercase , image=_lowercase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowercase , output_type="np" , )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def lowercase_ (self : List[str] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
UpperCAmelCase__ = init_image.resize((1_2_8, 1_2_8) )
UpperCAmelCase__ = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" )
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
UpperCAmelCase__ = "A fantasy landscape, trending on artstation"
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=_lowercase , image=_lowercase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowercase , output_type="np" , )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ = np.array(
[0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 65 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , unittest.TestCase ):
_a = KandinskyVaaImgaImgPipeline
_a = ["image_embeds", "negative_image_embeds", "image"]
_a = [
"image_embeds",
"negative_image_embeds",
"image",
]
_a = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
_a = False
@property
def __lowercase ( self : List[str] ):
return 32
@property
def __lowercase ( self : Any ):
return 32
@property
def __lowercase ( self : Union[str, Any] ):
return self.time_input_dim
@property
def __lowercase ( self : Union[str, Any] ):
return self.time_input_dim * 4
@property
def __lowercase ( self : Union[str, Any] ):
return 100
@property
def __lowercase ( self : Optional[int] ):
torch.manual_seed(0 )
lowerCAmelCase = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowerCAmelCase = UNetaDConditionModel(**_lowercase )
return model
@property
def __lowercase ( self : Optional[Any] ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __lowercase ( self : List[Any] ):
torch.manual_seed(0 )
lowerCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def __lowercase ( self : Dict ):
lowerCAmelCase = self.dummy_unet
lowerCAmelCase = self.dummy_movq
lowerCAmelCase = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_0085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
lowerCAmelCase = DDIMScheduler(**_lowercase )
lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def __lowercase ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=0 ):
lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase )
lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowercase )
# create init_image
lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) )
if str(_lowercase ).startswith("""mps""" ):
lowerCAmelCase = torch.manual_seed(_lowercase )
else:
lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
lowerCAmelCase = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def __lowercase ( self : List[Any] ):
lowerCAmelCase = """cpu"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_lowercase )
lowerCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) )
lowerCAmelCase = output.images
lowerCAmelCase = pipe(
**self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array(
[0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __lowercase ( self : Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowercase ( self : Optional[Any] ):
lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_img2img_frog.npy""" )
lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowerCAmelCase = """A red cartoon frog, 4k"""
lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(_lowercase )
lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa )
lowerCAmelCase = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowerCAmelCase , lowerCAmelCase = pipe_prior(
_lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowerCAmelCase = pipeline(
image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , )
lowerCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
| 155 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 0 |
"""simple docstring"""
_UpperCamelCase : Any = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}]
_UpperCamelCase : Any = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 220 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 0 |
from torch import nn
def snake_case_ ( snake_case ) -> Tuple:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'Unsupported activation function: {act_fn}' )
| 196 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 0 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _a ( _lowerCAmelCase ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ["image_processor", "tokenizer"]
_lowerCamelCase : Optional[Any] = "FlavaImageProcessor"
_lowerCamelCase : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Any , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[int] ):
A_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _lowercase , )
A_ = kwargs.pop("feature_extractor" )
A_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_lowercase , _lowercase )
A_ = self.image_processor
def __call__( self : int , UpperCAmelCase : Optional[ImageInput] = None , UpperCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
A_ = self.tokenizer(
text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , )
if images is not None:
A_ = self.image_processor(
_lowercase , return_image_mask=_lowercase , return_codebook_pixels=_lowercase , return_tensors=_lowercase , **_lowercase , )
if text is not None and images is not None:
encoding.update(_lowercase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase )
def __A ( self : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def __A ( self : List[str] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
@property
def __A ( self : List[Any] ):
A_ = self.tokenizer.model_input_names
A_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __A ( self : str ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowercase , )
return self.image_processor_class
@property
def __A ( self : int ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowercase , )
return self.image_processor | 312 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
def __snake_case( _lowerCAmelCase ) -> str:
snake_case__ : List[str] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def __snake_case( _lowerCAmelCase = 100 ) -> Union[str, Any]:
snake_case__ : str = 1
snake_case__ : Dict = 2
for i in range(2 , max_n + 1 ):
snake_case__ : Dict = pre_numerator
snake_case__ : str = 2 * i // 3 if i % 3 == 0 else 1
snake_case__ : Dict = cur_numerator
snake_case__ : Union[str, Any] = e_cont * pre_numerator + temp
return sum_digits(snake_case_ )
if __name__ == "__main__":
print(F"{solution() = }")
| 35 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 0 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
lowercase : int = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any) -> List[str]:
'''simple docstring'''
__UpperCamelCase : Optional[Any] = R"\w+[.]\d+"
__UpperCamelCase : Optional[Any] = re.findall(snake_case_ , snake_case_)
for pat in pats:
__UpperCamelCase : str = key.replace(snake_case_ , "_".join(pat.split(".")))
return key
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : List[str]) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase : int = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key)
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
__UpperCamelCase : List[str] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
__UpperCamelCase : List[str] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
__UpperCamelCase : str = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
__UpperCamelCase : Any = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
__UpperCamelCase : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
__UpperCamelCase : Tuple = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
__UpperCamelCase : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
__UpperCamelCase : List[Any] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
__UpperCamelCase : Optional[Any] = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : int=42) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase : str = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
__UpperCamelCase : List[Any] = flax_model.init_weights(PRNGKey(snake_case_))
__UpperCamelCase : Dict = flatten_dict(snake_case_)
__UpperCamelCase : Optional[int] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__UpperCamelCase : int = rename_key(snake_case_)
__UpperCamelCase : List[str] = tuple(renamed_pt_key.split("."))
# Correctly rename weight parameters
__UpperCamelCase , __UpperCamelCase : int = rename_key_and_reshape_tensor(snake_case_ , snake_case_ , snake_case_)
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.')
# also add unexpected weight so that warning is thrown
__UpperCamelCase : str = jnp.asarray(snake_case_)
return unflatten_dict(snake_case_) | 232 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 0 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
_UpperCamelCase = datasets.utils.logging.get_logger(__name__)
class __lowercase (folder_based_builder.FolderBasedBuilderConfig ):
_UpperCamelCase = None
_UpperCamelCase = None
class __lowercase (folder_based_builder.FolderBasedBuilder ):
_UpperCamelCase = datasets.Audio()
_UpperCamelCase = "audio"
_UpperCamelCase = AudioFolderConfig
_UpperCamelCase = 42 # definition at the bottom of the script
_UpperCamelCase = AudioClassification(audio_column="""audio""" , label_column="""label""" )
_UpperCamelCase = [
'.aiff',
'.au',
'.avr',
'.caf',
'.flac',
'.htk',
'.svx',
'.mat4',
'.mat5',
'.mpc2k',
'.ogg',
'.paf',
'.pvf',
'.raw',
'.rf64',
'.sd2',
'.sds',
'.ircam',
'.voc',
'.w64',
'.wav',
'.nist',
'.wavex',
'.wve',
'.xi',
'.mp3',
'.opus',
]
_UpperCamelCase = AUDIO_EXTENSIONS
| 275 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
snake_case_ = "swinv2"
snake_case_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , __lowercase : List[Any]=2_24 , __lowercase : int=4 , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=96 , __lowercase : Optional[int]=[2, 2, 6, 2] , __lowercase : Optional[int]=[3, 6, 12, 24] , __lowercase : str=7 , __lowercase : Union[str, Any]=4.0 , __lowercase : List[str]=True , __lowercase : List[Any]=0.0 , __lowercase : Dict=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Union[str, Any]="gelu" , __lowercase : Tuple=False , __lowercase : Optional[int]=0.02 , __lowercase : List[Any]=1e-5 , __lowercase : Tuple=32 , **__lowercase : Optional[int] , ) -> Optional[int]:
super().__init__(**_lowercase )
SCREAMING_SNAKE_CASE__ : Dict =image_size
SCREAMING_SNAKE_CASE__ : int =patch_size
SCREAMING_SNAKE_CASE__ : Optional[int] =num_channels
SCREAMING_SNAKE_CASE__ : List[str] =embed_dim
SCREAMING_SNAKE_CASE__ : Optional[int] =depths
SCREAMING_SNAKE_CASE__ : Dict =len(_lowercase )
SCREAMING_SNAKE_CASE__ : str =num_heads
SCREAMING_SNAKE_CASE__ : Any =window_size
SCREAMING_SNAKE_CASE__ : List[Any] =mlp_ratio
SCREAMING_SNAKE_CASE__ : Tuple =qkv_bias
SCREAMING_SNAKE_CASE__ : List[str] =hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Union[str, Any] =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Dict =drop_path_rate
SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_act
SCREAMING_SNAKE_CASE__ : Optional[int] =use_absolute_embeddings
SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps
SCREAMING_SNAKE_CASE__ : List[str] =initializer_range
SCREAMING_SNAKE_CASE__ : List[Any] =encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE__ : int =int(embed_dim * 2 ** (len(_lowercase ) - 1) )
SCREAMING_SNAKE_CASE__ : List[Any] =(0, 0, 0, 0) | 152 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def _A (__a , __a , __a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = BertConfig.from_json_file(snake_case_ )
print(f'Building PyTorch model from configuration: {config}' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
load_tf_weights_in_bert(snake_case_ , snake_case_ , snake_case_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , snake_case_ )
if __name__ == "__main__":
UpperCAmelCase_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained BERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
UpperCAmelCase_ : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 91 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 0 |
"""simple docstring"""
import os
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Optional[Any] = len(grid[0] )
__lowerCAmelCase : Optional[Any] = len(snake_case_ )
__lowerCAmelCase : Optional[int] = 0
__lowerCAmelCase : List[str] = 0
__lowerCAmelCase : Union[str, Any] = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(snake_case_ ):
for j in range(n_rows - 3 ):
__lowerCAmelCase : int = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
__lowerCAmelCase : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
__lowerCAmelCase : Union[str, Any] = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
__lowerCAmelCase : str = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
__lowerCAmelCase : List[str] = max(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
if max_product > largest:
__lowerCAmelCase : Any = max_product
return largest
def __lowerCAmelCase ():
__lowerCAmelCase : Optional[int] = []
with open(os.path.dirname(snake_case_ ) + '/grid.txt' ) as file:
for line in file:
grid.append(line.strip('\n' ).split(' ' ) )
__lowerCAmelCase : Union[str, Any] = [[int(snake_case_ ) for i in grid[j]] for j in range(len(snake_case_ ) )]
return largest_product(snake_case_ )
if __name__ == "__main__":
print(solution()) | 86 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCamelCase__ = logging.get_logger(__name__)
class A ( _lowerCAmelCase ):
__UpperCAmelCase : str = ["pixel_values"]
def __init__(self : str , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : Union[int, float] = 1 / 2_5_5 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : int , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**_lowercase )
UpperCAmelCase__ = size if size is not None else {"height": 2_5_6, "width": 2_5_6}
UpperCAmelCase__ = get_size_dict(_lowercase )
UpperCAmelCase__ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
UpperCAmelCase__ = get_size_dict(_lowercase , param_name="crop_size" )
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = size
UpperCAmelCase__ = resample
UpperCAmelCase__ = do_center_crop
UpperCAmelCase__ = crop_size
UpperCAmelCase__ = do_rescale
UpperCAmelCase__ = rescale_factor
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase_ (self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Union[str, Any] , ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}""" )
return resize(
_lowercase , size=(size["height"], size["width"]) , resample=_lowercase , data_format=_lowercase , **_lowercase )
def lowercase_ (self : List[str] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}""" )
return center_crop(_lowercase , size=(size["height"], size["width"]) , data_format=_lowercase , **_lowercase )
def lowercase_ (self : List[Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Any , ) -> int:
"""simple docstring"""
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def lowercase_ (self : Dict , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Tuple , ) -> Tuple:
"""simple docstring"""
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def lowercase_ (self : Optional[int] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : List[Any] , ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ = resample if resample is not None else self.resample
UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase__ = image_std if image_std is not None else self.image_std
UpperCAmelCase__ = size if size is not None else self.size
UpperCAmelCase__ = get_size_dict(_lowercase )
UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase__ = get_size_dict(_lowercase , param_name="crop_size" )
UpperCAmelCase__ = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase__ = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
UpperCAmelCase__ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase__ = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images]
if do_rescale:
UpperCAmelCase__ = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images]
if do_normalize:
UpperCAmelCase__ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images]
UpperCAmelCase__ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
UpperCAmelCase__ = {"pixel_values": images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 65 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
a = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 155 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class a ( metaclass=_lowerCAmelCase ):
UpperCAmelCase_ : Tuple =["torch", "scipy"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ):
requires_backends(self , ['torch', 'scipy'] )
@classmethod
def UpperCamelCase_ ( cls , *_lowerCamelCase , **_lowerCamelCase ):
requires_backends(cls , ['torch', 'scipy'] )
@classmethod
def UpperCamelCase_ ( cls , *_lowerCamelCase , **_lowerCamelCase ):
requires_backends(cls , ['torch', 'scipy'] )
| 220 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 0 |
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 196 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a :Optional[Any] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :int = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
__a :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 312 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 0 |
'''simple docstring'''
class UpperCAmelCase_ ( _lowerCAmelCase ):
"""simple docstring"""
pass
class UpperCAmelCase_ ( _lowerCAmelCase ):
"""simple docstring"""
pass
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Any ):
snake_case__ : Dict = [
[],
[],
[],
]
def lowerCamelCase ( self : Tuple , snake_case_ : int , snake_case_ : int ):
try:
if len(self.queues[priority] ) >= 100:
raise OverflowError("""Maximum queue size is 100""" )
self.queues[priority].append(_lowercase )
except IndexError:
raise ValueError("""Valid priorities are 0, 1, and 2""" )
def lowerCamelCase ( self : Optional[Any] ):
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError("""All queues are empty""" )
def __str__( self : Optional[Any] ):
return "\n".join(f"Priority {i}: {q}" for i, q in enumerate(self.queues ) )
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : int ):
snake_case__ : str = []
def lowerCamelCase ( self : Dict , snake_case_ : int ):
if len(self.queue ) == 100:
raise OverFlowError("""Maximum queue size is 100""" )
self.queue.append(_lowercase )
def lowerCamelCase ( self : Optional[int] ):
if not self.queue:
raise UnderFlowError("""The queue is empty""" )
else:
snake_case__ : Union[str, Any] = min(self.queue )
self.queue.remove(_lowercase )
return data
def __str__( self : List[str] ):
return str(self.queue )
def __snake_case( ) -> str:
snake_case__ : List[Any] = FixedPriorityQueue()
fpq.enqueue(0 , 10 )
fpq.enqueue(1 , 70 )
fpq.enqueue(0 , 100 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 64 )
fpq.enqueue(0 , 128 )
print(snake_case_ )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(snake_case_ )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def __snake_case( ) -> List[Any]:
snake_case__ : Optional[int] = ElementPriorityQueue()
epq.enqueue(10 )
epq.enqueue(70 )
epq.enqueue(100 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(64 )
epq.enqueue(128 )
print(snake_case_ )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(snake_case_ )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 35 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = ["image_processor", "tokenizer"]
_A = "LayoutLMv3ImageProcessor"
_A = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
def __init__( self :str , a :Union[str, Any]=None , a :Union[str, Any]=None , **a :Optional[Any] ) -> int:
__UpperCamelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _lowercase , )
__UpperCamelCase : Dict = kwargs.pop("feature_extractor" )
__UpperCamelCase : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_lowercase , _lowercase )
def __call__( self :Union[str, Any] , a :str , a :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a :Union[List[List[int]], List[List[List[int]]]] = None , a :Optional[Union[List[int], List[List[int]]]] = None , a :bool = True , a :Union[bool, str, PaddingStrategy] = False , a :Union[bool, str, TruncationStrategy] = None , a :Optional[int] = None , a :int = 0 , a :Optional[int] = None , a :Optional[bool] = None , a :Optional[bool] = None , a :bool = False , a :bool = False , a :bool = False , a :bool = False , a :bool = True , a :Optional[Union[str, TensorType]] = None , **a :Any , ) -> Optional[int]:
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
# first, apply the image processor
__UpperCamelCase : str = self.image_processor(images=_lowercase , return_tensors=_lowercase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension)
__UpperCamelCase : int = features["words"]
__UpperCamelCase : Union[str, Any] = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , )
# add pixel values
__UpperCamelCase : List[Any] = features.pop("pixel_values" )
if return_overflowing_tokens is True:
__UpperCamelCase : Dict = self.get_overflowing_images(_lowercase , encoded_inputs["overflow_to_sample_mapping"] )
__UpperCamelCase : Optional[Any] = images
return encoded_inputs
def _lowerCamelCase ( self :int , a :Optional[int] , a :Optional[int] ) -> List[str]:
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__UpperCamelCase : Tuple = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_lowercase ) != len(_lowercase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f' {len(_lowercase )} and {len(_lowercase )}' )
return images_with_overflow
def _lowerCamelCase ( self :Any , *a :int , **a :List[Any] ) -> Dict:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def _lowerCamelCase ( self :Union[str, Any] , *a :Dict , **a :Dict ) -> List[str]:
return self.tokenizer.decode(*_lowercase , **_lowercase )
@property
def _lowerCamelCase ( self :Union[str, Any] ) -> List[Any]:
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def _lowerCamelCase ( self :Dict ) -> Dict:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowercase , )
return self.image_processor_class
@property
def _lowerCamelCase ( self :Dict ) -> Optional[Any]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowercase , )
return self.image_processor | 232 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 0 |
from __future__ import annotations
import time
import numpy as np
_UpperCamelCase = [8, 5, 9, 7]
_UpperCamelCase = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
_UpperCamelCase = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __lowercase :
def __init__( self , A_ , A_ , A_ , ) ->Dict:
'''simple docstring'''
__lowerCAmelCase : Dict = claim_vector
__lowerCAmelCase : str = allocated_resources_table
__lowerCAmelCase : Tuple = maximum_claim_table
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowercase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
return {self.__need().index(_lowercase ): i for i in self.__need()}
def UpperCamelCase__ ( self , **A_ ) ->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : Dict = self.__need()
__lowerCAmelCase : str = self.__allocated_resources_table
__lowerCAmelCase : Any = self.__available_resources()
__lowerCAmelCase : List[str] = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
__lowerCAmelCase : Optional[int] = False
for each_need in need_list:
__lowerCAmelCase : Tuple = True
for index, need in enumerate(_lowercase ):
if need > available_resources[index]:
__lowerCAmelCase : List[str] = False
break
if execution:
__lowerCAmelCase : str = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
__lowerCAmelCase : str = original_need_index
print(f"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(_lowercase )
# update available/freed resources stack
__lowerCAmelCase : str = np.array(_lowercase ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(_lowercase ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def UpperCamelCase__ ( self ) ->Optional[int]:
'''simple docstring'''
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
f"""P{self.__allocated_resources_table.index(_lowercase ) + 1}"""
+ ''' '''.join(f"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
f"""P{self.__maximum_claim_table.index(_lowercase ) + 1}"""
+ ''' '''.join(f"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(_lowercase ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(_lowercase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 275 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
a_ = [
'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'
' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'
' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.',
'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'
' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'
' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'
' body.',
'Amnesty International releases its annual report on the death penalty. The report catalogs the use of'
' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'
' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'
' punishment.',
]
a_ = [
'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'
' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'
' had informed his Lufthansa training school of an episode of severe depression, airline says .',
'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'
' Israel and the United States opposed the move, which could open the door to war crimes investigations against'
' Israelis .',
'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'
' death . Organization claims that governments around the world are using the threat of terrorism to advance'
' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'
' sentences up by 28% .',
]
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int =calculate_rouge(snake_case_, snake_case_, bootstrap_aggregation=snake_case_, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(snake_case_, snake_case_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =calculate_rouge(snake_case_, snake_case_, bootstrap_aggregation=snake_case_, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] ='''rougeLsum'''
SCREAMING_SNAKE_CASE__ : Tuple =calculate_rouge(snake_case_, snake_case_, newline_sep=snake_case_, rouge_keys=[k] )[k]
SCREAMING_SNAKE_CASE__ : Any =calculate_rouge(snake_case_, snake_case_, newline_sep=snake_case_, rouge_keys=[k] )[k]
assert score > score_no_sep
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] =['''rouge1''', '''rouge2''', '''rougeL''']
SCREAMING_SNAKE_CASE__ : Dict =calculate_rouge(snake_case_, snake_case_, newline_sep=snake_case_, rouge_keys=snake_case_ )
SCREAMING_SNAKE_CASE__ : Dict =calculate_rouge(snake_case_, snake_case_, newline_sep=snake_case_, rouge_keys=snake_case_ )
assert score_sep == score_no_sep
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str =[
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
SCREAMING_SNAKE_CASE__ : Optional[int] =[
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(snake_case_, snake_case_, newline_sep=snake_case_ ) == calculate_rouge(snake_case_, snake_case_, newline_sep=snake_case_ )
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str =[
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
SCREAMING_SNAKE_CASE__ : str =[
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
SCREAMING_SNAKE_CASE__ : Union[str, Any] =calculate_rouge(snake_case_, snake_case_, rouge_keys=['''rougeLsum'''], newline_sep=snake_case_ )['''rougeLsum''']
SCREAMING_SNAKE_CASE__ : List[str] =calculate_rouge(snake_case_, snake_case_, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any =Path('''examples/seq2seq/test_data/wmt_en_ro''' )
SCREAMING_SNAKE_CASE__ : List[Any] =calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(snake_case_, snake_case_ )
SCREAMING_SNAKE_CASE__ : List[str] =calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=snake_case_ )
assert isinstance(snake_case_, snake_case_ ) | 152 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 0 |
"""simple docstring"""
import numpy as np
def _A (__a ) -> Any:
"""simple docstring"""
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 91 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class A__ ( _lowerCAmelCase):
A_ : Union[str, Any] = "ibert"
def __init__( self , _SCREAMING_SNAKE_CASE=3_05_22 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="none" , **_SCREAMING_SNAKE_CASE , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__lowerCAmelCase : List[Any] = vocab_size
__lowerCAmelCase : Union[str, Any] = hidden_size
__lowerCAmelCase : Optional[Any] = num_hidden_layers
__lowerCAmelCase : Optional[Any] = num_attention_heads
__lowerCAmelCase : Union[str, Any] = hidden_act
__lowerCAmelCase : Optional[Any] = intermediate_size
__lowerCAmelCase : int = hidden_dropout_prob
__lowerCAmelCase : Tuple = attention_probs_dropout_prob
__lowerCAmelCase : Optional[int] = max_position_embeddings
__lowerCAmelCase : Tuple = type_vocab_size
__lowerCAmelCase : Dict = initializer_range
__lowerCAmelCase : List[Any] = layer_norm_eps
__lowerCAmelCase : Tuple = position_embedding_type
__lowerCAmelCase : int = quant_mode
__lowerCAmelCase : List[str] = force_dequant
class A__ ( _lowerCAmelCase):
@property
def __lowerCamelCase ( self ):
if self.task == "multiple-choice":
__lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowerCAmelCase : str = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] ) | 86 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 0 |
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def lowerCAmelCase_ ( __A ) -> List[str]:
'''simple docstring'''
UpperCAmelCase__ = botoa.client("iam" )
UpperCAmelCase__ = {
"Version": "2012-10-17",
"Statement": [
{"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=snake_case_, AssumeRolePolicyDocument=json.dumps(snake_case_, indent=2 ) )
UpperCAmelCase__ = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sagemaker:*",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage",
"ecr:BatchCheckLayerAvailability",
"ecr:GetAuthorizationToken",
"cloudwatch:PutMetricData",
"cloudwatch:GetMetricData",
"cloudwatch:GetMetricStatistics",
"cloudwatch:ListMetrics",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:PutLogEvents",
"logs:GetLogEvents",
"s3:CreateBucket",
"s3:ListBucket",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:PutObject",
],
"Resource": "*",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=snake_case_, PolicyName=f"""{role_name}_policy_permission""", PolicyDocument=json.dumps(snake_case_, indent=2 ), )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"""role {role_name} already exists. Using existing one""" )
def lowerCAmelCase_ ( __A ) -> Dict:
'''simple docstring'''
UpperCAmelCase__ = botoa.client("iam" )
return iam_client.get_role(RoleName=snake_case_ )["Role"]["Arn"]
def lowerCAmelCase_ ( ) -> Dict:
'''simple docstring'''
UpperCAmelCase__ = _ask_options(
"How do you want to authorize?", ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "], snake_case_, )
UpperCAmelCase__ = None
if credentials_configuration == 0:
UpperCAmelCase__ = _ask_field("Enter your AWS Profile name: [default] ", default="default" )
UpperCAmelCase__ = aws_profile
else:
print(
"Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
"`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" )
UpperCAmelCase__ = _ask_field("AWS Access Key ID: " )
UpperCAmelCase__ = aws_access_key_id
UpperCAmelCase__ = _ask_field("AWS Secret Access Key: " )
UpperCAmelCase__ = aws_secret_access_key
UpperCAmelCase__ = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1" )
UpperCAmelCase__ = aws_region
UpperCAmelCase__ = _ask_options(
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?", ["Provide IAM Role name", "Create new IAM role using credentials"], snake_case_, )
if role_management == 0:
UpperCAmelCase__ = _ask_field("Enter your IAM role name: " )
else:
UpperCAmelCase__ = "accelerate_sagemaker_execution_role"
print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" )
_create_iam_role_for_sagemaker(snake_case_ )
UpperCAmelCase__ = _ask_field(
"Do you want to use custom Docker image? [yes/NO]: ", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
UpperCAmelCase__ = None
if is_custom_docker_image:
UpperCAmelCase__ = _ask_field("Enter your Docker image: ", lambda __A : str(snake_case_ ).lower() )
UpperCAmelCase__ = _ask_field(
"Do you want to provide SageMaker input channels with data locations? [yes/NO]: ", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
UpperCAmelCase__ = None
if is_sagemaker_inputs_enabled:
UpperCAmelCase__ = _ask_field(
"Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ", lambda __A : str(snake_case_ ).lower(), )
UpperCAmelCase__ = _ask_field(
"Do you want to enable SageMaker metrics? [yes/NO]: ", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
UpperCAmelCase__ = None
if is_sagemaker_metrics_enabled:
UpperCAmelCase__ = _ask_field(
"Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ", lambda __A : str(snake_case_ ).lower(), )
UpperCAmelCase__ = _ask_options(
"What is the distributed mode?", ["No distributed training", "Data parallelism"], _convert_sagemaker_distributed_mode, )
UpperCAmelCase__ = {}
UpperCAmelCase__ = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
if use_dynamo:
UpperCAmelCase__ = "dynamo_"
UpperCAmelCase__ = _ask_options(
"Which dynamo backend would you like to use?", [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, )
UpperCAmelCase__ = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
if use_custom_options:
UpperCAmelCase__ = _ask_options(
"Which mode do you want to use?", snake_case_, lambda __A : TORCH_DYNAMO_MODES[int(snake_case_ )], default="default", )
UpperCAmelCase__ = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
UpperCAmelCase__ = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: ", _convert_yes_no_to_bool, default=snake_case_, error_message="Please enter yes or no.", )
UpperCAmelCase__ = "Which EC2 instance type you want to use for your training?"
if distributed_type != SageMakerDistributedType.NO:
UpperCAmelCase__ = _ask_options(
snake_case_, snake_case_, lambda __A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(snake_case_ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
UpperCAmelCase__ = _ask_field(snake_case_, lambda __A : str(snake_case_ ).lower(), default="ml.p3.2xlarge" )
UpperCAmelCase__ = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
UpperCAmelCase__ = _ask_field(
"How many machines do you want use? [1]: ", snake_case_, default=1, )
UpperCAmelCase__ = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?", ["no", "fp16", "bf16", "fp8"], _convert_mixed_precision, )
if use_dynamo and mixed_precision == "no":
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." )
return SageMakerConfig(
image_uri=snake_case_, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=snake_case_, use_cpu=snake_case_, dynamo_config=snake_case_, eca_instance_type=snake_case_, profile=snake_case_, region=snake_case_, iam_role_name=snake_case_, mixed_precision=snake_case_, num_machines=snake_case_, sagemaker_inputs_file=snake_case_, sagemaker_metrics_file=snake_case_, )
| 65 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 155 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 0 |
"""simple docstring"""
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures')
class a ( unittest.TestCase ):
def UpperCamelCase_ ( self ):
# A mock response for an HTTP head request to emulate server down
lowercase = mock.Mock()
lowercase = 5_0_0
lowercase = {}
lowercase = HTTPError
lowercase = {}
# Download this model to make sure it's in the cache.
lowercase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request' , return_value=_lowercase ) as mock_head:
lowercase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
# This test is for deprecated behavior and can be removed in v5
lowercase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class a ( unittest.TestCase ):
@classmethod
def UpperCamelCase_ ( cls ):
lowercase = TOKEN
HfFolder.save_token(_lowercase )
@classmethod
def UpperCamelCase_ ( cls ):
try:
delete_repo(token=cls._token , repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
lowercase = WavaVecaFeatureExtractor.from_pretrained(_lowercase )
feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token )
lowercase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_lowercase , repo_id='test-feature-extractor' , push_to_hub=_lowercase , use_auth_token=self._token )
lowercase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
def UpperCamelCase_ ( self ):
lowercase = WavaVecaFeatureExtractor.from_pretrained(_lowercase )
feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token )
lowercase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_lowercase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_lowercase , use_auth_token=self._token )
lowercase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
def UpperCamelCase_ ( self ):
CustomFeatureExtractor.register_for_auto_class()
lowercase = CustomFeatureExtractor.from_pretrained(_lowercase )
feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , )
lowercase = AutoFeatureExtractor.from_pretrained(
F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_lowercase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
| 220 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__lowerCAmelCase = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
__lowerCAmelCase = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
__lowerCAmelCase = {F'''funnel-transformer/{name}''': 5_12 for name in _model_names}
__lowerCAmelCase = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names}
class __a ( _lowerCAmelCase ):
__lowercase : Dict = VOCAB_FILES_NAMES
__lowercase : int = PRETRAINED_VOCAB_FILES_MAP
__lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
__lowercase : List[str] = FunnelTokenizer
__lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : int = 2
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<sep>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<cls>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__="##" , **lowerCAmelCase__ , ) -> int:
'''simple docstring'''
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , clean_text=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , wordpieces_prefix=_lowercase , **_lowercase , )
lowercase__: Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowercase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars
):
lowercase__: Optional[Any] = getattr(_lowercase , normalizer_state.pop('type' ) )
lowercase__: Union[str, Any] = do_lower_case
lowercase__: Any = strip_accents
lowercase__: Union[str, Any] = tokenize_chinese_chars
lowercase__: Optional[int] = normalizer_class(**_lowercase )
lowercase__: Union[str, Any] = do_lower_case
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]:
'''simple docstring'''
lowercase__: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Any:
'''simple docstring'''
lowercase__: Union[str, Any] = [self.sep_token_id]
lowercase__: List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[str]:
'''simple docstring'''
lowercase__: List[str] = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 196 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 0 |
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
while second != 0:
A_ = first & second
first ^= second
A_ = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
__a :int = int(input('Enter the first number: ').strip())
__a :Tuple = int(input('Enter the second number: ').strip())
print(F"{add(first, second) = }") | 312 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
__a = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
__a = [{'type': 'code', 'content': INSTALL_CONTENT}]
__a = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 35 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 0 |
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = ""
_A = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
_A = None # compression type in fsspec. ex: "gzip"
_A = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self :str , a :str = "" , a :Optional[str] = None , a :Optional[dict] = None , **a :Optional[int] ) -> Union[str, Any]:
super().__init__(self , **_lowercase )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
__UpperCamelCase : Optional[Any] = fsspec.open(
_lowercase , mode="rb" , protocol=_lowercase , compression=self.compression , client_kwargs={
"requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459
"trust_env": True, # Enable reading proxy env variables.
**(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
__UpperCamelCase : int = os.path.basename(self.file.path.split("::" )[0] )
__UpperCamelCase : str = (
self.compressed_name[: self.compressed_name.rindex("." )]
if "." in self.compressed_name
else self.compressed_name
)
__UpperCamelCase : List[str] = None
@classmethod
def _lowerCamelCase ( cls :Optional[Any] , a :Tuple ) -> Union[str, Any]:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(_lowercase ).lstrip("/" )
def _lowerCamelCase ( self :int ) -> List[Any]:
if self.dir_cache is None:
__UpperCamelCase : int = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name}
__UpperCamelCase : Tuple = {f["name"]: f}
def _lowerCamelCase ( self :List[Any] , a :str ) -> List[Any]:
return self.file.open().read()
def _lowerCamelCase ( self :Optional[int] , a :str , a :str = "rb" , a :Any=None , a :Optional[Any]=True , a :Dict=None , **a :Optional[int] , ) -> int:
__UpperCamelCase : Optional[int] = self._strip_protocol(_lowercase )
if mode != "rb":
raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' )
return self.file.open()
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = "bz2"
_A = "bz2"
_A = ".bz2"
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = "gzip"
_A = "gzip"
_A = ".gz"
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = "lz4"
_A = "lz4"
_A = ".lz4"
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = "xz"
_A = "xz"
_A = ".xz"
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
_A = "zstd"
_A = "zstd"
_A = ".zst"
def __init__( self :List[Any] , a :str , a :str = "rb" , a :Optional[str] = None , a :Optional[dict] = None , a :int = DEFAULT_BLOCK_SIZE , **a :Dict , ) -> Optional[int]:
super().__init__(
fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
__UpperCamelCase : Optional[int] = self.file.__enter__
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self :Union[str, Any] , a :Any ) -> Optional[int]:
__UpperCamelCase : Dict = file_
def __enter__( self :str ) -> Optional[int]:
self._file.__enter__()
return self
def __exit__( self :Union[str, Any] , *a :List[Any] , **a :Any ) -> Tuple:
self._file.__exit__(*_lowercase , **_lowercase )
def __iter__( self :str ) -> Optional[int]:
return iter(self._file )
def _lowerCamelCase ( self :Optional[int] ) -> Any:
return next(self._file )
def __getattr__( self :Optional[int] , a :Tuple ) -> Tuple:
return getattr(self._file , _lowercase )
def fixed_enter(*a :Any , **a :int ):
return WrappedFile(_enter(*_lowercase , **_lowercase ) )
__UpperCamelCase : str = fixed_enter | 232 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 0 |
import cva
import numpy as np
class __lowercase :
def __init__( self , A_ , A_ ) ->Any:
'''simple docstring'''
if k in (0.04, 0.06):
__lowerCAmelCase : List[Any] = k
__lowerCAmelCase : List[Any] = window_size
else:
raise ValueError('''invalid k value''' )
def __str__( self ) ->Optional[Any]:
'''simple docstring'''
return str(self.k )
def UpperCamelCase__ ( self , A_ ) ->Union[str, Any]:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = cva.imread(_lowercase , 0 )
__lowerCAmelCase, __lowerCAmelCase : Dict = img.shape
__lowerCAmelCase : Tuple = []
__lowerCAmelCase : Any = img.copy()
__lowerCAmelCase : Tuple = cva.cvtColor(_lowercase , cva.COLOR_GRAY2RGB )
__lowerCAmelCase, __lowerCAmelCase : Optional[int] = np.gradient(_lowercase )
__lowerCAmelCase : Tuple = dx**2
__lowerCAmelCase : Optional[Any] = dy**2
__lowerCAmelCase : Tuple = dx * dy
__lowerCAmelCase : str = 0.04
__lowerCAmelCase : Any = self.window_size // 2
for y in range(_lowercase , h - offset ):
for x in range(_lowercase , w - offset ):
__lowerCAmelCase : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__lowerCAmelCase : Union[str, Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__lowerCAmelCase : List[Any] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__lowerCAmelCase : List[Any] = (wxx * wyy) - (wxy**2)
__lowerCAmelCase : Tuple = wxx + wyy
__lowerCAmelCase : Dict = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
_UpperCamelCase = HarrisCorner(0.04, 3)
_UpperCamelCase = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 275 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase ):
snake_case_ = "maskformer-swin"
snake_case_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , __lowercase : List[str]=2_24 , __lowercase : List[Any]=4 , __lowercase : Union[str, Any]=3 , __lowercase : Any=96 , __lowercase : Dict=[2, 2, 6, 2] , __lowercase : Any=[3, 6, 12, 24] , __lowercase : Optional[int]=7 , __lowercase : Dict=4.0 , __lowercase : List[Any]=True , __lowercase : Optional[int]=0.0 , __lowercase : Any=0.0 , __lowercase : Dict=0.1 , __lowercase : List[Any]="gelu" , __lowercase : List[str]=False , __lowercase : Tuple=0.02 , __lowercase : Optional[int]=1e-5 , __lowercase : Tuple=None , __lowercase : Optional[Any]=None , **__lowercase : Union[str, Any] , ) -> int:
super().__init__(**_lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =image_size
SCREAMING_SNAKE_CASE__ : str =patch_size
SCREAMING_SNAKE_CASE__ : Optional[Any] =num_channels
SCREAMING_SNAKE_CASE__ : Union[str, Any] =embed_dim
SCREAMING_SNAKE_CASE__ : Optional[int] =depths
SCREAMING_SNAKE_CASE__ : List[str] =len(_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] =num_heads
SCREAMING_SNAKE_CASE__ : Tuple =window_size
SCREAMING_SNAKE_CASE__ : List[Any] =mlp_ratio
SCREAMING_SNAKE_CASE__ : Optional[Any] =qkv_bias
SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[int] =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : List[Any] =drop_path_rate
SCREAMING_SNAKE_CASE__ : List[Any] =hidden_act
SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_absolute_embeddings
SCREAMING_SNAKE_CASE__ : Optional[int] =layer_norm_eps
SCREAMING_SNAKE_CASE__ : List[Any] =initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE__ : List[str] =int(embed_dim * 2 ** (len(_lowercase ) - 1) )
SCREAMING_SNAKE_CASE__ : Dict =['''stem'''] + [F"stage{idx}" for idx in range(1 , len(_lowercase ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =get_aligned_output_features_output_indices(
out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) | 152 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 0 |
"""simple docstring"""
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase_ : List[Any] = logging.getLogger()
def _A (__a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = {}
SCREAMING_SNAKE_CASE_ : Any = os.path.join(snake_case_ , '''all_results.json''' )
if os.path.exists(snake_case_ ):
with open(snake_case_ , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : str = json.load(snake_case_ )
else:
raise ValueError(f'can\'t find {path}' )
return results
UpperCAmelCase_ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class lowerCAmelCase__ ( _lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
import xla_spawn
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE_ : List[str] = F'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split()
with patch.object(_lowercase , '''argv''' , _lowercase):
SCREAMING_SNAKE_CASE_ : Tuple = time()
xla_spawn.main()
SCREAMING_SNAKE_CASE_ : Optional[int] = time()
SCREAMING_SNAKE_CASE_ : int = get_results(_lowercase)
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75)
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 500)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
import xla_spawn
SCREAMING_SNAKE_CASE_ : Tuple = '''
./tests/test_trainer_tpu.py
--num_cores=8
./tests/test_trainer_tpu.py
'''.split()
with patch.object(_lowercase , '''argv''' , _lowercase):
xla_spawn.main()
| 91 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 0 |
"""simple docstring"""
import argparse
import json
import subprocess
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : int = []
__lowerCAmelCase : Dict = (
F"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\""
' https://api.github.com/repos/huggingface/transformers/actions/runners'
)
__lowerCAmelCase : List[Any] = subprocess.run(snake_case_ , shell=snake_case_ , stdout=subprocess.PIPE )
__lowerCAmelCase : List[Any] = output.stdout.decode('utf-8' )
__lowerCAmelCase : List[Any] = json.loads(snake_case_ )
__lowerCAmelCase : Optional[Any] = status['runners']
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(snake_case_ )
# save the result so we can report them on Slack
with open('offline_runners.txt' , 'w' ) as fp:
fp.write(json.dumps(snake_case_ ) )
if len(snake_case_ ) > 0:
__lowerCAmelCase : int = '\n'.join([x['name'] for x in offline_runners] )
raise ValueError(F"The following runners are offline:\n{failed}" )
if __name__ == "__main__":
def __lowerCAmelCase (_UpperCamelCase ):
return values.split(',' )
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--target_runners""",
default=None,
type=list_str,
required=True,
help="""Comma-separated list of runners to check status.""",
)
parser.add_argument(
"""--token""", default=None, type=str, required=True, help="""A token that has actions:read permission."""
)
lowerCamelCase__ = parser.parse_args()
get_runner_status(args.target_runners, args.token) | 86 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 0 |
from __future__ import annotations
class A :
def __init__(self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = text, pattern
UpperCAmelCase__ , UpperCAmelCase__ = len(_lowercase ), len(_lowercase )
def lowercase_ (self : Optional[int] , __UpperCAmelCase : str ) -> Any:
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def lowercase_ (self : int , __UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def lowercase_ (self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = []
for i in range(self.textLen - self.patLen + 1 ):
UpperCAmelCase__ = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
UpperCAmelCase__ = self.match_in_pattern(self.text[mismatch_index] )
UpperCAmelCase__ = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
UpperCamelCase__ = 'ABAABA'
UpperCamelCase__ = 'AB'
UpperCamelCase__ = BoyerMooreSearch(text, pattern)
UpperCamelCase__ = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 65 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , unittest.TestCase ):
_a = KandinskyVaaControlnetImgaImgPipeline
_a = ["image_embeds", "negative_image_embeds", "image", "hint"]
_a = ["image_embeds", "negative_image_embeds", "image", "hint"]
_a = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
_a = False
@property
def __lowercase ( self : Dict ):
return 32
@property
def __lowercase ( self : str ):
return 32
@property
def __lowercase ( self : Union[str, Any] ):
return self.time_input_dim
@property
def __lowercase ( self : Optional[Any] ):
return self.time_input_dim * 4
@property
def __lowercase ( self : List[Any] ):
return 100
@property
def __lowercase ( self : Optional[Any] ):
torch.manual_seed(0 )
lowerCAmelCase = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowerCAmelCase = UNetaDConditionModel(**_lowercase )
return model
@property
def __lowercase ( self : List[str] ):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def __lowercase ( self : int ):
torch.manual_seed(0 )
lowerCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def __lowercase ( self : List[Any] ):
lowerCAmelCase = self.dummy_unet
lowerCAmelCase = self.dummy_movq
lowerCAmelCase = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_0085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
lowerCAmelCase = DDIMScheduler(**_lowercase )
lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def __lowercase ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Any=0 ):
lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase )
lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowercase )
# create init_image
lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) )
# create hint
lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase )
if str(_lowercase ).startswith("""mps""" ):
lowerCAmelCase = torch.manual_seed(_lowercase )
else:
lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
lowerCAmelCase = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def __lowercase ( self : str ):
lowerCAmelCase = """cpu"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_lowercase )
lowerCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) )
lowerCAmelCase = output.images
lowerCAmelCase = pipe(
**self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array(
[0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __lowercase ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowercase ( self : Tuple ):
lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowerCAmelCase = init_image.resize((512, 512) )
lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
lowerCAmelCase = torch.from_numpy(np.array(_lowercase ) ).float() / 255.0
lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowerCAmelCase = """A robot, 4k photo"""
lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(_lowercase )
lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
lowerCAmelCase = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowerCAmelCase , lowerCAmelCase = pipe_prior(
_lowercase , image=_lowercase , strength=0.85 , generator=_lowercase , negative_prompt="""""" , ).to_tuple()
lowerCAmelCase = pipeline(
image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , hint=_lowercase , generator=_lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , )
lowerCAmelCase = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
| 155 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : int = 3 , ):
'''simple docstring'''
if num < 2:
raise ValueError('The input value cannot be less than 2' )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(__snake_case : int , __snake_case : int , __snake_case : int ) -> int:
return (pow(snake_case_ , 2 ) + step) % modulus
for _ in range(snake_case_ ):
# These track the position within the cycle detection logic.
lowercase = seed
lowercase = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowercase = rand_fn(snake_case_ , snake_case_ , snake_case_ )
lowercase = rand_fn(snake_case_ , snake_case_ , snake_case_ )
lowercase = rand_fn(snake_case_ , snake_case_ , snake_case_ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowercase = gcd(hare - tortoise , snake_case_ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowercase = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
_UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'num',
type=int,
help='The value to find a divisor of',
)
parser.add_argument(
'--attempts',
type=int,
default=3,
help='The number of attempts before giving up',
)
_UpperCamelCase : Optional[int] = parser.parse_args()
_UpperCamelCase : Optional[int] = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F'''{args.num} is probably prime''')
else:
_UpperCamelCase : List[str] = args.num // divisor
print(F'''{args.num} = {divisor} * {quotient}''')
| 220 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json',
}
class __a ( _lowerCAmelCase ):
__lowercase : Tuple = "data2vec-text"
def __init__( self , lowerCAmelCase__=30_522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> str:
'''simple docstring'''
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
lowercase__: int = vocab_size
lowercase__: str = hidden_size
lowercase__: int = num_hidden_layers
lowercase__: Dict = num_attention_heads
lowercase__: Optional[Any] = hidden_act
lowercase__: Dict = intermediate_size
lowercase__: str = hidden_dropout_prob
lowercase__: Tuple = attention_probs_dropout_prob
lowercase__: Dict = max_position_embeddings
lowercase__: str = type_vocab_size
lowercase__: Tuple = initializer_range
lowercase__: Any = layer_norm_eps
lowercase__: Tuple = position_embedding_type
lowercase__: Optional[Any] = use_cache
lowercase__: Any = classifier_dropout
class __a ( _lowerCAmelCase ):
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__: Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowercase__: str = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 196 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__a :Any = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMAEForPreTraining',
'ViTMAELayer',
'ViTMAEModel',
'ViTMAEPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Union[str, Any] = [
'TFViTMAEForPreTraining',
'TFViTMAEModel',
'TFViTMAEPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
__a :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 312 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
__a = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 35 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 0 |
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowercase : Optional[Any] = logging.get_logger(__name__)
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
def __init__( self :Optional[Any] , *a :List[str] , **a :int ) -> int:
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , _lowercase , )
super().__init__(*_lowercase , **_lowercase ) | 232 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 0 |
def _lowercase ( lowercase__ ):
__lowerCAmelCase : int = len(snake_case_ )
while cur > 1:
# Find the maximum number in arr
__lowerCAmelCase : Optional[Any] = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
__lowerCAmelCase : List[Any] = arr[mi::-1] + arr[mi + 1 : len(snake_case_ )]
# Reverse whole list
__lowerCAmelCase : Optional[int] = arr[cur - 1 :: -1] + arr[cur : len(snake_case_ )]
cur -= 1
return arr
if __name__ == "__main__":
_UpperCamelCase = input("Enter numbers separated by a comma:\n").strip()
_UpperCamelCase = [int(item) for item in user_input.split(",")]
print(pancake_sort(unsorted))
| 275 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
a_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def _a( UpperCamelCase__ : List[Any] ):
'''simple docstring'''
if isinstance(snake_case_, torch.Tensor ):
return image
elif isinstance(snake_case_, PIL.Image.Image ):
SCREAMING_SNAKE_CASE__ : Optional[Any] =[image]
SCREAMING_SNAKE_CASE__ : Optional[int] =[trans(img.convert('''RGB''' ) ) for img in image]
SCREAMING_SNAKE_CASE__ : Tuple =torch.stack(snake_case_ )
return image
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
def __init__( self : Any , __lowercase : str , __lowercase : str ) -> Tuple:
super().__init__()
# make sure scheduler can always be converted to DDIM
SCREAMING_SNAKE_CASE__ : Tuple =DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def __magic_name__ ( self : int , __lowercase : List[str] ) -> Tuple:
if strength < 0 or strength > 1:
raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}" )
def __magic_name__ ( self : List[Any] , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : int ) -> Optional[Any]:
# get the original timestep using init_timestep
SCREAMING_SNAKE_CASE__ : Tuple =min(int(num_inference_steps * strength ) , _lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =max(num_inference_steps - init_timestep , 0 )
SCREAMING_SNAKE_CASE__ : Optional[int] =self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def __magic_name__ ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Tuple , __lowercase : Optional[int]=None ) -> str:
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" )
SCREAMING_SNAKE_CASE__ : int =image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch"
F" size of {batch_size}. Make sure the batch size matches the length of the generators." )
SCREAMING_SNAKE_CASE__ : List[Any] =init_latents.shape
SCREAMING_SNAKE_CASE__ : int =randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =init_latents
return latents
@torch.no_grad()
def __call__( self : Any , __lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , __lowercase : float = 0.8 , __lowercase : int = 1 , __lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowercase : float = 0.0 , __lowercase : int = 50 , __lowercase : Optional[bool] = None , __lowercase : Optional[str] = "pil" , __lowercase : bool = True , ) -> Tuple:
self.check_inputs(_lowercase )
# 2. Preprocess image
SCREAMING_SNAKE_CASE__ : Dict =preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =self.get_timesteps(_lowercase , _lowercase , self.device )
SCREAMING_SNAKE_CASE__ : List[str] =timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
SCREAMING_SNAKE_CASE__ : Optional[Any] =self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] =latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
SCREAMING_SNAKE_CASE__ : Optional[Any] =self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
SCREAMING_SNAKE_CASE__ : List[Any] =self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
SCREAMING_SNAKE_CASE__ : Any =(image / 2 + 0.5).clamp(0 , 1 )
SCREAMING_SNAKE_CASE__ : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE__ : Optional[int] =self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase ) | 152 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 0 |
"""simple docstring"""
import math
def _A (__a , __a ) -> int:
"""simple docstring"""
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(snake_case_ )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('''This should never happen''' )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
UpperCAmelCase_ : str = 'Enter the base and the power separated by a comma: '
UpperCAmelCase_ : Tuple = map(int, input(prompt).split(""","""))
UpperCAmelCase_ : int = map(int, input(prompt).split(""","""))
# We find the log of each number, using the function res(), which takes two
# arguments.
UpperCAmelCase_ : str = res(xa, ya)
UpperCAmelCase_ : Optional[Any] = res(xa, ya)
# We check for the largest number
if resa > resa:
print("""Largest number is""", xa, """^""", ya)
elif resa > resa:
print("""Largest number is""", xa, """^""", ya)
else:
print("""Both are equal""")
| 91 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 0 |
"""simple docstring"""
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCamelCase__ = Lock()
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case_ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
__lowerCAmelCase : Tuple = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
__lowerCAmelCase : Union[str, Any] = min(snake_case_ , snake_case_ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case_ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
__lowerCAmelCase : Tuple = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
__lowerCAmelCase : Optional[Any] = max(snake_case_ , snake_case_ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case_ )
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Any = []
__lowerCAmelCase : List[Any] = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
__lowerCAmelCase : Union[str, Any] = Pipe()
__lowerCAmelCase : Union[str, Any] = Pipe()
process_array_.append(
Process(
target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
__lowerCAmelCase : List[str] = temp_rs
__lowerCAmelCase : Any = temp_rr
for i in range(1 , len(snake_case_ ) - 1 ):
__lowerCAmelCase : Optional[Any] = Pipe()
__lowerCAmelCase : Any = Pipe()
process_array_.append(
Process(
target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
__lowerCAmelCase : Optional[int] = temp_rs
__lowerCAmelCase : Tuple = temp_rr
process_array_.append(
Process(
target=snake_case_ , args=(
len(snake_case_ ) - 1,
arr[len(snake_case_ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case_ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case_ ) ):
__lowerCAmelCase : Dict = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __lowerCAmelCase ():
__lowerCAmelCase : Optional[int] = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case_ )
__lowerCAmelCase : Union[str, Any] = odd_even_transposition(snake_case_ )
print('Sorted List\n' )
print(*snake_case_ )
if __name__ == "__main__":
main() | 86 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 0 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
__UpperCAmelCase : List[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = hf_hub_download(
repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
UpperCAmelCase__ = VideoClassificationPipeline(model=_lowercase , image_processor=_lowercase , top_k=2 )
UpperCAmelCase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def lowercase_ (self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> Optional[Any]:
"""simple docstring"""
for example in examples:
UpperCAmelCase__ = video_classifier(_lowercase )
self.assertEqual(
_lowercase , [
{"score": ANY(_lowercase ), "label": ANY(_lowercase )},
{"score": ANY(_lowercase ), "label": ANY(_lowercase )},
] , )
@require_torch
def lowercase_ (self : Any ) -> int:
"""simple docstring"""
UpperCAmelCase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
UpperCAmelCase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 1_0} , crop_size={"height": 1_0, "width": 1_0} )
UpperCAmelCase__ = pipeline(
"video-classification" , model=_lowercase , feature_extractor=_lowercase , frame_sampling_rate=4 )
UpperCAmelCase__ = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
UpperCAmelCase__ = video_classifier(_lowercase , top_k=2 )
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , )
UpperCAmelCase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
] , )
@require_tf
def lowercase_ (self : int ) -> Optional[Any]:
"""simple docstring"""
pass
| 65 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 0 |
"""simple docstring"""
from math import factorial
a = {str(d): factorial(d) for d in range(1_0)}
def lowercase (snake_case__ : int ) -> str:
'''simple docstring'''
return sum(DIGIT_FACTORIAL[d] for d in str(snake_case_ ) )
def lowercase () -> List[Any]:
'''simple docstring'''
lowerCAmelCase = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , snake_case_ ) if sum_of_digit_factorial(snake_case_ ) == i )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 155 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 0 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ):
'''simple docstring'''
lowercase = 3_84
if "tiny" in model_name:
lowercase = [3, 3, 9, 3]
lowercase = [96, 1_92, 3_84, 7_68]
if "small" in model_name:
lowercase = [3, 3, 27, 3]
lowercase = [96, 1_92, 3_84, 7_68]
if "base" in model_name:
lowercase = [3, 3, 27, 3]
lowercase = [1_28, 2_56, 5_12, 10_24]
lowercase = 5_12
if "large" in model_name:
lowercase = [3, 3, 27, 3]
lowercase = [1_92, 3_84, 7_68, 15_36]
lowercase = 7_68
if "xlarge" in model_name:
lowercase = [3, 3, 27, 3]
lowercase = [2_56, 5_12, 10_24, 20_48]
lowercase = 10_24
# set label information
lowercase = 1_50
lowercase = 'huggingface/label-files'
lowercase = 'ade20k-id2label.json'
lowercase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='dataset' ) , 'r' ) )
lowercase = {int(snake_case_ ): v for k, v in idalabel.items()}
lowercase = {v: k for k, v in idalabel.items()}
lowercase = ConvNextConfig(
depths=snake_case_ , hidden_sizes=snake_case_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
lowercase = UperNetConfig(
backbone_config=snake_case_ , auxiliary_in_channels=snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , )
return config
def _SCREAMING_SNAKE_CASE ( __snake_case : Any ):
'''simple docstring'''
lowercase = []
# fmt: off
# stem
rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') )
rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') )
rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') )
rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Any ):
'''simple docstring'''
lowercase = dct.pop(snake_case_ )
lowercase = val
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : List[str] , __snake_case : Optional[Any] ):
'''simple docstring'''
lowercase = {
'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth',
'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth',
'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth',
'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth',
'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth',
}
lowercase = model_name_to_url[model_name]
lowercase = torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' )['state_dict']
lowercase = get_upernet_config(snake_case_ )
lowercase = UperNetForSemanticSegmentation(snake_case_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowercase = state_dict.pop(snake_case_ )
if "bn" in key:
lowercase = key.replace('bn' , 'batch_norm' )
lowercase = val
# rename keys
lowercase = create_rename_keys(snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_ , snake_case_ , snake_case_ )
model.load_state_dict(snake_case_ )
# verify on image
lowercase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
lowercase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('RGB' )
lowercase = SegformerImageProcessor()
lowercase = processor(snake_case_ , return_tensors='pt' ).pixel_values
with torch.no_grad():
lowercase = model(snake_case_ )
if model_name == "upernet-convnext-tiny":
lowercase = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
lowercase = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
lowercase = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
lowercase = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
lowercase = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print('Logits:' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case_ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(snake_case_ )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_UpperCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_UpperCamelCase : List[Any] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 220 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__lowerCAmelCase = logging.get_logger(__name__)
class __a ( _lowerCAmelCase ):
__lowercase : Any = ["input_features", "attention_mask"]
def __init__( self , lowerCAmelCase__=80 , lowerCAmelCase__=16_000 , lowerCAmelCase__=80 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Dict:
'''simple docstring'''
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
lowercase__: str = num_mel_bins
lowercase__: List[str] = do_ceptral_normalize
lowercase__: List[Any] = normalize_means
lowercase__: int = normalize_vars
lowercase__: Any = True
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , ) -> Union[str, Any]:
'''simple docstring'''
lowercase__: int = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
lowercase__: Union[str, Any] = torch.from_numpy(_lowercase ).unsqueeze(0 )
lowercase__: Optional[int] = ta_kaldi.fbank(_lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 0.0 , ) -> int:
'''simple docstring'''
# make sure we normalize float32 arrays
if normalize_means:
lowercase__: Dict = x[:input_length].mean(axis=0 )
lowercase__: Dict = np.subtract(_lowercase , _lowercase )
if normalize_vars:
lowercase__: int = x[:input_length].std(axis=0 )
lowercase__: str = np.divide(_lowercase , _lowercase )
if input_length < x.shape[0]:
lowercase__: Any = padding_value
# make sure array is in float32
lowercase__: List[Any] = x.astype(np.floataa )
return x
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple:
'''simple docstring'''
lowercase__: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(_lowercase , _lowercase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(_lowercase , _lowercase )
]
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> str:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
lowercase__: Optional[int] = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
lowercase__: Optional[int] = is_batched_numpy or (
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__: List[str] = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
lowercase__: List[Any] = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__: Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__: Optional[int] = [raw_speech]
# extract fbank features
lowercase__: List[str] = [self._extract_fbank_features(_lowercase ) for waveform in raw_speech]
# convert into correct format for padding
lowercase__: Optional[Any] = BatchFeature({'input_features': features} )
lowercase__: int = self.pad(
_lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , )
# make sure list is in array format
lowercase__: str = padded_inputs.get('input_features' )
if isinstance(input_features[0] , _lowercase ):
lowercase__: str = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features]
lowercase__: Dict = padded_inputs.get('attention_mask' )
if attention_mask is not None:
lowercase__: List[str] = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
lowercase__: List[Any] = (
np.array(_lowercase , dtype=np.intaa )
if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowercase__: Any = self.normalize(
padded_inputs['input_features'] , attention_mask=_lowercase )
if return_tensors is not None:
lowercase__: int = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 196 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str=7 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=10 , UpperCAmelCase : str=18 , UpperCAmelCase : Union[str, Any]=30 , UpperCAmelCase : Optional[int]=400 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=None , UpperCAmelCase : int=True , UpperCAmelCase : Any=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : int=None , ):
A_ = size if size is not None else {"shortest_edge": 18}
A_ = crop_size if crop_size is not None else {"height": 18, "width": 18}
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = num_frames
A_ = image_size
A_ = min_resolution
A_ = max_resolution
A_ = do_resize
A_ = size
A_ = do_normalize
A_ = image_mean
A_ = image_std
A_ = crop_size
def __A ( self : int ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _a ( _lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = VivitImageProcessor if is_vision_available() else None
def __A ( self : List[Any] ):
A_ = VivitImageProcessingTester(self )
@property
def __A ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : str ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , "image_mean" ) )
self.assertTrue(hasattr(_lowercase , "image_std" ) )
self.assertTrue(hasattr(_lowercase , "do_normalize" ) )
self.assertTrue(hasattr(_lowercase , "do_resize" ) )
self.assertTrue(hasattr(_lowercase , "do_center_crop" ) )
self.assertTrue(hasattr(_lowercase , "size" ) )
def __A ( self : int ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def __A ( self : Tuple ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
A_ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : List[str] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
A_ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Optional[Any] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
A_ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , ) | 312 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class UpperCAmelCase_ ( _lowerCAmelCase ):
"""simple docstring"""
lowercase = "sew"
def __init__( self : Union[str, Any] , snake_case_ : Any=32 , snake_case_ : Dict=768 , snake_case_ : Dict=12 , snake_case_ : Dict=12 , snake_case_ : List[Any]=3_072 , snake_case_ : Tuple=2 , snake_case_ : List[str]="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : List[str]=0.0 , snake_case_ : int=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[str]=0.02 , snake_case_ : Optional[Any]=1E-5 , snake_case_ : Tuple="group" , snake_case_ : Optional[Any]="gelu" , snake_case_ : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case_ : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_ : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_ : str=False , snake_case_ : Optional[int]=128 , snake_case_ : List[Any]=16 , snake_case_ : str=True , snake_case_ : str=0.05 , snake_case_ : int=10 , snake_case_ : List[Any]=2 , snake_case_ : str=0.0 , snake_case_ : str=10 , snake_case_ : int=0 , snake_case_ : int="mean" , snake_case_ : str=False , snake_case_ : Optional[Any]=False , snake_case_ : Optional[Any]=256 , snake_case_ : int=0 , snake_case_ : Tuple=1 , snake_case_ : Dict=2 , **snake_case_ : Any , ):
super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase )
snake_case__ : Any = hidden_size
snake_case__ : List[Any] = feat_extract_norm
snake_case__ : Optional[Any] = feat_extract_activation
snake_case__ : Dict = list(_lowercase )
snake_case__ : List[str] = list(_lowercase )
snake_case__ : Any = list(_lowercase )
snake_case__ : Dict = conv_bias
snake_case__ : str = num_conv_pos_embeddings
snake_case__ : Optional[Any] = num_conv_pos_embedding_groups
snake_case__ : Optional[int] = len(self.conv_dim )
snake_case__ : str = num_hidden_layers
snake_case__ : Any = intermediate_size
snake_case__ : Union[str, Any] = squeeze_factor
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : List[str] = hidden_dropout
snake_case__ : Optional[Any] = attention_dropout
snake_case__ : List[Any] = activation_dropout
snake_case__ : Optional[int] = feat_proj_dropout
snake_case__ : Dict = final_dropout
snake_case__ : Optional[Any] = layerdrop
snake_case__ : Union[str, Any] = layer_norm_eps
snake_case__ : Tuple = initializer_range
snake_case__ : Optional[Any] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case__ : Optional[int] = apply_spec_augment
snake_case__ : Dict = mask_time_prob
snake_case__ : Dict = mask_time_length
snake_case__ : Union[str, Any] = mask_time_min_masks
snake_case__ : Union[str, Any] = mask_feature_prob
snake_case__ : Any = mask_feature_length
snake_case__ : int = mask_feature_min_masks
# ctc loss
snake_case__ : Optional[int] = ctc_loss_reduction
snake_case__ : Optional[int] = ctc_zero_infinity
# sequence classification
snake_case__ : List[Any] = use_weighted_layer_sum
snake_case__ : List[Any] = classifier_proj_size
@property
def lowerCamelCase ( self : int ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 35 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowercase : int = False
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self :List[str] ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self :Union[str, Any] ) -> List[Any]:
return 1_2
@property
def _lowerCamelCase ( self :str ) -> Any:
return 1_2
@property
def _lowerCamelCase ( self :Optional[Any] ) -> Optional[int]:
return 3_2
@property
def _lowerCamelCase ( self :List[str] ) -> Tuple:
torch.manual_seed(0 )
__UpperCamelCase : Optional[Any] = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def _lowerCamelCase ( self :int ) -> Any:
__UpperCamelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
return tokenizer
@property
def _lowerCamelCase ( self :Tuple ) -> List[Any]:
torch.manual_seed(0 )
__UpperCamelCase : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(_lowercase )
@property
def _lowerCamelCase ( self :List[Any] ) -> List[Any]:
torch.manual_seed(0 )
__UpperCamelCase : Any = 1_2
__UpperCamelCase : List[str] = 1_2
__UpperCamelCase : Union[str, Any] = {
"attention_bias": True,
"cross_attention_dim": 3_2,
"attention_head_dim": height * width,
"num_attention_heads": 1,
"num_vector_embeds": self.num_embed,
"num_embeds_ada_norm": self.num_embeds_ada_norm,
"norm_num_groups": 3_2,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
__UpperCamelCase : Union[str, Any] = TransformeraDModel(**_lowercase )
return model
def _lowerCamelCase ( self :Tuple ) -> Optional[Any]:
__UpperCamelCase : str = "cpu"
__UpperCamelCase : List[str] = self.dummy_vqvae
__UpperCamelCase : List[str] = self.dummy_text_encoder
__UpperCamelCase : int = self.dummy_tokenizer
__UpperCamelCase : List[Any] = self.dummy_transformer
__UpperCamelCase : Union[str, Any] = VQDiffusionScheduler(self.num_embed )
__UpperCamelCase : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase )
__UpperCamelCase : int = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
__UpperCamelCase : int = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCamelCase : Optional[int] = "teddy bear playing in the pool"
__UpperCamelCase : Optional[int] = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCamelCase : int = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="np" )
__UpperCamelCase : List[str] = output.images
__UpperCamelCase : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCamelCase : Tuple = pipe(
[prompt] , generator=_lowercase , output_type="np" , return_dict=_lowercase , num_inference_steps=2 )[0]
__UpperCamelCase : int = image[0, -3:, -3:, -1]
__UpperCamelCase : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
__UpperCamelCase : Tuple = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self :Any ) -> str:
__UpperCamelCase : Tuple = "cpu"
__UpperCamelCase : Any = self.dummy_vqvae
__UpperCamelCase : Dict = self.dummy_text_encoder
__UpperCamelCase : Union[str, Any] = self.dummy_tokenizer
__UpperCamelCase : List[str] = self.dummy_transformer
__UpperCamelCase : Tuple = VQDiffusionScheduler(self.num_embed )
__UpperCamelCase : Dict = LearnedClassifierFreeSamplingEmbeddings(
learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__UpperCamelCase : Optional[Any] = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
__UpperCamelCase : Any = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCamelCase : str = "teddy bear playing in the pool"
__UpperCamelCase : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCamelCase : List[str] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="np" )
__UpperCamelCase : Any = output.images
__UpperCamelCase : Dict = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCamelCase : List[str] = pipe(
[prompt] , generator=_lowercase , output_type="np" , return_dict=_lowercase , num_inference_steps=2 )[0]
__UpperCamelCase : List[Any] = image[0, -3:, -3:, -1]
__UpperCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
__UpperCamelCase : Tuple = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self :Any ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple:
__UpperCamelCase : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" )
__UpperCamelCase : Any = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" )
__UpperCamelCase : Optional[Any] = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__UpperCamelCase : Any = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCamelCase : Union[str, Any] = pipeline(
"teddy bear playing in the pool" , num_images_per_prompt=1 , generator=_lowercase , output_type="np" , )
__UpperCamelCase : Dict = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
assert np.abs(expected_image - image ).max() < 2.0 | 232 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 0 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_lowerCAmelCase )
class __lowercase (_lowerCAmelCase ):
def __init__( self , **A_ ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(**_lowercase )
if self.framework != "pt":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
# No specific FOR_XXX available yet
def __call__( self , A_ , **A_ ) ->int:
'''simple docstring'''
return super().__call__(_lowercase , **_lowercase )
def UpperCamelCase__ ( self , **A_ ) ->str:
'''simple docstring'''
__lowerCAmelCase : Dict = {}
if "candidate_labels" in kwargs:
__lowerCAmelCase : Optional[int] = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__lowerCAmelCase : str = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def UpperCamelCase__ ( self , A_ , A_=None , A_="This is a sound of {}." ) ->Tuple:
'''simple docstring'''
if isinstance(_lowercase , _lowercase ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__lowerCAmelCase : Tuple = requests.get(_lowercase ).content
else:
with open(_lowercase , '''rb''' ) as f:
__lowerCAmelCase : Optional[int] = f.read()
if isinstance(_lowercase , _lowercase ):
__lowerCAmelCase : Optional[Any] = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate )
if not isinstance(_lowercase , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
__lowerCAmelCase : List[Any] = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
__lowerCAmelCase : List[Any] = candidate_labels
__lowerCAmelCase : Union[str, Any] = [hypothesis_template.format(_lowercase ) for x in candidate_labels]
__lowerCAmelCase : Optional[Any] = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase )
__lowerCAmelCase : Dict = [text_inputs]
return inputs
def UpperCamelCase__ ( self , A_ ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Tuple = model_inputs.pop('''candidate_labels''' )
__lowerCAmelCase : List[str] = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , _lowercase ):
__lowerCAmelCase : Dict = text_inputs[0]
else:
# Batching case.
__lowerCAmelCase : Union[str, Any] = text_inputs[0][0]
__lowerCAmelCase : Optional[Any] = self.model(**_lowercase , **_lowercase )
__lowerCAmelCase : List[str] = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def UpperCamelCase__ ( self , A_ ) ->int:
'''simple docstring'''
__lowerCAmelCase : List[Any] = model_outputs.pop('''candidate_labels''' )
__lowerCAmelCase : List[Any] = model_outputs['''logits'''][0]
if self.framework == "pt":
__lowerCAmelCase : Optional[Any] = logits.softmax(dim=0 )
__lowerCAmelCase : Optional[Any] = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
__lowerCAmelCase : List[Any] = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda A_ : -x[0] )
]
return result
| 275 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a_ = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 152 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 0 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = XLMRobertaModel.from_pretrained('''xlm-roberta-base''')
SCREAMING_SNAKE_CASE_ : str = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Tuple = model(_lowercase)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1e-3))
@slow
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''')
SCREAMING_SNAKE_CASE_ : Any = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
SCREAMING_SNAKE_CASE_ : Dict = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
SCREAMING_SNAKE_CASE_ : int = torch.tensor(
[[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : List[Any] = model(_lowercase)['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1e-3))
| 91 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 0 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Tuple = []
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
F"stage{idx}.patch_embed.proj.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
F"stage{idx}.patch_embed.proj.bias",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
F"stage{idx}.patch_embed.norm.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
F"stage{idx}.patch_embed.norm.bias",
) )
return embed
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Optional[Any] = []
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
F"stage{idx}.blocks.{cnt}.attn.proj.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
F"stage{idx}.blocks.{cnt}.attn.proj.bias",
) )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") )
return attention_weights
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Tuple = []
token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') )
return token
def __lowerCAmelCase ():
__lowerCAmelCase : List[str] = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : List[Any] = 'imagenet-1k-id2label.json'
__lowerCAmelCase : str = 1000
__lowerCAmelCase : int = 'huggingface/label-files'
__lowerCAmelCase : List[str] = num_labels
__lowerCAmelCase : Dict = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='dataset' ) ) , 'r' ) )
__lowerCAmelCase : Dict = {int(snake_case_ ): v for k, v in idalabel.items()}
__lowerCAmelCase : str = idalabel
__lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
__lowerCAmelCase : Union[str, Any] = CvtConfig(num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
__lowerCAmelCase : str = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
__lowerCAmelCase : List[Any] = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
__lowerCAmelCase : str = [2, 2, 20]
__lowerCAmelCase : Union[str, Any] = [3, 12, 16]
__lowerCAmelCase : str = [192, 768, 1024]
__lowerCAmelCase : str = CvtForImageClassification(snake_case_ )
__lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
__lowerCAmelCase : Union[str, Any] = image_size
__lowerCAmelCase : Union[str, Any] = torch.load(snake_case_ , map_location=torch.device('cpu' ) )
__lowerCAmelCase : Any = OrderedDict()
__lowerCAmelCase : Union[str, Any] = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
__lowerCAmelCase : Union[str, Any] = list_of_state_dict + cls_token(snake_case_ )
__lowerCAmelCase : Union[str, Any] = list_of_state_dict + embeddings(snake_case_ )
for cnt in range(config.depth[idx] ):
__lowerCAmelCase : str = list_of_state_dict + attention(snake_case_ , snake_case_ )
__lowerCAmelCase : Tuple = list_of_state_dict + final()
for gg in list_of_state_dict:
print(snake_case_ )
for i in range(len(snake_case_ ) ):
__lowerCAmelCase : Optional[Any] = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(snake_case_ )
model.save_pretrained(snake_case_ )
image_processor.save_pretrained(snake_case_ )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""--cvt_model""",
default="""cvt-w24""",
type=str,
help="""Name of the cvt model you\'d like to convert.""",
)
parser.add_argument(
"""--image_size""",
default=384,
type=int,
help="""Input Image Size""",
)
parser.add_argument(
"""--cvt_file_name""",
default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""",
type=str,
help="""Input Image Size""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path) | 86 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = first_str.lower().strip()
__UpperCAmelCase = second_str.lower().strip()
# Remove whitespace
__UpperCAmelCase = first_str.replace(''' ''' , '''''' )
__UpperCAmelCase = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
__UpperCAmelCase = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] = input('Enter the first string ').strip()
_lowercase : Tuple = input('Enter the second string ').strip()
_lowercase : str = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 332 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = {
'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json',
'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json',
'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json',
'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json',
'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json',
'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json',
'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json',
'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json',
'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json',
}
class A ( _lowerCAmelCase ):
__UpperCAmelCase : List[Any] = "xmod"
def __init__(self : Tuple , __UpperCAmelCase : Optional[Any]=3_0_5_2_2 , __UpperCAmelCase : Optional[Any]=7_6_8 , __UpperCAmelCase : List[str]=1_2 , __UpperCAmelCase : List[Any]=1_2 , __UpperCAmelCase : int=3_0_7_2 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[str]=5_1_2 , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : int=1E-12 , __UpperCAmelCase : int=1 , __UpperCAmelCase : Any=0 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Optional[Any]="absolute" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=False , __UpperCAmelCase : str=2 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=("en_XX",) , __UpperCAmelCase : List[str]=None , **__UpperCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = classifier_dropout
UpperCAmelCase__ = pre_norm
UpperCAmelCase__ = adapter_reduction_factor
UpperCAmelCase__ = adapter_layer_norm
UpperCAmelCase__ = adapter_reuse_layer_norm
UpperCAmelCase__ = ln_before_adapter
UpperCAmelCase__ = list(_lowercase )
UpperCAmelCase__ = default_language
class A ( _lowerCAmelCase ):
@property
def lowercase_ (self : List[str] ) -> List[str]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase__ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 65 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Union[str, Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__UpperCAmelCase = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_lowercase )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : List[str] ):
__UpperCAmelCase = '''sgugger/tiny-distilbert-classification'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
# set architectures equal to `None`
__UpperCAmelCase = None
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Tuple ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Any ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : str ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : int ):
__UpperCAmelCase = '''sshleifer/tinier_bart'''
__UpperCAmelCase = AutoConfig.from_pretrained(_lowercase )
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] )
__UpperCAmelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() )
def a ( self : List[Any] ):
__UpperCAmelCase = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_lowercase : str ):
self.assertTrue(hasattr(_lowercase , '''sequential''' ) )
self.assertTrue(hasattr(_lowercase , '''cumulative''' ) )
self.assertTrue(hasattr(_lowercase , '''current''' ) )
self.assertTrue(hasattr(_lowercase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , )
__UpperCAmelCase = PyTorchBenchmark(_lowercase )
__UpperCAmelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
| 332 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
a = logging.get_logger('transformers.models.encodec')
a = {
'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited',
'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size',
'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed',
'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg',
}
a = {
'encoder.model.0.conv.conv': 'encoder.layers.0.conv',
'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv',
'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv',
'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv',
'encoder.model.3.conv.conv': 'encoder.layers.3.conv',
'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv',
'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv',
'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv',
'encoder.model.6.conv.conv': 'encoder.layers.6.conv',
'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv',
'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv',
'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv',
'encoder.model.9.conv.conv': 'encoder.layers.9.conv',
'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv',
'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv',
'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv',
'encoder.model.12.conv.conv': 'encoder.layers.12.conv',
'encoder.model.13.lstm': 'encoder.layers.13.lstm',
'encoder.model.15.conv.conv': 'encoder.layers.15.conv',
}
a = {
'encoder.model.0.conv.norm': 'encoder.layers.0.norm',
'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm',
'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm',
'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm',
'encoder.model.3.conv.norm': 'encoder.layers.3.norm',
'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm',
'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm',
'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm',
'encoder.model.6.conv.norm': 'encoder.layers.6.norm',
'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm',
'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm',
'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm',
'encoder.model.9.conv.norm': 'encoder.layers.9.norm',
'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm',
'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm',
'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm',
'encoder.model.12.conv.norm': 'encoder.layers.12.norm',
'encoder.model.15.conv.norm': 'encoder.layers.15.norm',
}
a = {
'decoder.model.0.conv.conv': 'decoder.layers.0.conv',
'decoder.model.1.lstm': 'decoder.layers.1.lstm',
'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv',
'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv',
'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv',
'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv',
'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv',
'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv',
'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv',
'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv',
'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv',
'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv',
'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv',
'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv',
'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv',
'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv',
'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv',
'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv',
'decoder.model.15.conv.conv': 'decoder.layers.15.conv',
}
a = {
'decoder.model.0.conv.norm': 'decoder.layers.0.norm',
'decoder.model.3.convtr.norm': 'decoder.layers.3.norm',
'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm',
'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm',
'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm',
'decoder.model.6.convtr.norm': 'decoder.layers.6.norm',
'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm',
'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm',
'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm',
'decoder.model.9.convtr.norm': 'decoder.layers.9.norm',
'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm',
'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm',
'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm',
'decoder.model.12.convtr.norm': 'decoder.layers.12.norm',
'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm',
'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm',
'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm',
'decoder.model.15.conv.norm': 'decoder.layers.15.norm',
}
a = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
a = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
a = []
a = []
def lowercase (snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Tuple ) -> int:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowerCAmelCase = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
lowerCAmelCase = getattr(snake_case_ , snake_case_ ).shape
else:
lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
lowerCAmelCase = value
elif weight_type == "weight_g":
lowerCAmelCase = value
elif weight_type == "weight_v":
lowerCAmelCase = value
elif weight_type == "bias":
lowerCAmelCase = value
elif weight_type == "running_mean":
lowerCAmelCase = value
elif weight_type == "running_var":
lowerCAmelCase = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase = value
elif weight_type == "weight_ih_l0":
lowerCAmelCase = value
elif weight_type == "weight_hh_l0":
lowerCAmelCase = value
elif weight_type == "bias_ih_l0":
lowerCAmelCase = value
elif weight_type == "bias_hh_l0":
lowerCAmelCase = value
elif weight_type == "weight_ih_l1":
lowerCAmelCase = value
elif weight_type == "weight_hh_l1":
lowerCAmelCase = value
elif weight_type == "bias_ih_l1":
lowerCAmelCase = value
elif weight_type == "bias_hh_l1":
lowerCAmelCase = value
else:
lowerCAmelCase = value
logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def lowercase (snake_case__ : Tuple , snake_case__ : str ) -> Dict:
'''simple docstring'''
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCAmelCase , lowerCAmelCase = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowercase (snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowerCAmelCase = MAPPING_24K
elif model_name == "encodec_48khz":
lowerCAmelCase = MAPPING_48K
else:
raise ValueError(f'''Unsupported model: {model_name}''' )
for name, value in orig_dict.items():
if should_ignore(snake_case_ , snake_case_ ):
logger.info(f'''{name} was ignored''' )
continue
lowerCAmelCase = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowerCAmelCase , lowerCAmelCase = key.split(""".*.""" )
if prefix in name and suffix in name:
lowerCAmelCase = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ):
continue
lowerCAmelCase = True
if "*" in mapped_key:
lowerCAmelCase = name.split(snake_case_ )[0].split(""".""" )[-2]
lowerCAmelCase = mapped_key.replace("""*""" , snake_case_ )
if "weight_g" in name:
lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
lowerCAmelCase = """weight_v"""
elif "weight_ih_l0" in name:
lowerCAmelCase = """weight_ih_l0"""
elif "weight_hh_l0" in name:
lowerCAmelCase = """weight_hh_l0"""
elif "bias_ih_l0" in name:
lowerCAmelCase = """bias_ih_l0"""
elif "bias_hh_l0" in name:
lowerCAmelCase = """bias_hh_l0"""
elif "weight_ih_l1" in name:
lowerCAmelCase = """weight_ih_l1"""
elif "weight_hh_l1" in name:
lowerCAmelCase = """weight_hh_l1"""
elif "bias_ih_l1" in name:
lowerCAmelCase = """bias_ih_l1"""
elif "bias_hh_l1" in name:
lowerCAmelCase = """bias_hh_l1"""
elif "bias" in name:
lowerCAmelCase = """bias"""
elif "weight" in name:
lowerCAmelCase = """weight"""
elif "running_mean" in name:
lowerCAmelCase = """running_mean"""
elif "running_var" in name:
lowerCAmelCase = """running_var"""
elif "num_batches_tracked" in name:
lowerCAmelCase = """num_batches_tracked"""
else:
lowerCAmelCase = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f'''Unused weights: {unused_weights}''' )
@torch.no_grad()
def lowercase (snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple=None , snake_case__ : int=None , ) -> Optional[int]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase = EncodecConfig.from_pretrained(snake_case_ )
else:
lowerCAmelCase = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowerCAmelCase = [8, 5, 4, 4]
lowerCAmelCase = [2.2]
lowerCAmelCase = 64
lowerCAmelCase = 32_000
lowerCAmelCase = 2_048
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
elif model_name == "encodec_48khz":
lowerCAmelCase = [8, 5, 4, 2]
lowerCAmelCase = [3.0, 6.0, 12.0, 24.0]
lowerCAmelCase = 48_000
lowerCAmelCase = 2
lowerCAmelCase = False
lowerCAmelCase = """time_group_norm"""
lowerCAmelCase = True
lowerCAmelCase = 1.0
lowerCAmelCase = 0.01
else:
raise ValueError(f'''Unknown model name: {model_name}''' )
lowerCAmelCase = EncodecModel(snake_case_ )
lowerCAmelCase = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(snake_case_ )
lowerCAmelCase = torch.load(snake_case_ )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowerCAmelCase = original_checkpoint["""best_state"""]
recursively_load_weights(snake_case_ , snake_case_ , snake_case_ )
model.save_pretrained(snake_case_ )
if repo_id:
print("""Pushing to the hub...""" )
feature_extractor.push_to_hub(snake_case_ )
model.push_to_hub(snake_case_ )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument(
'--model',
default='encodec_24khz',
type=str,
help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.',
)
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
a = parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 155 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( _lowerCAmelCase ):
def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ):
if tokenize_kwargs is None:
__UpperCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
__UpperCAmelCase = truncation
__UpperCAmelCase = tokenize_kwargs
__UpperCAmelCase = {}
if return_tensors is not None:
__UpperCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = self.framework
__UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def a ( self : List[str] , _lowercase : Tuple ):
__UpperCAmelCase = self.model(**_lowercase )
return model_outputs
def a ( self : int , _lowercase : Tuple , _lowercase : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
return super().__call__(*_lowercase , **_lowercase )
| 332 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 220 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowercase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((2_56, 2_56)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowercase__ ( snake_case_ :List[Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
__UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image]
__UpperCAmelCase = torch.stack(snake_case_ )
return image
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Any , _lowercase : str , _lowercase : str ):
super().__init__()
# make sure scheduler can always be converted to DDIM
__UpperCAmelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
def a ( self : int , _lowercase : List[str] ):
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ):
if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__UpperCAmelCase = init_latents.shape
__UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
print('''add noise to latents at timestep''' , _lowercase )
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
@torch.no_grad()
def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
self.check_inputs(_lowercase )
# 2. Preprocess image
__UpperCAmelCase = preprocess(_lowercase )
# 3. set timesteps
self.scheduler.set_timesteps(_lowercase , device=self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# 4. Prepare latent variables
__UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase )
__UpperCAmelCase = latents
# 5. Denoising loop
for t in self.progress_bar(_lowercase ):
# 1. predict noise model_output
__UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=_lowercase )
| 332 | 0 |
import math
def snake_case_ ( snake_case , snake_case ) -> str:
lowercase__: str = len(snake_case_ )
lowercase__: List[Any] = int(math.floor(math.sqrt(snake_case_ ) ) )
lowercase__: str = 0
while arr[min(snake_case_ , snake_case_ ) - 1] < x:
lowercase__: str = step
step += int(math.floor(math.sqrt(snake_case_ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
lowercase__: Dict = prev + 1
if prev == min(snake_case_ , snake_case_ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
__lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip()
__lowerCAmelCase = [int(item) for item in user_input.split(''',''')]
__lowerCAmelCase = int(input('''Enter the number to be searched:\n'''))
__lowerCAmelCase = jump_search(arr, x)
if res == -1:
print('''Number not found!''')
else:
print(F'''Number {x} is at index {res}''')
| 196 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 332 | 0 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
__a :Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__a :List[str] = 25_0004
__a :int = 25_0020
@require_sentencepiece
@require_tokenizers
class _a ( _lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = MBartaaTokenizer
_lowerCamelCase : List[str] = MBartaaTokenizerFast
_lowerCamelCase : Any = True
_lowerCamelCase : List[str] = True
def __A ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
A_ = MBartaaTokenizer(_lowercase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self : Dict ):
A_ = "<s>"
A_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def __A ( self : Optional[Any] ):
A_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(_lowercase ) , 1054 )
def __A ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def __A ( self : str ):
A_ = MBartaaTokenizer(_lowercase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=_lowercase )
A_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
A_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
A_ = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A_ = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __A ( self : str ):
# fmt: off
A_ = {"input_ids": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , )
def __A ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A_ = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
A_ = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
A_ = tempfile.mkdtemp()
A_ = tokenizer_r.save_pretrained(_lowercase )
A_ = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
A_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
A_ = tokenizer_r.from_pretrained(_lowercase )
A_ = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
A_ = tempfile.mkdtemp()
A_ = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
A_ = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
A_ = tokenizer_r.from_pretrained(_lowercase )
A_ = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
A_ = tempfile.mkdtemp()
A_ = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
A_ = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A_ = tokenizer_r.from_pretrained(_lowercase )
A_ = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : str = "facebook/mbart-large-50-one-to-many-mmt"
_lowerCamelCase : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
_lowerCamelCase : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
_lowerCamelCase : Any = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def __A ( cls : Tuple ):
A_ = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" )
A_ = 1
return cls
def __A ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250038 )
def __A ( self : Union[str, Any] ):
A_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def __A ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
A_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
A_ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
A_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def __A ( self : Optional[Any] ):
A_ = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] , _lowercase )
A_ = 10
A_ = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def __A ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250053, 250001] )
def __A ( self : Union[str, Any] ):
A_ = tempfile.mkdtemp()
A_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
A_ = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def __A ( self : Dict ):
A_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors="pt" )
A_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def __A ( self : Union[str, Any] ):
A_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
A_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
A_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def __A ( self : Union[str, Any] ):
A_ = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="pt" )
A_ = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors="pt" )
A_ = targets["input_ids"]
A_ = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def __A ( self : Dict ):
A_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
"input_ids": [[250004, 62, 3034, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 250001,
} , ) | 312 |
"""simple docstring"""
_lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 332 | 0 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
__a = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
inspect_dataset(snake_case_ , snake_case_ )
snake_case__ : Optional[int] = path + """.py"""
assert script_name in os.listdir(snake_case_ )
assert "__pycache__" not in os.listdir(snake_case_ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
inspect_metric(snake_case_ , snake_case_ )
snake_case__ : Any = path + """.py"""
assert script_name in os.listdir(snake_case_ )
assert "__pycache__" not in os.listdir(snake_case_ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
snake_case__ : str = get_dataset_config_info(snake_case_ , config_name=snake_case_ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
with pytest.raises(snake_case_ ):
get_dataset_config_info(snake_case_ , config_name=snake_case_ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
snake_case__ : List[Any] = get_dataset_config_names(snake_case_ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
snake_case__ : int = get_dataset_infos(snake_case_ )
assert list(infos.keys() ) == expected_configs
snake_case__ : str = expected_configs[0]
assert expected_config in infos
snake_case__ : Optional[Any] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str:
snake_case__ : str = get_dataset_infos(snake_case_ )
assert expected_config in infos
snake_case__ : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
with pytest.raises(snake_case_ ):
get_dataset_split_names(snake_case_ , config_name=snake_case_ )
| 35 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( snake_case_ :Optional[int] ):
return EnvironmentCommand()
def lowercase__ ( snake_case_ :List[str] ):
return EnvironmentCommand(args.accelerate_config_file )
class _UpperCAmelCase ( _lowerCAmelCase ):
@staticmethod
def a ( _lowercase : ArgumentParser ):
__UpperCAmelCase = parser.add_parser('''env''' )
download_parser.set_defaults(func=_lowercase )
download_parser.add_argument(
'''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=_lowercase )
def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ):
__UpperCAmelCase = accelerate_config_file
def a ( self : Dict ):
__UpperCAmelCase = '''not installed'''
if is_safetensors_available():
import safetensors
__UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
__UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = __UpperCAmelCase = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_lowercase ):
__UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_lowercase , _lowercase )
else F'''\t{accelerate_config}'''
)
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_torch_available():
import torch
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_tf_available():
import tensorflow as tf
__UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
__UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) )
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''not installed'''
__UpperCAmelCase = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
__UpperCAmelCase = flax.__version__
__UpperCAmelCase = jax.__version__
__UpperCAmelCase = jaxlib.__version__
__UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
__UpperCAmelCase = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(_lowercase ) )
return info
@staticmethod
def a ( _lowercase : str ):
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 332 | 0 |
import os
def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
with open(os.path.dirname(snake_case_) + "/p022_names.txt") as file:
__UpperCamelCase : Union[str, Any] = str(file.readlines()[0])
__UpperCamelCase : Any = names.replace("\"" , "").split(",")
names.sort()
__UpperCamelCase : Dict = 0
__UpperCamelCase : Optional[int] = 0
for i, name in enumerate(snake_case_):
for letter in name:
name_score += ord(snake_case_) - 64
total_score += (i + 1) * name_score
__UpperCamelCase : Dict = 0
return total_score
if __name__ == "__main__":
print(solution()) | 232 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ):
__UpperCAmelCase = sorted(numsa + numsa )
__UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()]
_lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 332 | 0 |
import argparse
import copy
def _lowercase ( lowercase__ ):
__lowerCAmelCase : Dict = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__lowerCAmelCase : str = []
_list.append([line.split()[1], line.split()[2]] )
__lowerCAmelCase : List[str] = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__lowerCAmelCase : Optional[int] = []
_list.append([line.split()[0], line.split()[2]] )
__lowerCAmelCase : Dict = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def _lowercase ( lowercase__ , lowercase__ ):
with open(snake_case_ ) as f:
__lowerCAmelCase : Tuple = f.read(1 )
__lowerCAmelCase : int = start_node
__lowerCAmelCase : List[str] = []
__lowerCAmelCase : Tuple = start_node
__lowerCAmelCase : List[Any] = 0
while visiting not in first_solution:
__lowerCAmelCase : Dict = 1_0_0_0_0
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__lowerCAmelCase : Optional[Any] = k[1]
__lowerCAmelCase : Optional[Any] = k[0]
first_solution.append(snake_case_ )
__lowerCAmelCase : List[Any] = distance_of_first_solution + int(snake_case_ )
__lowerCAmelCase : List[Any] = best_node
first_solution.append(snake_case_ )
__lowerCAmelCase : List[str] = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__lowerCAmelCase : List[Any] = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0_0_0_0
)
return first_solution, distance_of_first_solution
def _lowercase ( lowercase__ , lowercase__ ):
__lowerCAmelCase : str = []
for n in solution[1:-1]:
__lowerCAmelCase : str = solution.index(snake_case_ )
for kn in solution[1:-1]:
__lowerCAmelCase : int = solution.index(snake_case_ )
if n == kn:
continue
__lowerCAmelCase : Dict = copy.deepcopy(snake_case_ )
__lowerCAmelCase : Optional[int] = kn
__lowerCAmelCase : Optional[Any] = n
__lowerCAmelCase : Union[str, Any] = 0
for k in _tmp[:-1]:
__lowerCAmelCase : Optional[Any] = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__lowerCAmelCase : Tuple = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__lowerCAmelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda lowercase__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
__lowerCAmelCase : int = 1
__lowerCAmelCase : Optional[Any] = first_solution
__lowerCAmelCase : Any = []
__lowerCAmelCase : List[str] = distance_of_first_solution
__lowerCAmelCase : str = solution
while count <= iters:
__lowerCAmelCase : Optional[int] = find_neighborhood(snake_case_ , snake_case_ )
__lowerCAmelCase : Optional[int] = 0
__lowerCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution]
__lowerCAmelCase : List[Any] = len(snake_case_ ) - 1
__lowerCAmelCase : Union[str, Any] = False
while not found:
__lowerCAmelCase : Any = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__lowerCAmelCase : Optional[int] = best_solution[i]
__lowerCAmelCase : Dict = solution[i]
break
__lowerCAmelCase : List[Any] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__lowerCAmelCase : List[str] = True
__lowerCAmelCase : Union[str, Any] = best_solution[:-1]
__lowerCAmelCase : Optional[int] = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__lowerCAmelCase : Optional[int] = cost
__lowerCAmelCase : Dict = solution
else:
__lowerCAmelCase : Any = index_of_best_solution + 1
__lowerCAmelCase : Optional[int] = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__lowerCAmelCase : Union[str, Any] = count + 1
return best_solution_ever, best_cost
def _lowercase ( lowercase__=None ):
__lowerCAmelCase : int = generate_neighbours(args.File )
__lowerCAmelCase, __lowerCAmelCase : Tuple = generate_first_solution(
args.File , snake_case_ )
__lowerCAmelCase, __lowerCAmelCase : List[Any] = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 275 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ):
__UpperCAmelCase = str(id_ )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = []
__UpperCAmelCase = {} # {vertex:distance}
def __lt__( self : str , _lowercase : List[Any] ):
return self.key < other.key
def __repr__( self : int ):
return self.id
def a ( self : Union[str, Any] , _lowercase : int ):
self.neighbors.append(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = weight
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , snake_case_ )
graph[b - 1].add_edge(graph[a - 1] , snake_case_ )
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
__UpperCAmelCase = []
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = graph[:]
while q:
__UpperCAmelCase = min(snake_case_ )
q.remove(snake_case_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
for i in range(1 , len(snake_case_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ):
for u in graph:
__UpperCAmelCase = math.inf
__UpperCAmelCase = None
__UpperCAmelCase = 0
__UpperCAmelCase = list(snake_case_ )
hq.heapify(snake_case_ )
while h:
__UpperCAmelCase = hq.heappop(snake_case_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase = u
__UpperCAmelCase = u.edges[v.id]
hq.heapify(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
def _a( UpperCamelCase__ : float, UpperCamelCase__ : float ):
'''simple docstring'''
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 152 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Dict = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "swinv2"
a__ : List[Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
__UpperCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
__UpperCAmelCase = (0, 0, 0, 0)
| 332 | 0 |
"""simple docstring"""
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
if collection == []:
return []
# get some information about the collection
SCREAMING_SNAKE_CASE_ : List[Any] = len(snake_case_ )
SCREAMING_SNAKE_CASE_ : str = max(snake_case_ )
SCREAMING_SNAKE_CASE_ : Any = min(snake_case_ )
# create the counting array
SCREAMING_SNAKE_CASE_ : Union[str, Any] = coll_max + 1 - coll_min
SCREAMING_SNAKE_CASE_ : List[str] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
SCREAMING_SNAKE_CASE_ : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
SCREAMING_SNAKE_CASE_ : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
SCREAMING_SNAKE_CASE_ : List[Any] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _A (__a ) -> List[str]:
"""simple docstring"""
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
UpperCAmelCase_ : int = input("""Enter numbers separated by a comma:\n""").strip()
UpperCAmelCase_ : int = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted))
| 91 |
"""simple docstring"""
import pprint
import requests
_lowercase : Optional[Any] = 'https://zenquotes.io/api'
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase__ ( ):
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
_lowercase : int = random_quotes()
pprint.pprint(response)
| 332 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Dict = WavaVecaForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ )
__lowerCAmelCase : List[str] = downstream_dict['projector.weight']
__lowerCAmelCase : Union[str, Any] = downstream_dict['projector.bias']
__lowerCAmelCase : Union[str, Any] = downstream_dict['model.post_net.linear.weight']
__lowerCAmelCase : Tuple = downstream_dict['model.post_net.linear.bias']
return model
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Optional[int] = WavaVecaForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ )
__lowerCAmelCase : List[str] = downstream_dict['model.linear.weight']
__lowerCAmelCase : int = downstream_dict['model.linear.bias']
return model
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Dict = WavaVecaForXVector.from_pretrained(snake_case_ , config=snake_case_ )
__lowerCAmelCase : Dict = downstream_dict['connector.weight']
__lowerCAmelCase : List[Any] = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__lowerCAmelCase : Dict = downstream_dict[
F"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
__lowerCAmelCase : Any = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
__lowerCAmelCase : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
__lowerCAmelCase : Any = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
__lowerCAmelCase : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
__lowerCAmelCase : str = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
__lowerCAmelCase : Optional[Any] = downstream_dict['objective.W']
return model
@torch.no_grad()
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Dict = torch.load(snake_case_ , map_location='cpu' )
__lowerCAmelCase : int = checkpoint['Downstream']
__lowerCAmelCase : List[str] = WavaVecaConfig.from_pretrained(snake_case_ )
__lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(
snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ )
__lowerCAmelCase : int = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
__lowerCAmelCase : Any = convert_classification(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('ForAudioFrameClassification' ):
__lowerCAmelCase : str = convert_diarization(snake_case_ , snake_case_ , snake_case_ )
elif arch.endswith('ForXVector' ):
__lowerCAmelCase : Optional[Any] = convert_xvector(snake_case_ , snake_case_ , snake_case_ )
else:
raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" )
if hf_config.use_weighted_layer_sum:
__lowerCAmelCase : Optional[int] = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(snake_case_ )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model."""
)
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""")
parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""")
lowerCamelCase__ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path) | 86 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ):
if isinstance(snake_case_ , np.ndarray ):
return list(tensor.shape )
__UpperCAmelCase = tf.shape(snake_case_ )
if tensor.shape == tf.TensorShape(snake_case_ ):
return dynamic
__UpperCAmelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )]
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ )
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
__UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCAmelCase = [1] * inputs.shape.rank
__UpperCAmelCase = shape_list(snake_case_ )[axis]
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
__UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ )
# Compute layer normalization using the batch_normalization
# function.
__UpperCAmelCase = tf.nn.batch_normalization(
snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , )
return outputs
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCAmelCase = tf.shape(snake_case_ )
__UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :tf.Tensor ):
if not isinstance(snake_case_ , tf.Tensor ):
__UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCAmelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCAmelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCAmelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ):
tf.debugging.assert_less(
snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ):
__UpperCAmelCase = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
__UpperCAmelCase = np.asarray(snake_case_ )
__UpperCAmelCase = 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCAmelCase = np.array_split(snake_case_ , snake_case_ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(snake_case_ ):
__UpperCAmelCase = chunk_data
else:
__UpperCAmelCase = data
def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ):
if name in group.attrs:
__UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]]
else:
__UpperCAmelCase = []
__UpperCAmelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase__ ( snake_case_ :Tuple ):
def _expand_single_ad_tensor(snake_case_ :Optional[int] ):
if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(snake_case_ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
| 332 | 0 |
import os
from pathlib import Path
def lowerCAmelCase_ ( ) -> Optional[int]:
'''simple docstring'''
from torch.utils.cpp_extension import load
UpperCAmelCase__ = Path(snake_case_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
UpperCAmelCase__ = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu", "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda", "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention", snake_case_, with_cuda=snake_case_, extra_include_paths=[str(snake_case_ )], extra_cflags=["-DWITH_CUDA=1"], extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
], )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 65 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase__ ( snake_case_ :Union[str, Any]=None ):
if subparsers is not None:
__UpperCAmelCase = subparsers.add_parser('''env''' )
else:
__UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' )
parser.add_argument(
'''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' )
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowercase__ ( snake_case_ :List[Any] ):
__UpperCAmelCase = torch.__version__
__UpperCAmelCase = torch.cuda.is_available()
__UpperCAmelCase = is_xpu_available()
__UpperCAmelCase = is_npu_available()
__UpperCAmelCase = '''Not found'''
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(snake_case_ ):
__UpperCAmelCase = load_config_from_file(args.config_file ).to_dict()
__UpperCAmelCase = {
'''`Accelerate` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Numpy version''': np.__version__,
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''PyTorch XPU available''': str(snake_case_ ),
'''PyTorch NPU available''': str(snake_case_ ),
'''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''',
}
if pt_cuda_available:
__UpperCAmelCase = torch.cuda.get_device_name()
print('''\nCopy-and-paste the text below in your GitHub issue\n''' )
print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' )
__UpperCAmelCase = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(snake_case_ , snake_case_ )
else F'''\t{accelerate_config}'''
)
print(snake_case_ )
__UpperCAmelCase = accelerate_config
return info
def lowercase__ ( ):
__UpperCAmelCase = env_command_parser()
__UpperCAmelCase = parser.parse_args()
env_command(snake_case_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 332 | 0 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
a = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
a = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
a = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def __lowercase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def __lowercase ( self : Optional[Any] ):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def __lowercase ( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]="uniform_average" , lowerCAmelCase : Tuple=True ):
lowerCAmelCase = mean_squared_error(
_lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase )
return {"mse": mse}
| 155 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : List[str] = 25_00_04
_lowercase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Any = True
a__ : List[str] = True
def a ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Dict ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : str ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : str ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : str ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : str = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Union[str, Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Union[str, Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Optional[Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Optional[int] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 332 | 0 |
"""simple docstring"""
import operator
def _SCREAMING_SNAKE_CASE ( __snake_case : list , __snake_case : bool = False , __snake_case : list | None = None ):
'''simple docstring'''
lowercase = operator.lt if reverse else operator.gt
lowercase = solution or []
if not arr:
return solution
lowercase = [arr.pop(0 )]
for i, item in enumerate(snake_case_ ):
if _operator(snake_case_ , sublist[-1] ):
sublist.append(snake_case_ )
arr.pop(snake_case_ )
# merging sublist into solution list
if not solution:
solution.extend(snake_case_ )
else:
while sublist:
lowercase = sublist.pop(0 )
for i, xx in enumerate(snake_case_ ):
if not _operator(snake_case_ , snake_case_ ):
solution.insert(snake_case_ , snake_case_ )
break
else:
solution.append(snake_case_ )
strand_sort(snake_case_ , snake_case_ , snake_case_ )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 220 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase__ ( ):
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] ):
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def a ( self : Optional[int] , _lowercase : Optional[Any] ):
return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
def a ( self : Optional[int] ):
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ):
nonlocal batch_sizes
batch_sizes.append(_lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def a ( self : Tuple ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowercase : Optional[int] ):
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : List[Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : List[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def a ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def a ( self : Dict ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowercase : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(_lowercase ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def a ( self : str ):
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowercase )
__UpperCAmelCase = release_memory(_lowercase )
self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
| 332 | 0 |
from pathlib import Path
import fire
def snake_case_ ( snake_case , snake_case , snake_case ) -> Dict:
lowercase__: Union[str, Any] = Path(snake_case_ )
lowercase__: str = Path(snake_case_ )
dest_dir.mkdir(exist_ok=snake_case_ )
for path in src_dir.iterdir():
lowercase__: Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n]
lowercase__: Any = dest_dir.joinpath(path.name )
print(snake_case_ )
dest_path.open('w' ).write('\n'.join(snake_case_ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 196 |
"""simple docstring"""
import argparse
import copy
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = {}
with open(snake_case_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
__UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ):
with open(snake_case_ ) as f:
__UpperCAmelCase = f.read(1 )
__UpperCAmelCase = start_node
__UpperCAmelCase = []
__UpperCAmelCase = start_node
__UpperCAmelCase = 0
while visiting not in first_solution:
__UpperCAmelCase = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution:
__UpperCAmelCase = k[1]
__UpperCAmelCase = k[0]
first_solution.append(snake_case_ )
__UpperCAmelCase = distance_of_first_solution + int(snake_case_ )
__UpperCAmelCase = best_node
first_solution.append(snake_case_ )
__UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ):
__UpperCAmelCase = []
for n in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
for kn in solution[1:-1]:
__UpperCAmelCase = solution.index(snake_case_ )
if n == kn:
continue
__UpperCAmelCase = copy.deepcopy(snake_case_ )
__UpperCAmelCase = kn
__UpperCAmelCase = n
__UpperCAmelCase = 0
for k in _tmp[:-1]:
__UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__UpperCAmelCase = distance + int(i[1] )
_tmp.append(snake_case_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = first_solution
__UpperCAmelCase = []
__UpperCAmelCase = distance_of_first_solution
__UpperCAmelCase = solution
while count <= iters:
__UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = neighborhood[index_of_best_solution]
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = False
while not found:
__UpperCAmelCase = 0
while i < len(snake_case_ ):
if best_solution[i] != solution[i]:
__UpperCAmelCase = best_solution[i]
__UpperCAmelCase = solution[i]
break
__UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__UpperCAmelCase = True
__UpperCAmelCase = best_solution[:-1]
__UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__UpperCAmelCase = cost
__UpperCAmelCase = solution
else:
__UpperCAmelCase = index_of_best_solution + 1
__UpperCAmelCase = neighborhood[index_of_best_solution]
if len(snake_case_ ) >= size:
tabu_list.pop(0 )
__UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def lowercase__ ( snake_case_ :str=None ):
__UpperCAmelCase = generate_neighbours(args.File )
__UpperCAmelCase , __UpperCAmelCase = generate_first_solution(
args.File , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = tabu_search(
snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __A ( self : Optional[int] ):
A_ = 1
A_ = 3
A_ = (32, 32)
A_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase )
return image
@property
def __A ( self : List[str] ):
torch.manual_seed(0 )
A_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def __A ( self : List[str] ):
torch.manual_seed(0 )
A_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def __A ( self : Dict ):
torch.manual_seed(0 )
A_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_lowercase )
@property
def __A ( self : List[str] ):
def extract(*UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Any ):
class _a :
"""simple docstring"""
def __init__( self : Optional[int] ):
A_ = torch.ones([0] )
def __A ( self : Optional[int] , UpperCAmelCase : List[Any] ):
self.pixel_values.to(_lowercase )
return self
return Out()
return extract
def __A ( self : Dict ):
A_ = "cpu" # ensure determinism for the device-dependent torch.Generator
A_ = self.dummy_cond_unet
A_ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
A_ = self.dummy_vae
A_ = self.dummy_text_encoder
A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
A_ = StableDiffusionPipeline(
unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , )
A_ = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
A_ = "A painting of a squirrel eating a burger"
A_ = torch.Generator(device=_lowercase ).manual_seed(0 )
A_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
A_ = output.images
A_ = torch.Generator(device=_lowercase ).manual_seed(0 )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_lowercase , )[0]
A_ = image[0, -3:, -3:, -1]
A_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A_ = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self : int ):
A_ = "cpu" # ensure determinism for the device-dependent torch.Generator
A_ = self.dummy_cond_unet
A_ = PNDMScheduler(skip_prk_steps=_lowercase )
A_ = self.dummy_vae
A_ = self.dummy_text_encoder
A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
A_ = StableDiffusionPipeline(
unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , )
A_ = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
A_ = "A painting of a squirrel eating a burger"
A_ = torch.Generator(device=_lowercase ).manual_seed(0 )
A_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
A_ = output.images
A_ = torch.Generator(device=_lowercase ).manual_seed(0 )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_lowercase , )[0]
A_ = image[0, -3:, -3:, -1]
A_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A_ = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self : str ):
A_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(pipe.scheduler , _lowercase )
assert pipe.safety_checker is None
A_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_lowercase )
A_ = StableDiffusionPipeline.from_pretrained(_lowercase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
A_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def __A ( self : Optional[Any] ):
A_ = self.dummy_cond_unet
A_ = PNDMScheduler(skip_prk_steps=_lowercase )
A_ = self.dummy_vae
A_ = self.dummy_text_encoder
A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
A_ = unet.half()
A_ = vae.half()
A_ = bert.half()
# make sure here that pndm scheduler skips prk
A_ = StableDiffusionPipeline(
unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , )
A_ = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
A_ = "A painting of a squirrel eating a burger"
A_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : Any ):
A_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_lowercase )
A_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
A_ = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
A_ = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
A_ = 4003660346
A_ = 7
# without safety guidance (sld_guidance_scale = 0)
A_ = torch.manual_seed(_lowercase )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
A_ = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
A_ = torch.manual_seed(_lowercase )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
A_ = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self : List[str] ):
A_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_lowercase )
A_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
A_ = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
A_ = "padme amidala taking a bath artwork, safe for work, no nudity"
A_ = 2734971755
A_ = 7
A_ = torch.manual_seed(_lowercase )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
A_ = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
A_ = torch.manual_seed(_lowercase )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
A_ = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __A ( self : Tuple ):
A_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
A_ = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
A_ = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
A_ = 1044355234
A_ = 12
A_ = torch.manual_seed(_lowercase )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
A_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
A_ = torch.manual_seed(_lowercase )
A_ = sd_pipe(
[prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
A_ = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 312 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase__ ( snake_case_ :ndarray ):
return np.dot(snake_case_ , snake_case_ )
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , *,
_lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ):
__UpperCAmelCase = regularization
__UpperCAmelCase = gamma
if kernel == "linear":
__UpperCAmelCase = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
__UpperCAmelCase = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
__UpperCAmelCase = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowercase )
def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ):
return np.dot(_lowercase , _lowercase )
def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ):
__UpperCAmelCase = observations
__UpperCAmelCase = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((__UpperCAmelCase) , ) = np.shape(_lowercase )
def to_minimize(_lowercase : ndarray ) -> float:
__UpperCAmelCase = 0
((__UpperCAmelCase) , ) = np.shape(_lowercase )
for i in range(_lowercase ):
for j in range(_lowercase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowercase )
__UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 )
__UpperCAmelCase = Bounds(0 , self.regularization )
__UpperCAmelCase = minimize(
_lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x
__UpperCAmelCase = l_star
# calculating mean offset of separation plane to points
__UpperCAmelCase = 0
for i in range(_lowercase ):
for j in range(_lowercase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
__UpperCAmelCase = s / n
def a ( self : List[Any] , _lowercase : ndarray ):
__UpperCAmelCase = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowercase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowercase = 42
lowercase = None
lowercase = None
def __snake_case( ) -> List[str]:
snake_case__ : Optional[int] = Node(1 )
snake_case__ : Any = Node(2 )
snake_case__ : Union[str, Any] = Node(3 )
snake_case__ : Tuple = Node(4 )
snake_case__ : str = Node(5 )
return tree
def __snake_case( _lowerCAmelCase ) -> Tuple:
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def __snake_case( _lowerCAmelCase ) -> List[Any]:
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def __snake_case( _lowerCAmelCase ) -> Optional[Any]:
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def __snake_case( _lowerCAmelCase ) -> Optional[Any]:
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def __snake_case( _lowerCAmelCase ) -> Tuple:
snake_case__ : Optional[Any] = []
if root is None:
return output
snake_case__ : int = deque([root] )
while process_queue:
snake_case__ : Optional[Any] = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
snake_case__ : Optional[int] = []
def populate_output(_lowerCAmelCase , _lowerCAmelCase ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
snake_case__ : List[str] = []
def populate_output(_lowerCAmelCase , _lowerCAmelCase ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def __snake_case( _lowerCAmelCase ) -> List[Any]:
if root is None:
return []
snake_case__ : List[str] = []
snake_case__ : Any = 0
snake_case__ : Dict = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
snake_case__ : Optional[int] = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
snake_case__ : Union[str, Any] = 0
return output
def __snake_case( ) -> List[str]: # Main function for testing.
snake_case__ : Optional[Any] = make_tree()
print(f"In-order Traversal: {inorder(snake_case_ )}" )
print(f"Pre-order Traversal: {preorder(snake_case_ )}" )
print(f"Post-order Traversal: {postorder(snake_case_ )}" , """\n""" )
print(f"Height of Tree: {height(snake_case_ )}" , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(snake_case_ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(snake_case_ ) + 1 ):
print(f"Level {level}:" , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 35 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 332 | 0 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase__ ( _lowerCAmelCase):
'''simple docstring'''
def __init__( self :int , a :TransformeraDModel , a :AutoencoderKL , a :KarrasDiffusionSchedulers , a :Optional[Dict[int, str]] = None , ) -> str:
super().__init__()
self.register_modules(transformer=_lowercase , vae=_lowercase , scheduler=_lowercase )
# create a imagenet -> id dictionary for easier use
__UpperCamelCase : Any = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split("," ):
__UpperCamelCase : Optional[int] = int(_lowercase )
__UpperCamelCase : Dict = dict(sorted(self.labels.items() ) )
def _lowerCamelCase ( self :str , a :Union[str, List[str]] ) -> Optional[Any]:
if not isinstance(_lowercase , _lowercase ):
__UpperCamelCase : Optional[int] = list(_lowercase )
for l in label:
if l not in self.labels:
raise ValueError(
f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self :List[str] , a :List[int] , a :float = 4.0 , a :Optional[Union[torch.Generator, List[torch.Generator]]] = None , a :int = 5_0 , a :Optional[str] = "pil" , a :bool = True , ) -> str:
__UpperCamelCase : Dict = len(_lowercase )
__UpperCamelCase : List[str] = self.transformer.config.sample_size
__UpperCamelCase : List[str] = self.transformer.config.in_channels
__UpperCamelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowercase , device=self.device , dtype=self.transformer.dtype , )
__UpperCamelCase : List[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
__UpperCamelCase : Tuple = torch.tensor(_lowercase , device=self.device ).reshape(-1 )
__UpperCamelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device )
__UpperCamelCase : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(_lowercase )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
__UpperCamelCase : Dict = latent_model_input[: len(_lowercase ) // 2]
__UpperCamelCase : Optional[Any] = torch.cat([half, half] , dim=0 )
__UpperCamelCase : str = self.scheduler.scale_model_input(_lowercase , _lowercase )
__UpperCamelCase : Any = t
if not torch.is_tensor(_lowercase ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCamelCase : Optional[int] = latent_model_input.device.type == "mps"
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase : List[Any] = torch.floataa if is_mps else torch.floataa
else:
__UpperCamelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCamelCase : Tuple = torch.tensor([timesteps] , dtype=_lowercase , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
__UpperCamelCase : List[Any] = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCamelCase : Tuple = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
__UpperCamelCase : Optional[Any] = self.transformer(
_lowercase , timestep=_lowercase , class_labels=_lowercase ).sample
# perform guidance
if guidance_scale > 1:
__UpperCamelCase , __UpperCamelCase : str = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCamelCase , __UpperCamelCase : Dict = torch.split(_lowercase , len(_lowercase ) // 2 , dim=0 )
__UpperCamelCase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCamelCase : List[str] = torch.cat([half_eps, half_eps] , dim=0 )
__UpperCamelCase : int = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCamelCase , __UpperCamelCase : List[Any] = torch.split(_lowercase , _lowercase , dim=1 )
else:
__UpperCamelCase : List[Any] = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCamelCase : Optional[Any] = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample
if guidance_scale > 1:
__UpperCamelCase , __UpperCamelCase : List[str] = latent_model_input.chunk(2 , dim=0 )
else:
__UpperCamelCase : Any = latent_model_input
__UpperCamelCase : Any = 1 / self.vae.config.scaling_factor * latents
__UpperCamelCase : Tuple = self.vae.decode(_lowercase ).sample
__UpperCamelCase : str = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCamelCase : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__UpperCamelCase : List[str] = self.numpy_to_pil(_lowercase )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=_lowercase ) | 232 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : Tuple , _lowercase : str , _lowercase : str ):
__UpperCAmelCase , __UpperCAmelCase = text, pattern
__UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase )
def a ( self : Optional[int] , _lowercase : str ):
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self : int , _lowercase : int ):
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self : Optional[Any] ):
# searches pattern in text and returns index positions
__UpperCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
__UpperCAmelCase = self.mismatch_in_text(_lowercase )
if mismatch_index == -1:
positions.append(_lowercase )
else:
__UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
__UpperCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : str = 'ABAABA'
_lowercase : Tuple = 'AB'
_lowercase : Dict = BoyerMooreSearch(text, pattern)
_lowercase : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 332 | 0 |
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
_UpperCamelCase = logging.get_logger(__name__)
@dataclass
class __lowercase (_lowerCAmelCase ):
_UpperCamelCase = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self , **A_ ) ->Dict:
'''simple docstring'''
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__lowerCAmelCase : List[Any] = deprecated_arg[3:]
__lowerCAmelCase : List[str] = not kwargs.pop(_lowercase )
logger.warning(
f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"""
f""" {positive_arg}={kwargs[positive_arg]}""" )
__lowerCAmelCase : int = kwargs.pop('''tpu_name''' , self.tpu_name )
__lowerCAmelCase : Optional[Any] = kwargs.pop('''device_idx''' , self.device_idx )
__lowerCAmelCase : Tuple = kwargs.pop('''eager_mode''' , self.eager_mode )
__lowerCAmelCase : List[Any] = kwargs.pop('''use_xla''' , self.use_xla )
super().__init__(**_lowercase )
_UpperCamelCase = field(
default=_lowerCAmelCase , metadata={"""help""": """Name of TPU"""} , )
_UpperCamelCase = field(
default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , )
_UpperCamelCase = field(default=_lowerCAmelCase , metadata={"""help""": """Benchmark models in eager model."""} )
_UpperCamelCase = field(
default=_lowerCAmelCase , metadata={
"""help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."""
} , )
@cached_property
def UpperCamelCase__ ( self ) ->Tuple:
'''simple docstring'''
requires_backends(self , ['''tf'''] )
__lowerCAmelCase : Any = None
if self.tpu:
try:
if self.tpu_name:
__lowerCAmelCase : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
__lowerCAmelCase : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__lowerCAmelCase : Tuple = None
return tpu
@cached_property
def UpperCamelCase__ ( self ) ->List[str]:
'''simple docstring'''
requires_backends(self , ['''tf'''] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
__lowerCAmelCase : Optional[int] = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' )
__lowerCAmelCase : List[str] = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" )
else:
tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU
__lowerCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" )
return strategy
@property
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
requires_backends(self , ['''tf'''] )
return self._setup_tpu is not None
@property
def UpperCamelCase__ ( self ) ->Any:
'''simple docstring'''
requires_backends(self , ['''tf'''] )
return self._setup_strategy
@property
def UpperCamelCase__ ( self ) ->str:
'''simple docstring'''
requires_backends(self , ['''tf'''] )
return tf.config.list_physical_devices('''GPU''' )
@property
def UpperCamelCase__ ( self ) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''tf'''] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def UpperCamelCase__ ( self ) ->Union[str, Any]:
'''simple docstring'''
return self.n_gpu > 0
| 275 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _UpperCAmelCase :
a__ : int
a__ : Node | None = None
a__ : Node | None = None
def lowercase__ ( ):
__UpperCAmelCase = Node(1 )
__UpperCAmelCase = Node(2 )
__UpperCAmelCase = Node(3 )
__UpperCAmelCase = Node(4 )
__UpperCAmelCase = Node(5 )
return tree
def lowercase__ ( snake_case_ :Node | None ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__ ( snake_case_ :Node | None ):
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def lowercase__ ( snake_case_ :Node | None ):
__UpperCAmelCase = []
if root is None:
return output
__UpperCAmelCase = deque([root] )
while process_queue:
__UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ):
__UpperCAmelCase = []
def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case_ , snake_case_ )
return output
def lowercase__ ( snake_case_ :Node | None ):
if root is None:
return []
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = height(snake_case_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) )
__UpperCAmelCase = 0
return output
def lowercase__ ( ): # Main function for testing.
__UpperCAmelCase = make_tree()
print(F'''In-order Traversal: {inorder(snake_case_ )}''' )
print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' )
print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' )
print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(snake_case_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(snake_case_ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 | 0 |
'''simple docstring'''
from __future__ import annotations
def _a( UpperCamelCase__ : list[float], UpperCamelCase__ : list[float] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =divmod(len(snake_case_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = [float(x) for x in input('Enter the elements of first array: ').split()]
a_ = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''') | 152 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
@slow
def a ( self : str ):
__UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
__UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , _lowercase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
| 332 | 0 |
"""simple docstring"""
def _A (__a , __a ) -> Any:
"""simple docstring"""
_enforce_args(snake_case_ , snake_case_ )
if n == 0:
return 0
SCREAMING_SNAKE_CASE_ : List[Any] = float('''-inf''' )
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE_ : Dict = max(
snake_case_ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case_ ) )
return max_revue
def _A (__a , __a ) -> Tuple:
"""simple docstring"""
_enforce_args(snake_case_ , snake_case_ )
SCREAMING_SNAKE_CASE_ : List[Any] = [float('''-inf''' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case_ , snake_case_ , snake_case_ )
def _A (__a , __a , __a ) -> Any:
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
SCREAMING_SNAKE_CASE_ : int = float('''-inf''' )
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = max(
snake_case_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case_ , snake_case_ ) , )
SCREAMING_SNAKE_CASE_ : Any = max_revenue
return max_rev[n]
def _A (__a , __a ) -> Tuple:
"""simple docstring"""
_enforce_args(snake_case_ , snake_case_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
SCREAMING_SNAKE_CASE_ : Tuple = [float('''-inf''' ) for _ in range(n + 1 )]
SCREAMING_SNAKE_CASE_ : Any = 0
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE_ : Dict = max_rev[i]
for j in range(1 , i + 1 ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = max(snake_case_ , prices[j - 1] + max_rev[i - j] )
SCREAMING_SNAKE_CASE_ : str = max_revenue_i
return max_rev[n]
def _A (__a , __a ) -> int:
"""simple docstring"""
if n < 0:
SCREAMING_SNAKE_CASE_ : Dict = f'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(snake_case_ )
if n > len(snake_case_ ):
SCREAMING_SNAKE_CASE_ : Tuple = (
'''Each integral piece of rod must have a corresponding price. '''
f'Got n = {n} but length of prices = {len(snake_case_ )}'
)
raise ValueError(snake_case_ )
def _A () -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = [6, 10, 12, 15, 20, 23]
SCREAMING_SNAKE_CASE_ : Tuple = len(snake_case_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
SCREAMING_SNAKE_CASE_ : Any = 36
SCREAMING_SNAKE_CASE_ : List[Any] = top_down_cut_rod(snake_case_ , snake_case_ )
SCREAMING_SNAKE_CASE_ : Any = bottom_up_cut_rod(snake_case_ , snake_case_ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = naive_cut_rod_recursive(snake_case_ , snake_case_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 91 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Union[str, Any] ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = max(snake_case_ )
__UpperCAmelCase = min(snake_case_ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , snake_case_ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , snake_case_ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowercase__ ( snake_case_ :str ):
return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
_lowercase : int = input('Enter numbers separated by a comma:\n').strip()
_lowercase : int = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 332 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.