code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Tuple = logging.get_logger(__name__) A_ : Tuple = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class A_ ( _a , _a ): '''simple docstring''' a__ = "nat" a__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , lowercase__=4 , lowercase__=3 , lowercase__=64 , lowercase__=[3, 4, 6, 5] , lowercase__=[2, 4, 8, 16] , lowercase__=7 , lowercase__=3.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=0.02 , lowercase__=1E-5 , lowercase__=0.0 , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Union[str, Any]: super().__init__(**lowercase__ ) __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(lowercase__ ) __UpperCAmelCase = num_heads __UpperCAmelCase = kernel_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(lowercase__ ) - 1) ) __UpperCAmelCase = layer_scale_init_value __UpperCAmelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(lowercase__ ) + 1 )] __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowercase__ , out_indices=lowercase__ , stage_names=self.stage_names )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
from __future__ import annotations class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> int: __UpperCAmelCase = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(lowercase__ ) != 0: __UpperCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowercase__ ) != cols: raise error for value in row: if not isinstance(lowercase__ , (int, float) ): raise error __UpperCAmelCase = rows else: __UpperCAmelCase = [] def lowerCAmelCase_ (self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowerCAmelCase_ (self ) -> int: return len(self.rows ) @property def lowerCAmelCase_ (self ) -> int: return len(self.rows[0] ) @property def lowerCAmelCase_ (self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def lowerCAmelCase_ (self ) -> bool: return self.order[0] == self.order[1] def lowerCAmelCase_ (self ) -> Matrix: __UpperCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowercase__ ) def lowerCAmelCase_ (self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowerCAmelCase_ (self ) -> bool: return bool(self.determinant() ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowercase__ ).determinant() def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> int: if (row + column) % 2 == 0: return self.get_minor(lowercase__ , lowercase__ ) return -1 * self.get_minor(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Matrix: return Matrix( [ [self.get_minor(lowercase__ , lowercase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowerCAmelCase_ (self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowerCAmelCase_ (self ) -> Matrix: __UpperCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowercase__ ) def lowerCAmelCase_ (self ) -> Matrix: __UpperCAmelCase = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__(self ) -> str: return str(self.rows ) def __str__(self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(lowercase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> None: __UpperCAmelCase = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(lowercase__ , lowercase__ ): raise type_error for value in row: if not isinstance(lowercase__ , (int, float) ): raise type_error if len(lowercase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(lowercase__ ) else: __UpperCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> None: __UpperCAmelCase = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(lowercase__ , lowercase__ ): raise type_error for value in column: if not isinstance(lowercase__ , (int, float) ): raise type_error if len(lowercase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __UpperCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__(self , lowercase__ ) -> bool: if not isinstance(lowercase__ , lowercase__ ): return NotImplemented return self.rows == other.rows def __ne__(self , lowercase__ ) -> bool: return not self == other def __neg__(self ) -> Matrix: return self * -1 def __add__(self , lowercase__ ) -> Matrix: if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__(self , lowercase__ ) -> Matrix: if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__(self , lowercase__ ) -> Matrix: if isinstance(lowercase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowercase__ , lowercase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(lowercase__ , lowercase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__(self , lowercase__ ) -> Matrix: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __UpperCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def lowerCAmelCase_ (cls , lowercase__ , lowercase__ ) -> int: return sum(row[i] * column[i] for i in range(len(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import numpy as np from PIL import Image def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 # compute the shape of the output matrix __UpperCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __UpperCAmelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __UpperCAmelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 return updated_arr def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 # compute the shape of the output matrix __UpperCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __UpperCAmelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __UpperCAmelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image A_ : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=6 , lowercase__=17 , lowercase__=23 , lowercase__=11 , lowercase__=True , ) -> str: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = act_dim __UpperCAmelCase = state_dim __UpperCAmelCase = hidden_size __UpperCAmelCase = max_length __UpperCAmelCase = is_training def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) __UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) __UpperCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) __UpperCAmelCase = random_attention_mask((self.batch_size, self.seq_length) ) __UpperCAmelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCAmelCase_ (self ) -> List[str]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Union[str, Any]: __UpperCAmelCase = DecisionTransformerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (DecisionTransformerModel,) if is_torch_available() else () a__ = () a__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a__ = False a__ = False a__ = False a__ = False a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = DecisionTransformerModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> str: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = DecisionTransformerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(lowercase__ )] , lowercase__ ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = 2 # number of steps of autoregressive prediction we will perform __UpperCAmelCase = 10 # defined by the RL environment, may be normalized __UpperCAmelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) __UpperCAmelCase = model.to(lowercase__ ) __UpperCAmelCase = model.config torch.manual_seed(0 ) __UpperCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=lowercase__ , dtype=torch.floataa ) # env.reset() __UpperCAmelCase = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=lowercase__ ) __UpperCAmelCase = torch.tensor(lowercase__ , device=lowercase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __UpperCAmelCase = state __UpperCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase__ , dtype=torch.floataa ) __UpperCAmelCase = torch.zeros(1 , 0 , device=lowercase__ , dtype=torch.floataa ) __UpperCAmelCase = torch.tensor(0 , device=lowercase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowercase__ ): __UpperCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase__ )] , dim=1 ) __UpperCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase__ )] , dim=1 ) __UpperCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = model( states=lowercase__ , actions=lowercase__ , rewards=lowercase__ , returns_to_go=lowercase__ , timesteps=lowercase__ , attention_mask=lowercase__ , return_dict=lowercase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowercase__ , dtype=torch.floataa ), 1.0, False, {}, ) __UpperCAmelCase = action_pred[0, -1] __UpperCAmelCase = torch.cat([states, state] , dim=1 ) __UpperCAmelCase = returns_to_go[0, -1] - reward __UpperCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __UpperCAmelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowercase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = set({'''(''', '''[''', '''{'''} ) __UpperCAmelCase = set({''')''', ''']''', '''}'''} ) __UpperCAmelCase = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(SCREAMING_SNAKE_CASE ) == 0 or (len(SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(SCREAMING_SNAKE_CASE ) == 0 def __a ( ) -> int: '''simple docstring''' __UpperCAmelCase = input('''Enter sequence of brackets: ''' ) if is_balanced(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE , '''is balanced''' ) else: print(SCREAMING_SNAKE_CASE , '''is not balanced''' ) if __name__ == "__main__": main()
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-z )) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return (-y * np.log(SCREAMING_SNAKE_CASE ) - (1 - y) * np.log(1 - h )).mean() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.sum(y * scores - np.log(1 + np.exp(SCREAMING_SNAKE_CASE ) ) ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7_0_0_0_0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = np.zeros(x.shape[1] ) for iterations in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = sigmoid_function(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = np.dot(x.T , h - y ) / y.size __UpperCAmelCase = theta - alpha * gradient # updating the weights __UpperCAmelCase = np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = sigmoid_function(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = cost_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if iterations % 1_0_0 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ : Optional[int] = datasets.load_iris() A_ : str = iris.data[:, :2] A_ : str = (iris.target != 0) * 1 A_ : Union[str, Any] = 0.1 A_ : Union[str, Any] = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return sigmoid_function( np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((A_) , (A_)) : List[str] = (x[:, 0].min(), x[:, 0].max()) ((A_) , (A_)) : int = (x[:, 1].min(), x[:, 1].max()) ((A_) , (A_)) : List[str] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ : str = np.c_[xxa.ravel(), xxa.ravel()] A_ : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node A_ : List[Any] = 4 A_ : List[str] = 3 class A_ ( _a ): '''simple docstring''' pass def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' for shard in shards: for i in range(SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def __a ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = int(os.environ['''RANK'''] ) __UpperCAmelCase = int(os.environ['''WORLD_SIZE'''] ) __UpperCAmelCase = ArgumentParser() parser.add_argument('''--streaming''' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('''--local_rank''' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('''--num_workers''' , type=SCREAMING_SNAKE_CASE , default=0 ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.streaming __UpperCAmelCase = args.num_workers __UpperCAmelCase = {'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(SCREAMING_SNAKE_CASE )]} __UpperCAmelCase = IterableDataset.from_generator(SCREAMING_SNAKE_CASE , gen_kwargs=SCREAMING_SNAKE_CASE ) if not streaming: __UpperCAmelCase = Dataset.from_list(list(SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = split_dataset_by_node(SCREAMING_SNAKE_CASE , rank=SCREAMING_SNAKE_CASE , world_size=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.utils.data.DataLoader(SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __UpperCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __UpperCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse import datetime def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __UpperCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(SCREAMING_SNAKE_CASE ) < 1_1: raise ValueError('''Must be 10 characters long''' ) # Get month __UpperCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''' ) __UpperCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day __UpperCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator __UpperCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year __UpperCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation __UpperCAmelCase = datetime.date(int(SCREAMING_SNAKE_CASE ) , int(SCREAMING_SNAKE_CASE ) , int(SCREAMING_SNAKE_CASE ) ) # Start math if m <= 2: __UpperCAmelCase = y - 1 __UpperCAmelCase = m + 1_2 # maths var __UpperCAmelCase = int(str(SCREAMING_SNAKE_CASE )[:2] ) __UpperCAmelCase = int(str(SCREAMING_SNAKE_CASE )[2:] ) __UpperCAmelCase = int(2.6 * m - 5.39 ) __UpperCAmelCase = int(c / 4 ) __UpperCAmelCase = int(k / 4 ) __UpperCAmelCase = int(d + k ) __UpperCAmelCase = int(t + u + v + x ) __UpperCAmelCase = int(z - (2 * c) ) __UpperCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response __UpperCAmelCase = f'''Your date {date_input}, is a {days[str(SCREAMING_SNAKE_CASE )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) A_ : Tuple = parser.parse_args() zeller(args.date_input)
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "encoder-decoder" a__ = True def __init__(self , **lowercase__ ) -> List[str]: super().__init__(**lowercase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __UpperCAmelCase = kwargs.pop('''encoder''' ) __UpperCAmelCase = encoder_config.pop('''model_type''' ) __UpperCAmelCase = kwargs.pop('''decoder''' ) __UpperCAmelCase = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __UpperCAmelCase = AutoConfig.for_model(lowercase__ , **lowercase__ ) __UpperCAmelCase = AutoConfig.for_model(lowercase__ , **lowercase__ ) __UpperCAmelCase = True @classmethod def lowerCAmelCase_ (cls , lowercase__ , lowercase__ , **lowercase__ ) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __UpperCAmelCase = True __UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = copy.deepcopy(self.__dict__ ) __UpperCAmelCase = self.encoder.to_dict() __UpperCAmelCase = self.decoder.to_dict() __UpperCAmelCase = self.__class__.model_type return output
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A_ ( _a ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "OwlViTImageProcessor" a__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ) -> str: __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __UpperCAmelCase = kwargs.pop('''feature_extractor''' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="max_length" , lowercase__="np" , **lowercase__ ) -> int: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(lowercase__ , lowercase__ ) or (isinstance(lowercase__ , lowercase__ ) and not isinstance(text[0] , lowercase__ )): __UpperCAmelCase = [self.tokenizer(lowercase__ , padding=lowercase__ , return_tensors=lowercase__ , **lowercase__ )] elif isinstance(lowercase__ , lowercase__ ) and isinstance(text[0] , lowercase__ ): __UpperCAmelCase = [] # Maximum number of queries across batch __UpperCAmelCase = max([len(lowercase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowercase__ ) != max_num_queries: __UpperCAmelCase = t + [''' '''] * (max_num_queries - len(lowercase__ )) __UpperCAmelCase = self.tokenizer(lowercase__ , padding=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) encodings.append(lowercase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __UpperCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __UpperCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __UpperCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) __UpperCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __UpperCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = input_ids __UpperCAmelCase = attention_mask if query_images is not None: __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ ).pixel_values __UpperCAmelCase = query_pixel_values if images is not None: __UpperCAmelCase = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: return self.image_processor.post_process(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Any: return self.image_processor.post_process_object_detection(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> List[str]: return self.image_processor.post_process_image_guided_detection(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> List[str]: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> List[Any]: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def lowerCAmelCase_ (self ) -> List[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def lowerCAmelCase_ (self ) -> Dict: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = UnCLIPImageVariationPipeline a__ = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} a__ = IMAGE_VARIATION_BATCH_PARAMS a__ = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] a__ = False @property def lowerCAmelCase_ (self ) -> Any: return 32 @property def lowerCAmelCase_ (self ) -> Tuple: return 32 @property def lowerCAmelCase_ (self ) -> Dict: return self.time_input_dim @property def lowerCAmelCase_ (self ) -> Any: return self.time_input_dim * 4 @property def lowerCAmelCase_ (self ) -> Dict: return 100 @property def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCAmelCase_ (self ) -> List[Any]: torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase__ ) @property def lowerCAmelCase_ (self ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase__ ) @property def lowerCAmelCase_ (self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCAmelCase = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } __UpperCAmelCase = UnCLIPTextProjModel(**lowercase__ ) return model @property def lowerCAmelCase_ (self ) -> Any: torch.manual_seed(0 ) __UpperCAmelCase = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } __UpperCAmelCase = UNetaDConditionModel(**lowercase__ ) return model @property def lowerCAmelCase_ (self ) -> List[str]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCAmelCase_ (self ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCAmelCase_ (self ) -> int: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) __UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.dummy_decoder __UpperCAmelCase = self.dummy_text_proj __UpperCAmelCase = self.dummy_text_encoder __UpperCAmelCase = self.dummy_tokenizer __UpperCAmelCase = self.dummy_super_res_first __UpperCAmelCase = self.dummy_super_res_last __UpperCAmelCase = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) __UpperCAmelCase = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) __UpperCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) __UpperCAmelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 , lowercase__=True ) -> List[str]: __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) if pil_image: __UpperCAmelCase = input_image * 0.5 + 0.5 __UpperCAmelCase = input_image.clamp(0 , 1 ) __UpperCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __UpperCAmelCase = DiffusionPipeline.numpy_to_pil(lowercase__ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**lowercase__ ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = pipe(**lowercase__ ) __UpperCAmelCase = output.images __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = pipe( **lowercase__ , return_dict=lowercase__ , )[0] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**lowercase__ ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = pipe(**lowercase__ ) __UpperCAmelCase = output.images __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = pipe( **lowercase__ , return_dict=lowercase__ , )[0] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**lowercase__ ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] __UpperCAmelCase = pipe(**lowercase__ ) __UpperCAmelCase = output.images __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] __UpperCAmelCase = pipe( **lowercase__ , return_dict=lowercase__ , )[0] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) __UpperCAmelCase = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = torch.device('''cpu''' ) class A_ : '''simple docstring''' a__ = 1 __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**lowercase__ ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(0 ) __UpperCAmelCase = pipe.decoder.dtype __UpperCAmelCase = 1 __UpperCAmelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) __UpperCAmelCase = pipe.prepare_latents( lowercase__ , dtype=lowercase__ , device=lowercase__ , generator=lowercase__ , latents=lowercase__ , scheduler=DummyScheduler() ) __UpperCAmelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) __UpperCAmelCase = pipe.prepare_latents( lowercase__ , dtype=lowercase__ , device=lowercase__ , generator=lowercase__ , latents=lowercase__ , scheduler=DummyScheduler() ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) __UpperCAmelCase = pipe( **lowercase__ , decoder_latents=lowercase__ , super_res_latents=lowercase__ ).images __UpperCAmelCase = self.get_dummy_inputs(lowercase__ , pil_image=lowercase__ ) # Don't pass image, instead pass embedding __UpperCAmelCase = pipeline_inputs.pop('''image''' ) __UpperCAmelCase = pipe.image_encoder(lowercase__ ).image_embeds __UpperCAmelCase = pipe( **lowercase__ , decoder_latents=lowercase__ , super_res_latents=lowercase__ , image_embeddings=lowercase__ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor __UpperCAmelCase = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase__ , expected_max_diff=lowercase__ ) @skip_mps def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = torch_device == '''cpu''' __UpperCAmelCase = True __UpperCAmelCase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=lowercase__ , relax_max_difference=lowercase__ , additional_params_copy_to_batched_inputs=lowercase__ , ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes __UpperCAmelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase__ , additional_params_copy_to_batched_inputs=lowercase__ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase__ ) @skip_mps def lowerCAmelCase_ (self ) -> Any: return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase_ (self ) -> Union[str, Any]: return super().test_save_load_local() @skip_mps def lowerCAmelCase_ (self ) -> Optional[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) __UpperCAmelCase = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipeline( lowercase__ , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ , 15 )
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor A_ : Optional[Any] = random.Random() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Dict: '''simple docstring''' if rng is None: __UpperCAmelCase = global_rng __UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A_ ( unittest.TestCase ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__=7 , lowercase__=400 , lowercase__=2_000 , lowercase__=24 , lowercase__=24 , lowercase__=0.0 , lowercase__=16_000 , lowercase__=True , lowercase__=True , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = min_seq_length __UpperCAmelCase = max_seq_length __UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase = feature_size __UpperCAmelCase = num_mel_bins __UpperCAmelCase = padding_value __UpperCAmelCase = sampling_rate __UpperCAmelCase = return_attention_mask __UpperCAmelCase = do_normalize def lowerCAmelCase_ (self ) -> List[Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase_ (self , lowercase__=False , lowercase__=False ) -> int: def _flatten(lowercase__ ): return list(itertools.chain(*lowercase__ ) ) if equal_length: __UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = SpeechaTextFeatureExtractor if is_speech_available() else None def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = SpeechaTextFeatureExtractionTester(self ) def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: self.assertTrue(np.all(np.mean(lowercase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase__ , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ (self ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase = feature_extractor(lowercase__ , padding=lowercase__ , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) # Test batched __UpperCAmelCase = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features __UpperCAmelCase = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCAmelCase = np.asarray(lowercase__ ) __UpperCAmelCase = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features __UpperCAmelCase = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] __UpperCAmelCase = [None, 16, None] for max_length, padding in zip(lowercase__ , lowercase__ ): __UpperCAmelCase = feature_extractor( lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_attention_mask=lowercase__ ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = [np.sum(lowercase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] __UpperCAmelCase = [None, 16, None] for max_length, padding in zip(lowercase__ , lowercase__ ): __UpperCAmelCase = feature_extractor( lowercase__ , max_length=lowercase__ , padding=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = [np.sum(lowercase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = feature_extractor( lowercase__ , padding='''max_length''' , max_length=4 , truncation=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ , ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = feature_extractor( lowercase__ , padding='''longest''' , max_length=4 , truncation=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ , ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __UpperCAmelCase = feature_extractor( lowercase__ , padding='''longest''' , max_length=16 , truncation=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ , ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowerCAmelCase_ (self ) -> Optional[int]: import torch __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCAmelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase_ (self , lowercase__ ) -> List[Any]: from datasets import load_dataset __UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __UpperCAmelCase = ds.sort('''id''' ).select(range(lowercase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCAmelCase_ (self ) -> Tuple: # fmt: off __UpperCAmelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on __UpperCAmelCase = self._load_datasamples(1 ) __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = feature_extractor(lowercase__ , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase__ , atol=1E-4 ) )
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = 3_8_4 if "tiny" in model_name: __UpperCAmelCase = [3, 3, 9, 3] __UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: __UpperCAmelCase = [3, 3, 2_7, 3] __UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: __UpperCAmelCase = [3, 3, 2_7, 3] __UpperCAmelCase = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] __UpperCAmelCase = 5_1_2 if "large" in model_name: __UpperCAmelCase = [3, 3, 2_7, 3] __UpperCAmelCase = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] __UpperCAmelCase = 7_6_8 if "xlarge" in model_name: __UpperCAmelCase = [3, 3, 2_7, 3] __UpperCAmelCase = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] __UpperCAmelCase = 1_0_2_4 # set label information __UpperCAmelCase = 1_5_0 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''ade20k-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = ConvNextConfig( depths=SCREAMING_SNAKE_CASE , hidden_sizes=SCREAMING_SNAKE_CASE , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __UpperCAmelCase = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE , auxiliary_in_channels=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , ) return config def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = val def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __UpperCAmelCase = model_name_to_url[model_name] __UpperCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''state_dict'''] __UpperCAmelCase = get_upernet_config(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) if "bn" in key: __UpperCAmelCase = key.replace('''bn''' , '''batch_norm''' ) __UpperCAmelCase = val # rename keys __UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify on image __UpperCAmelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) __UpperCAmelCase = SegformerImageProcessor() __UpperCAmelCase = processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_ : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
from ..utils import DummyObject, requires_backends class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> int: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> str: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> List[str]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> int: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> List[str]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> int: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> int: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_a ): '''simple docstring''' a__ = ["flax"] def __init__(self , *lowercase__ , **lowercase__ ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def lowerCAmelCase_ (cls , *lowercase__ , **lowercase__ ) -> List[str]: requires_backends(cls , ['''flax'''] )
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __UpperCAmelCase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) sd_pipe.set_scheduler('''sample_euler''' ) __UpperCAmelCase = '''A painting of a squirrel eating a burger''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sd_pipe([prompt] , generator=lowercase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __UpperCAmelCase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) sd_pipe.set_scheduler('''sample_euler''' ) __UpperCAmelCase = '''A painting of a squirrel eating a burger''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sd_pipe([prompt] , generator=lowercase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __UpperCAmelCase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __UpperCAmelCase = '''A painting of a squirrel eating a burger''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowercase__ , ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel A_ : str = False A_ : Dict = True A_ : Tuple = False if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') A_ : Optional[int] = parser.parse_args() A_ : Any = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } A_ : List[str] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } A_ : Tuple = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: A_ : Any = reader.read() A_ : str = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): A_ : Tuple = UNetaDModel(**config) else: A_ : Union[str, Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel A_ : int = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) A_ : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: A_ : int = config[key] del config[key] A_ : Tuple = [k.replace('UNetRes', '') for k in config['down_block_types']] A_ : Any = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: A_ : Optional[int] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) A_ : int = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue A_ : List[Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: A_ : List[Any] = param_value A_ : List[str] = True if not has_changed: A_ : Dict = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
A_ : List[str] = 8.31_4462 # Unit - J mol-1 K-1 def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A_ : int = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } A_ : Tuple = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase = bs[:] __UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase = [chr(SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = set() __UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase = char return pairs class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__(self , lowercase__ , lowercase__ , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , **lowercase__ , ) -> List[str]: __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(lowercase__ ) __UpperCAmelCase = {v: k for k, v in self.encoder.items()} __UpperCAmelCase = errors # how to handle errors in decoding __UpperCAmelCase = bytes_to_unicode() __UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='''utf-8''' ) as merges_handle: __UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] __UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = {} __UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase_ (self ) -> Union[str, Any]: return len(self.encoder ) def lowerCAmelCase_ (self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ (self , lowercase__ ) -> str: if token in self.cache: return self.cache[token] __UpperCAmelCase = tuple(lowercase__ ) __UpperCAmelCase = get_pairs(lowercase__ ) if not pairs: return token while True: __UpperCAmelCase = min(lowercase__ , key=lambda lowercase__ : self.bpe_ranks.get(lowercase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase = bigram __UpperCAmelCase = [] __UpperCAmelCase = 0 while i < len(lowercase__ ): try: __UpperCAmelCase = word.index(lowercase__ , lowercase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase = j if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase = tuple(lowercase__ ) __UpperCAmelCase = new_word if len(lowercase__ ) == 1: break else: __UpperCAmelCase = get_pairs(lowercase__ ) __UpperCAmelCase = ''' '''.join(lowercase__ ) __UpperCAmelCase = word return word def lowerCAmelCase_ (self , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = [] for token in re.findall(self.pat , lowercase__ ): __UpperCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase_ (self , lowercase__ ) -> Tuple: return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: return self.decoder.get(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: __UpperCAmelCase = ''''''.join(lowercase__ ) __UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + '''\n''' ) __UpperCAmelCase = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __UpperCAmelCase = token_index writer.write(''' '''.join(lowercase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ (self , lowercase__ , lowercase__=False , **lowercase__ ) -> Dict: __UpperCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase__ ) > 0 and not text[0].isspace()): __UpperCAmelCase = ''' ''' + text return (text, kwargs) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Dict: return token_ids_a + [self.eos_token_id] def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowercase__ ) __UpperCAmelCase = ''' '''.join(lowercase__ ) __UpperCAmelCase = self.encode(lowercase__ ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __UpperCAmelCase = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __UpperCAmelCase = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __UpperCAmelCase = f'''layers_{str(SCREAMING_SNAKE_CASE )}''' # Self-Attention __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCAmelCase = flax_model.params['''encoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] __UpperCAmelCase = tax_attention_key __UpperCAmelCase = tax_attention_out __UpperCAmelCase = tax_attention_query __UpperCAmelCase = tax_attention_value __UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: __UpperCAmelCase = tax_mlp_wi_a __UpperCAmelCase = tax_mlp_wi_a else: __UpperCAmelCase = tax_mlp_wi __UpperCAmelCase = tax_mlp_wo __UpperCAmelCase = tax_mlp_layer_norm __UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: __UpperCAmelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCAmelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning __UpperCAmelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __UpperCAmelCase = f'''layers_{str(SCREAMING_SNAKE_CASE )}''' # Self-Attention __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __UpperCAmelCase = tax_enc_dec_attention_module['''key''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''out''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''query''']['''kernel'''] __UpperCAmelCase = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCAmelCase = flax_model.params['''decoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] __UpperCAmelCase = tax_attention_key __UpperCAmelCase = tax_attention_out __UpperCAmelCase = tax_attention_query __UpperCAmelCase = tax_attention_value __UpperCAmelCase = tax_pre_attention_layer_norm __UpperCAmelCase = tax_enc_dec_attention_key __UpperCAmelCase = tax_enc_dec_attention_out __UpperCAmelCase = tax_enc_dec_attention_query __UpperCAmelCase = tax_enc_dec_attention_value __UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: __UpperCAmelCase = tax_mlp_wi_a __UpperCAmelCase = tax_mlp_wi_a else: __UpperCAmelCase = tax_mlp_wi __UpperCAmelCase = tax_mlp_wo __UpperCAmelCase = txa_mlp_layer_norm __UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization __UpperCAmelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __UpperCAmelCase = txa_decoder_norm # Only for layer 0: __UpperCAmelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings __UpperCAmelCase = tax_model['''target''']['''token_embedder''']['''embedding'''] __UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __UpperCAmelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(SCREAMING_SNAKE_CASE ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) A_ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''test''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: __UpperCAmelCase = script_name else: __UpperCAmelCase = f'''--config_file={args.config_file} {script_name}''' __UpperCAmelCase = ['''accelerate-launch'''] + test_args.split() __UpperCAmelCase = execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __a ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = test_command_parser() __UpperCAmelCase = parser.parse_args() test_command(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ : List[str] = 'src/diffusers' A_ : str = '.' # This is to make sure the diffusers module imported is the one in the repo. A_ : Union[str, Any] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) A_ : int = spec.loader.load_module() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , SCREAMING_SNAKE_CASE ) is not None def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = object_name.split('''.''' ) __UpperCAmelCase = 0 # First let's find the module where our object lives. __UpperCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f'''{module}.py''' ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , f'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase = '''''' __UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) A_ : Any = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') A_ : List[Any] = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') A_ : Optional[int] = re.compile(R'<FILL\s+[^>]*>') def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = code.split('''\n''' ) __UpperCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: __UpperCAmelCase = f'''class Bla:\n{code}''' __UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() __UpperCAmelCase = [] __UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = search.groups() __UpperCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = get_indent(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase = theoretical_indent __UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break __UpperCAmelCase = lines[line_index] __UpperCAmelCase = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f'''^{indent}# End copy''' , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase = lines[start_index:line_index] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] __UpperCAmelCase = '''\n'''.join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: __UpperCAmelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) __UpperCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = pattern.groups() __UpperCAmelCase = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": __UpperCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def __a ( SCREAMING_SNAKE_CASE = False ) -> str: '''simple docstring''' __UpperCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '''**/*.py''' ) , recursive=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [] for filename in all_files: __UpperCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCAmelCase = '''\n'''.join(SCREAMING_SNAKE_CASE ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : Dict = parser.parse_args() check_copies(args.fix_and_overwrite)
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Any = 256 class A_ ( _a ): '''simple docstring''' a__ = ["melgan"] def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> None: super().__init__() # From MELGAN __UpperCAmelCase = math.log(1E-5 ) # Matches MelGAN training. __UpperCAmelCase = 4.0 # Largest value for most examples __UpperCAmelCase = 128 self.register_modules( notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=(-1.0, 1.0) , lowercase__=False ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = output_range if clip: __UpperCAmelCase = torch.clip(lowercase__ , self.min_value , self.max_value ) # Scale to [0, 1]. __UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase_ (self , lowercase__ , lowercase__=(-1.0, 1.0) , lowercase__=False ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = input_range __UpperCAmelCase = torch.clip(lowercase__ , lowercase__ , lowercase__ ) if clip else outputs # Scale to [0, 1]. __UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = input_tokens > 0 __UpperCAmelCase , __UpperCAmelCase = self.notes_encoder( encoder_input_tokens=lowercase__ , encoder_inputs_mask=lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = self.continuous_encoder( encoder_inputs=lowercase__ , encoder_inputs_mask=lowercase__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> str: __UpperCAmelCase = noise_time if not torch.is_tensor(lowercase__ ): __UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowercase__ ) and len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase = self.decoder( encodings_and_masks=lowercase__ , decoder_input_tokens=lowercase__ , decoder_noise_time=lowercase__ ) return logits @torch.no_grad() def __call__(self , lowercase__ , lowercase__ = None , lowercase__ = 100 , lowercase__ = True , lowercase__ = "numpy" , lowercase__ = None , lowercase__ = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase__ )}.''' ) __UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __UpperCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) __UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase__ , device=self.device ) for i, encoder_input_tokens in enumerate(lowercase__ ): if i == 0: __UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCAmelCase = ones __UpperCAmelCase = self.scale_features( lowercase__ , output_range=[-1.0, 1.0] , clip=lowercase__ ) __UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase__ , continuous_mask=lowercase__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowercase__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowercase__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase = self.decode( encodings_and_masks=lowercase__ , input_tokens=lowercase__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample __UpperCAmelCase = self.scale_to_features(lowercase__ , input_range=[-1.0, 1.0] ) __UpperCAmelCase = mel[:1] __UpperCAmelCase = mel.cpu().float().numpy() __UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ ) logger.info('''Generated segment''' , lowercase__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase__ )
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
def __a ( SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __UpperCAmelCase = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) __UpperCAmelCase = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(lowercase__ ) from datasets import load_dataset __UpperCAmelCase = load_dataset('''nielsr/rvlcdip-demo''' ) __UpperCAmelCase = dataset['''train'''][0]['''image'''].convert('''RGB''' ) __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=lowercase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Dict = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax A_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(_a ) class A_ ( _a ): '''simple docstring''' def __init__(self , **lowercase__ ) -> List[str]: super().__init__(**lowercase__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self , lowercase__ , **lowercase__ ) -> Any: return super().__call__(lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = {} if "candidate_labels" in kwargs: __UpperCAmelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __UpperCAmelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCAmelCase_ (self , lowercase__ , lowercase__=None , lowercase__="This is a photo of {}." ) -> List[str]: __UpperCAmelCase = load_image(lowercase__ ) __UpperCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCAmelCase = candidate_labels __UpperCAmelCase = [hypothesis_template.format(lowercase__ ) for x in candidate_labels] __UpperCAmelCase = self.tokenizer(lowercase__ , return_tensors=self.framework , padding=lowercase__ ) __UpperCAmelCase = [text_inputs] return inputs def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: __UpperCAmelCase = model_inputs.pop('''candidate_labels''' ) __UpperCAmelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowercase__ ): __UpperCAmelCase = text_inputs[0] else: # Batching case. __UpperCAmelCase = text_inputs[0][0] __UpperCAmelCase = self.model(**lowercase__ , **lowercase__ ) __UpperCAmelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def lowerCAmelCase_ (self , lowercase__ ) -> List[Any]: __UpperCAmelCase = model_outputs.pop('''candidate_labels''' ) __UpperCAmelCase = model_outputs['''logits'''][0] if self.framework == "pt": __UpperCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCAmelCase = probs.tolist() if not isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = [scores] elif self.framework == "tf": __UpperCAmelCase = stable_softmax(lowercase__ , axis=-1 ) __UpperCAmelCase = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase__ , lowercase__ ) , key=lambda lowercase__ : -x[0] ) ] return result
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = image.size __UpperCAmelCase , __UpperCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 __UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) __UpperCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , ) -> Dict: super().__init__() self.register_modules(vqvae=lowercase__ , unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__(self , lowercase__ = None , lowercase__ = 1 , lowercase__ = 100 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowercase__ , PIL.Image.Image ): __UpperCAmelCase = 1 elif isinstance(lowercase__ , torch.Tensor ): __UpperCAmelCase = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase__ )}''' ) if isinstance(lowercase__ , PIL.Image.Image ): __UpperCAmelCase = preprocess(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) __UpperCAmelCase = next(self.unet.parameters() ).dtype __UpperCAmelCase = randn_tensor(lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ ) __UpperCAmelCase = image.to(device=self.device , dtype=lowercase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowercase__ , device=self.device ) __UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase = {} if accepts_eta: __UpperCAmelCase = eta for t in self.progress_bar(lowercase__ ): # concat latents and low resolution image in the channel dimension. __UpperCAmelCase = torch.cat([latents, image] , dim=1 ) __UpperCAmelCase = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) # predict the noise residual __UpperCAmelCase = self.unet(lowercase__ , lowercase__ ).sample # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample # decode the image latents with the VQVAE __UpperCAmelCase = self.vqvae.decode(lowercase__ ).sample __UpperCAmelCase = torch.clamp(lowercase__ , -1.0 , 1.0 ) __UpperCAmelCase = image / 2 + 0.5 __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : int = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class A_ ( _a ): '''simple docstring''' a__ = "efficientnet" def __init__(self , lowercase__ = 3 , lowercase__ = 600 , lowercase__ = 2.0 , lowercase__ = 3.1 , lowercase__ = 8 , lowercase__ = [3, 3, 5, 3, 5, 5, 3] , lowercase__ = [32, 16, 24, 40, 80, 112, 192] , lowercase__ = [16, 24, 40, 80, 112, 192, 320] , lowercase__ = [] , lowercase__ = [1, 2, 2, 2, 1, 2, 1] , lowercase__ = [1, 2, 2, 3, 3, 4, 1] , lowercase__ = [1, 6, 6, 6, 6, 6, 6] , lowercase__ = 0.25 , lowercase__ = "swish" , lowercase__ = 2_560 , lowercase__ = "mean" , lowercase__ = 0.02 , lowercase__ = 0.001 , lowercase__ = 0.99 , lowercase__ = 0.5 , lowercase__ = 0.2 , **lowercase__ , ) -> int: super().__init__(**lowercase__ ) __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = width_coefficient __UpperCAmelCase = depth_coefficient __UpperCAmelCase = depth_divisor __UpperCAmelCase = kernel_sizes __UpperCAmelCase = in_channels __UpperCAmelCase = out_channels __UpperCAmelCase = depthwise_padding __UpperCAmelCase = strides __UpperCAmelCase = num_block_repeats __UpperCAmelCase = expand_ratios __UpperCAmelCase = squeeze_expansion_ratio __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dim __UpperCAmelCase = pooling_type __UpperCAmelCase = initializer_range __UpperCAmelCase = batch_norm_eps __UpperCAmelCase = batch_norm_momentum __UpperCAmelCase = dropout_rate __UpperCAmelCase = drop_connect_rate __UpperCAmelCase = sum(lowercase__ ) * 4 class A_ ( _a ): '''simple docstring''' a__ = version.parse("1.11" ) @property def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase_ (self ) -> float: return 1E-5
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableDiffusionSAGPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = False def lowerCAmelCase_ (self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase = CLIPTextModel(lowercase__ ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> str: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __UpperCAmelCase = sag_pipe.to(lowercase__ ) sag_pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = '''.''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sag_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __UpperCAmelCase = sag_pipe.to(lowercase__ ) sag_pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = '''.''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sag_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __UpperCAmelCase = sag_pipe.to(lowercase__ ) sag_pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = '''.''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) __UpperCAmelCase = output.images assert image.shape == (1, 512, 768, 3)
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
from __future__ import annotations from collections.abc import Iterator class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = value __UpperCAmelCase = None __UpperCAmelCase = None class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = tree def lowerCAmelCase_ (self , lowercase__ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__(self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Any = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class A_ ( _a ): '''simple docstring''' a__ = "vit_mae" def __init__(self , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=224 , lowercase__=16 , lowercase__=3 , lowercase__=True , lowercase__=16 , lowercase__=512 , lowercase__=8 , lowercase__=2_048 , lowercase__=0.75 , lowercase__=False , **lowercase__ , ) -> Tuple: super().__init__(**lowercase__ ) __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = qkv_bias __UpperCAmelCase = decoder_num_attention_heads __UpperCAmelCase = decoder_hidden_size __UpperCAmelCase = decoder_num_hidden_layers __UpperCAmelCase = decoder_intermediate_size __UpperCAmelCase = mask_ratio __UpperCAmelCase = norm_pix_loss
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
from __future__ import annotations def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[tuple[int, int]]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = position __UpperCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __UpperCAmelCase = [] for position in positions: __UpperCAmelCase , __UpperCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def __a ( SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase , __UpperCAmelCase = position if board[y][x] == 0: __UpperCAmelCase = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True __UpperCAmelCase = 0 return False def __a ( SCREAMING_SNAKE_CASE ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board __UpperCAmelCase = 0 __UpperCAmelCase = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
import argparse import struct import unittest class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = data # Initialize hash values __UpperCAmelCase = [ 0X6a09_e667, 0Xbb67_ae85, 0X3c6e_f372, 0Xa54f_f53a, 0X510e_527f, 0X9b05_688c, 0X1f83_d9ab, 0X5be0_cd19, ] # Initialize round constants __UpperCAmelCase = [ 0X428a_2f98, 0X7137_4491, 0Xb5c0_fbcf, 0Xe9b5_dba5, 0X3956_c25b, 0X59f1_11f1, 0X923f_82a4, 0Xab1c_5ed5, 0Xd807_aa98, 0X1283_5b01, 0X2431_85be, 0X550c_7dc3, 0X72be_5d74, 0X80de_b1fe, 0X9bdc_06a7, 0Xc19b_f174, 0Xe49b_69c1, 0Xefbe_4786, 0X0fc1_9dc6, 0X240c_a1cc, 0X2de9_2c6f, 0X4a74_84aa, 0X5cb0_a9dc, 0X76f9_88da, 0X983e_5152, 0Xa831_c66d, 0Xb003_27c8, 0Xbf59_7fc7, 0Xc6e0_0bf3, 0Xd5a7_9147, 0X06ca_6351, 0X1429_2967, 0X27b7_0a85, 0X2e1b_2138, 0X4d2c_6dfc, 0X5338_0d13, 0X650a_7354, 0X766a_0abb, 0X81c2_c92e, 0X9272_2c85, 0Xa2bf_e8a1, 0Xa81a_664b, 0Xc24b_8b70, 0Xc76c_51a3, 0Xd192_e819, 0Xd699_0624, 0Xf40e_3585, 0X106a_a070, 0X19a4_c116, 0X1e37_6c08, 0X2748_774c, 0X34b0_bcb5, 0X391c_0cb3, 0X4ed8_aa4a, 0X5b9c_ca4f, 0X682e_6ff3, 0X748f_82ee, 0X78a5_636f, 0X84c8_7814, 0X8cc7_0208, 0X90be_fffa, 0Xa450_6ceb, 0Xbef9_a3f7, 0Xc671_78f2, ] __UpperCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase_ (lowercase__ ) -> bytes: __UpperCAmelCase = B'''\x80''' + (B'''\x00''' * (63 - (len(lowercase__ ) + 8) % 64)) __UpperCAmelCase = struct.pack('''>Q''' , (len(lowercase__ ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase_ (self ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase = list(struct.unpack('''>16L''' , lowercase__ ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression __UpperCAmelCase = self.ror(lowercase__ , 6 ) ^ self.ror(lowercase__ , 11 ) ^ self.ror(lowercase__ , 25 ) __UpperCAmelCase = (e & f) ^ ((~e & 0Xffff_ffff) & g) __UpperCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 __UpperCAmelCase = self.ror(lowercase__ , 2 ) ^ self.ror(lowercase__ , 13 ) ^ self.ror(lowercase__ , 22 ) __UpperCAmelCase = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase = (sa + maj) % 0X1_0000_0000 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) __UpperCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase = ''''''.join([hex(lowercase__ )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> int: return 0Xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> None: import hashlib __UpperCAmelCase = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(lowercase__ ).hash , hashlib.shaaaa(lowercase__ ).hexdigest() ) def __a ( ) -> None: '''simple docstring''' import doctest doctest.testmod() __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __UpperCAmelCase = f.read() else: __UpperCAmelCase = bytes(SCREAMING_SNAKE_CASE , '''utf-8''' ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
from torch import nn class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ ) -> List[str]: super().__init__() __UpperCAmelCase = class_size __UpperCAmelCase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCAmelCase = nn.Linear(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __UpperCAmelCase = self.mlp(lowercase__ ) return logits
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = jsonl_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> str: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' return json.load(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return [json.loads(SCREAMING_SNAKE_CASE ) for line in buffer] class A_ : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) assert isinstance(exported_content[0] , lowercase__ ) assert len(lowercase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ , orient=lowercase__ ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) assert isinstance(exported_content[0] , lowercase__ ) assert len(lowercase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ , orient=lowercase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase__ ) == 10 def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: with pytest.raises(lowercase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(lowercase__ , lowercase__ , compression=lowercase__ ).write() with fsspec.open(lowercase__ , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(lowercase__ , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : '''simple docstring''' def lowerCAmelCase_ (self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCAmelCase = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ ) __UpperCAmelCase = inputs['''prompt'''] __UpperCAmelCase = inputs['''generator'''] __UpperCAmelCase = inputs['''num_inference_steps'''] __UpperCAmelCase = inputs['''output_type'''] if "image" in inputs: __UpperCAmelCase = inputs['''image'''] else: __UpperCAmelCase = None if "mask_image" in inputs: __UpperCAmelCase = inputs['''mask_image'''] else: __UpperCAmelCase = None if "original_image" in inputs: __UpperCAmelCase = inputs['''original_image'''] else: __UpperCAmelCase = None __UpperCAmelCase , __UpperCAmelCase = pipe.encode_prompt(lowercase__ ) # inputs with prompt converted to embeddings __UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __UpperCAmelCase = image if mask_image is not None: __UpperCAmelCase = mask_image if original_image is not None: __UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = pipe(**lowercase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase__ ) __UpperCAmelCase = self.pipeline_class.from_pretrained(lowercase__ ) pipe_loaded.to(lowercase__ ) pipe_loaded.set_progress_bar_config(disable=lowercase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase__ , lowercase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ ) __UpperCAmelCase = inputs['''generator'''] __UpperCAmelCase = inputs['''num_inference_steps'''] __UpperCAmelCase = inputs['''output_type'''] # inputs with prompt converted to embeddings __UpperCAmelCase = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __UpperCAmelCase = image if mask_image is not None: __UpperCAmelCase = mask_image if original_image is not None: __UpperCAmelCase = original_image __UpperCAmelCase = pipe_loaded(**lowercase__ )[0] __UpperCAmelCase = np.abs(to_np(lowercase__ ) - to_np(lowercase__ ) ).max() self.assertLess(lowercase__ , 1E-4 ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = self.get_dummy_inputs(lowercase__ ) __UpperCAmelCase = pipe(**lowercase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase__ ) __UpperCAmelCase = self.pipeline_class.from_pretrained(lowercase__ ) pipe_loaded.to(lowercase__ ) pipe_loaded.set_progress_bar_config(disable=lowercase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __UpperCAmelCase = self.get_dummy_inputs(lowercase__ ) __UpperCAmelCase = pipe_loaded(**lowercase__ )[0] __UpperCAmelCase = np.abs(to_np(lowercase__ ) - to_np(lowercase__ ) ).max() self.assertLess(lowercase__ , 1E-4 )
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[int] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A_ ( _a ): '''simple docstring''' a__ = "unispeech" def __init__(self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(512, 512, 512, 512, 512, 512, 512) , lowercase__=(5, 2, 2, 2, 2, 2, 2) , lowercase__=(10, 3, 3, 3, 3, 2, 2) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=False , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__=320 , lowercase__=2 , lowercase__=0.1 , lowercase__=100 , lowercase__=256 , lowercase__=256 , lowercase__=0.1 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=80 , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=0.5 , **lowercase__ , ) -> str: super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) __UpperCAmelCase = hidden_size __UpperCAmelCase = feat_extract_norm __UpperCAmelCase = feat_extract_activation __UpperCAmelCase = list(lowercase__ ) __UpperCAmelCase = list(lowercase__ ) __UpperCAmelCase = list(lowercase__ ) __UpperCAmelCase = conv_bias __UpperCAmelCase = num_conv_pos_embeddings __UpperCAmelCase = num_conv_pos_embedding_groups __UpperCAmelCase = len(self.conv_dim ) __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = feat_proj_dropout __UpperCAmelCase = final_dropout __UpperCAmelCase = layerdrop __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = num_ctc_classes __UpperCAmelCase = vocab_size __UpperCAmelCase = do_stable_layer_norm __UpperCAmelCase = use_weighted_layer_sum __UpperCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase = apply_spec_augment __UpperCAmelCase = mask_time_prob __UpperCAmelCase = mask_time_length __UpperCAmelCase = mask_time_min_masks __UpperCAmelCase = mask_feature_prob __UpperCAmelCase = mask_feature_length __UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCAmelCase = num_codevectors_per_group __UpperCAmelCase = num_codevector_groups __UpperCAmelCase = contrastive_logits_temperature __UpperCAmelCase = feat_quantizer_dropout __UpperCAmelCase = num_negatives __UpperCAmelCase = codevector_dim __UpperCAmelCase = proj_codevector_dim __UpperCAmelCase = diversity_loss_weight # ctc loss __UpperCAmelCase = ctc_loss_reduction __UpperCAmelCase = ctc_zero_infinity # pretraining loss __UpperCAmelCase = replace_prob @property def lowerCAmelCase_ (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) __UpperCAmelCase = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(SCREAMING_SNAKE_CASE ) ) return round(SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = sum(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase = True for i in range(1 , s + 1 ): __UpperCAmelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase = s - 2 * j break return diff
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A_ : Optional[Any] = NewType('DataClass', Any) A_ : Union[str, Any] = NewType('DataClassType', Any) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def __a ( SCREAMING_SNAKE_CASE ) -> Callable[[str], Any]: '''simple docstring''' __UpperCAmelCase = {str(SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE : str_to_choice.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( *, SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = dataclasses.MISSING , SCREAMING_SNAKE_CASE = dataclasses.MISSING , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __UpperCAmelCase = {} if aliases is not None: __UpperCAmelCase = aliases if help is not None: __UpperCAmelCase = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , default_factory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A_ ( _a ): '''simple docstring''' a__ = 42 def __init__(self , lowercase__ , **lowercase__ ) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: __UpperCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**lowercase__ ) if dataclasses.is_dataclass(lowercase__ ): __UpperCAmelCase = [dataclass_types] __UpperCAmelCase = list(lowercase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase__ ) @staticmethod def lowerCAmelCase_ (lowercase__ , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = F'''--{field.name}''' __UpperCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase__ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __UpperCAmelCase = kwargs.pop('''aliases''' , [] ) if isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = [aliases] __UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowercase__ , '''UnionType''' ) and isinstance(lowercase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase__ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F''' Problem encountered in field \'{field.name}\'.''' ) if type(lowercase__ ) not in field.type.__args__: # filter `str` in Union __UpperCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __UpperCAmelCase = ( field.type.__args__[0] if isinstance(lowercase__ , field.type.__args__[1] ) else field.type.__args__[1] ) __UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __UpperCAmelCase = {} if origin_type is Literal or (isinstance(field.type , lowercase__ ) and issubclass(field.type , lowercase__ )): if origin_type is Literal: __UpperCAmelCase = field.type.__args__ else: __UpperCAmelCase = [x.value for x in field.type] __UpperCAmelCase = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __UpperCAmelCase = field.default else: __UpperCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __UpperCAmelCase = copy(lowercase__ ) # Hack because type=bool in argparse does not behave as we want. __UpperCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __UpperCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __UpperCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name __UpperCAmelCase = '''?''' # This is the value that will get picked if we do --field_name (without value) __UpperCAmelCase = True elif isclass(lowercase__ ) and issubclass(lowercase__ , lowercase__ ): __UpperCAmelCase = field.type.__args__[0] __UpperCAmelCase = '''+''' if field.default_factory is not dataclasses.MISSING: __UpperCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: __UpperCAmelCase = True else: __UpperCAmelCase = field.type if field.default is not dataclasses.MISSING: __UpperCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: __UpperCAmelCase = field.default_factory() else: __UpperCAmelCase = True parser.add_argument(lowercase__ , *lowercase__ , **lowercase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __UpperCAmelCase = False parser.add_argument(F'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> str: if hasattr(lowercase__ , '''_argument_group_name''' ): __UpperCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: __UpperCAmelCase = self try: __UpperCAmelCase = get_type_hints(lowercase__ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase__ ): __UpperCAmelCase = '''.'''.join(map(lowercase__ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase__ ): if not field.init: continue __UpperCAmelCase = type_hints[field.name] self._parse_dataclass_field(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__=None , lowercase__=False , lowercase__=True , lowercase__=None , lowercase__=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __UpperCAmelCase = [] if args_filename: args_files.append(Path(lowercase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __UpperCAmelCase = ArgumentParser() args_file_parser.add_argument(lowercase__ , type=lowercase__ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __UpperCAmelCase , __UpperCAmelCase = args_file_parser.parse_known_args(args=lowercase__ ) __UpperCAmelCase = vars(lowercase__ ).get(args_file_flag.lstrip('''-''' ) , lowercase__ ) if cmd_args_file_paths: args_files.extend([Path(lowercase__ ) for p in cmd_args_file_paths] ) __UpperCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __UpperCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] __UpperCAmelCase , __UpperCAmelCase = self.parse_known_args(args=lowercase__ ) __UpperCAmelCase = [] for dtype in self.dataclass_types: __UpperCAmelCase = {f.name for f in dataclasses.fields(lowercase__ ) if f.init} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k in keys} for k in keys: delattr(lowercase__ , lowercase__ ) __UpperCAmelCase = dtype(**lowercase__ ) outputs.append(lowercase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = False ) -> Tuple[DataClass, ...]: __UpperCAmelCase = set(args.keys() ) __UpperCAmelCase = [] for dtype in self.dataclass_types: __UpperCAmelCase = {f.name for f in dataclasses.fields(lowercase__ ) if f.init} __UpperCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __UpperCAmelCase = dtype(**lowercase__ ) outputs.append(lowercase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(lowercase__ )}''' ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = False ) -> Tuple[DataClass, ...]: with open(Path(lowercase__ ) , encoding='''utf-8''' ) as open_json_file: __UpperCAmelCase = json.loads(open_json_file.read() ) __UpperCAmelCase = self.parse_dict(lowercase__ , allow_extra_keys=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = False ) -> Tuple[DataClass, ...]: __UpperCAmelCase = self.parse_dict(yaml.safe_load(Path(lowercase__ ).read_text() ) , allow_extra_keys=lowercase__ ) return tuple(lowercase__ )
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A_ : Optional[List[str]] = None A_ : List[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A_ : List[Any] = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class A_ : '''simple docstring''' a__ = True a__ = None # Automatically constructed a__ = "PIL.Image.Image" a__ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) a__ = field(default="Image" , init=_a , repr=_a ) def __call__(self ) -> Optional[Any]: return self.pa_type def lowerCAmelCase_ (self , lowercase__ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = np.array(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return {"path": value, "bytes": None} elif isinstance(lowercase__ , lowercase__ ): return {"path": None, "bytes": value} elif isinstance(lowercase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase__ ) elif isinstance(lowercase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase__ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: __UpperCAmelCase = {} __UpperCAmelCase , __UpperCAmelCase = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase__ ): __UpperCAmelCase = PIL.Image.open(lowercase__ ) else: __UpperCAmelCase = path.split('''::''' )[-1] try: __UpperCAmelCase = string_to_dict(lowercase__ , config.HUB_DATASETS_URL )['''repo_id'''] __UpperCAmelCase = token_per_repo_id.get(lowercase__ ) except ValueError: __UpperCAmelCase = None with xopen(lowercase__ , '''rb''' , use_auth_token=lowercase__ ) as f: __UpperCAmelCase = BytesIO(f.read() ) __UpperCAmelCase = PIL.Image.open(bytes_ ) else: __UpperCAmelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase_ (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def lowerCAmelCase_ (self , lowercase__ ) -> pa.StructArray: if pa.types.is_string(storage.type ): __UpperCAmelCase = pa.array([None] * len(lowercase__ ) , type=pa.binary() ) __UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCAmelCase = pa.array([None] * len(lowercase__ ) , type=pa.string() ) __UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __UpperCAmelCase = storage.field('''bytes''' ) else: __UpperCAmelCase = pa.array([None] * len(lowercase__ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __UpperCAmelCase = storage.field('''path''' ) else: __UpperCAmelCase = pa.array([None] * len(lowercase__ ) , type=pa.string() ) __UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __UpperCAmelCase = pa.array( [encode_np_array(np.array(lowercase__ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __UpperCAmelCase = pa.array([None] * len(lowercase__ ) , type=pa.string() ) __UpperCAmelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowercase__ , self.pa_type ) def lowerCAmelCase_ (self , lowercase__ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowercase__ ): with xopen(lowercase__ , '''rb''' ) as f: __UpperCAmelCase = f.read() return bytes_ __UpperCAmelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCAmelCase = pa.array( [os.path.basename(lowercase__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowercase__ , self.pa_type ) def __a ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __UpperCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __a ( SCREAMING_SNAKE_CASE ) -> bytes: '''simple docstring''' __UpperCAmelCase = BytesIO() if image.format in list_image_compression_formats(): __UpperCAmelCase = image.format else: __UpperCAmelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(SCREAMING_SNAKE_CASE , format=SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __a ( SCREAMING_SNAKE_CASE ) -> dict: '''simple docstring''' if hasattr(SCREAMING_SNAKE_CASE , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE )} def __a ( SCREAMING_SNAKE_CASE ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) __UpperCAmelCase = array.dtype __UpperCAmelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER __UpperCAmelCase = dtype.kind __UpperCAmelCase = dtype.itemsize __UpperCAmelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __UpperCAmelCase = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __UpperCAmelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __UpperCAmelCase = dtype_byteorder + dtype_kind + str(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = np.dtype(SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) __UpperCAmelCase = PIL.Image.fromarray(array.astype(SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE )} def __a ( SCREAMING_SNAKE_CASE ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: __UpperCAmelCase , __UpperCAmelCase = first_non_null_value(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): __UpperCAmelCase = no_op_if_value_is_null(SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): __UpperCAmelCase = no_op_if_value_is_null(SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' # Initialise PyTorch model __UpperCAmelCase = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase = MobileBertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint __UpperCAmelCase = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A_ : Dict = logging.get_logger(__name__) class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = question_encoder __UpperCAmelCase = generator __UpperCAmelCase = self.question_encoder def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: if os.path.isfile(lowercase__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) __UpperCAmelCase = os.path.join(lowercase__ , '''question_encoder_tokenizer''' ) __UpperCAmelCase = os.path.join(lowercase__ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(lowercase__ ) self.generator.save_pretrained(lowercase__ ) @classmethod def lowerCAmelCase_ (cls , lowercase__ , **lowercase__ ) -> List[str]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __UpperCAmelCase = kwargs.pop('''config''' , lowercase__ ) if config is None: __UpperCAmelCase = RagConfig.from_pretrained(lowercase__ ) __UpperCAmelCase = AutoTokenizer.from_pretrained( lowercase__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) __UpperCAmelCase = AutoTokenizer.from_pretrained( lowercase__ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=lowercase__ , generator=lowercase__ ) def __call__(self , *lowercase__ , **lowercase__ ) -> List[Any]: return self.current_tokenizer(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> int: return self.generator.batch_decode(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> List[Any]: return self.generator.decode(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.question_encoder def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.generator def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = "longest" , lowercase__ = None , lowercase__ = True , **lowercase__ , ) -> BatchEncoding: warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , lowercase__ , ) if max_length is None: __UpperCAmelCase = self.current_tokenizer.model_max_length __UpperCAmelCase = self( lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , max_length=lowercase__ , padding=lowercase__ , truncation=lowercase__ , **lowercase__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __UpperCAmelCase = self.current_tokenizer.model_max_length __UpperCAmelCase = self( text_target=lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , **lowercase__ , ) __UpperCAmelCase = labels['''input_ids'''] return model_inputs
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
import string def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = '''''' for i in sequence: __UpperCAmelCase = ord(SCREAMING_SNAKE_CASE ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = string.ascii_letters __UpperCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(SCREAMING_SNAKE_CASE )] if c in letters else c for c in sequence ) def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running performance benchmarks...''' ) __UpperCAmelCase = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=SCREAMING_SNAKE_CASE )} seconds''' ) print(f'''> atbash(): {timeit('atbash(printable)' , setup=SCREAMING_SNAKE_CASE )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __a ( SCREAMING_SNAKE_CASE ) -> List[Tuple[int, ...]]: '''simple docstring''' __UpperCAmelCase = [] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[int, ...]: '''simple docstring''' __UpperCAmelCase = [] for d in reversed(SCREAMING_SNAKE_CASE ): idx.append(flat_idx % d ) __UpperCAmelCase = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE ) ) @torch.jit.ignore def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(SCREAMING_SNAKE_CASE ) -> None: __UpperCAmelCase = True for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = -1 * (i + 1) l[reversed_idx] &= tally __UpperCAmelCase = l[reversed_idx] if start_edges is None: __UpperCAmelCase = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE ) if end_edges is None: __UpperCAmelCase = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] reduce_edge_list(SCREAMING_SNAKE_CASE ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __UpperCAmelCase = [] __UpperCAmelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE , s + 1 ) ) else: break __UpperCAmelCase = tuple(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __UpperCAmelCase = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __UpperCAmelCase = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __UpperCAmelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> torch.Tensor: '''simple docstring''' __UpperCAmelCase = t.shape[:no_batch_dims] __UpperCAmelCase = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # _get_minimal_slice_set is inclusive __UpperCAmelCase = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE ) ) # Get an ordered list of slices to perform __UpperCAmelCase = _get_minimal_slice_set( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) __UpperCAmelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> Any: '''simple docstring''' if not (len(SCREAMING_SNAKE_CASE ) > 0): raise ValueError('''Must provide at least one input''' ) __UpperCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = tuple([max(SCREAMING_SNAKE_CASE ) for s in zip(*SCREAMING_SNAKE_CASE )] ) def _prep_inputs(SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __UpperCAmelCase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __UpperCAmelCase = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = None if _out is not None: __UpperCAmelCase = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __UpperCAmelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d __UpperCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __UpperCAmelCase = 0 __UpperCAmelCase = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE ): # Chunk the input if not low_mem: __UpperCAmelCase = _select_chunk else: __UpperCAmelCase = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE , flat_end=min(SCREAMING_SNAKE_CASE , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE ) , ) __UpperCAmelCase = tensor_tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Run the layer on the chunk __UpperCAmelCase = layer(**SCREAMING_SNAKE_CASE ) # Allocate space for the output if out is None: __UpperCAmelCase = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assign(SCREAMING_SNAKE_CASE , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __UpperCAmelCase = da[k] assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for xa, xa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if _add_into_out: xa[i : i + chunk_size] += xa else: __UpperCAmelCase = xa elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __UpperCAmelCase = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __UpperCAmelCase = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) return out class A_ : '''simple docstring''' def __init__(self , lowercase__ = 512 , ) -> Optional[int]: __UpperCAmelCase = max_chunk_size __UpperCAmelCase = None __UpperCAmelCase = None def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __UpperCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __UpperCAmelCase = [c for c in candidates if c > min_chunk_size] __UpperCAmelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase__ ) -> bool: try: with torch.no_grad(): fn(*lowercase__ , chunk_size=lowercase__ ) return True except RuntimeError: return False __UpperCAmelCase = 0 __UpperCAmelCase = len(lowercase__ ) - 1 while i > min_viable_chunk_size_index: __UpperCAmelCase = test_chunk_size(candidates[i] ) if not viable: __UpperCAmelCase = (min_viable_chunk_size_index + i) // 2 else: __UpperCAmelCase = i __UpperCAmelCase = (i + len(lowercase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> bool: __UpperCAmelCase = True for aa, aa in zip(lowercase__ , lowercase__ ): assert type(lowercase__ ) == type(lowercase__ ) if isinstance(lowercase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase__ , lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda lowercase__ : x[0] )] __UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda lowercase__ : x[0] )] consistent &= self._compare_arg_caches(lowercase__ , lowercase__ ) else: consistent &= aa == aa return consistent def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , ) -> int: __UpperCAmelCase = True __UpperCAmelCase = tree_map(lambda lowercase__ : a.shape if isinstance(lowercase__ , torch.Tensor ) else a , lowercase__ , lowercase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase__ ) __UpperCAmelCase = self._compare_arg_caches(self.cached_arg_data , lowercase__ ) else: # Otherwise, we can reuse the precomputed value __UpperCAmelCase = False if not consistent: __UpperCAmelCase = self._determine_favorable_chunk_size( lowercase__ , lowercase__ , lowercase__ , ) __UpperCAmelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A_ ( unittest.TestCase , _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = load_tool('''text-to-speech''' ) self.tool.setup() def lowerCAmelCase_ (self ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __UpperCAmelCase = self.tool('''hey''' ) __UpperCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def lowerCAmelCase_ (self ) -> str: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __UpperCAmelCase = self.tool('''hey''' ) __UpperCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig A_ : str = logging.get_logger(__name__) # General docstring A_ : Dict = 'PoolFormerConfig' # Base docstring A_ : Tuple = 'sail/poolformer_s12' A_ : Dict = [1, 512, 7, 7] # Image classification docstring A_ : Optional[Any] = 'sail/poolformer_s12' A_ : List[str] = 'tabby, tabby cat' A_ : Tuple = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = False ) -> Any: '''simple docstring''' if drop_prob == 0.0 or not training: return input __UpperCAmelCase = 1 - drop_prob __UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __UpperCAmelCase = keep_prob + torch.rand(SCREAMING_SNAKE_CASE , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __UpperCAmelCase = input.div(SCREAMING_SNAKE_CASE ) * random_tensor return output class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ = None ) -> None: super().__init__() __UpperCAmelCase = drop_prob def lowerCAmelCase_ (self , lowercase__ ) -> torch.Tensor: return drop_path(lowercase__ , self.drop_prob , self.training ) def lowerCAmelCase_ (self ) -> str: return "p={}".format(self.drop_prob ) class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ) -> Any: super().__init__() __UpperCAmelCase = patch_size if isinstance(lowercase__ , collections.abc.Iterable ) else (patch_size, patch_size) __UpperCAmelCase = stride if isinstance(lowercase__ , collections.abc.Iterable ) else (stride, stride) __UpperCAmelCase = padding if isinstance(lowercase__ , collections.abc.Iterable ) else (padding, padding) __UpperCAmelCase = nn.Convad(lowercase__ , lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=lowercase__ ) __UpperCAmelCase = norm_layer(lowercase__ ) if norm_layer else nn.Identity() def lowerCAmelCase_ (self , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.projection(lowercase__ ) __UpperCAmelCase = self.norm(lowercase__ ) return embeddings class A_ ( nn.GroupNorm ): '''simple docstring''' def __init__(self , lowercase__ , **lowercase__ ) -> str: super().__init__(1 , lowercase__ , **lowercase__ ) class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ ) -> List[Any]: super().__init__() __UpperCAmelCase = nn.AvgPoolad(lowercase__ , stride=1 , padding=pool_size // 2 , count_include_pad=lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> int: return self.pool(lowercase__ ) - hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: super().__init__() __UpperCAmelCase = nn.Convad(lowercase__ , lowercase__ , 1 ) __UpperCAmelCase = nn.Convad(lowercase__ , lowercase__ , 1 ) __UpperCAmelCase = PoolFormerDropPath(lowercase__ ) if isinstance(config.hidden_act , lowercase__ ): __UpperCAmelCase = ACTaFN[config.hidden_act] else: __UpperCAmelCase = config.hidden_act def lowerCAmelCase_ (self , lowercase__ ) -> Any: __UpperCAmelCase = self.conva(lowercase__ ) __UpperCAmelCase = self.act_fn(lowercase__ ) __UpperCAmelCase = self.drop(lowercase__ ) __UpperCAmelCase = self.conva(lowercase__ ) __UpperCAmelCase = self.drop(lowercase__ ) return hidden_states class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: super().__init__() __UpperCAmelCase = PoolFormerPooling(lowercase__ ) __UpperCAmelCase = PoolFormerOutput(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = PoolFormerGroupNorm(lowercase__ ) __UpperCAmelCase = PoolFormerGroupNorm(lowercase__ ) # Useful for training neural nets __UpperCAmelCase = PoolFormerDropPath(lowercase__ ) if drop_path > 0.0 else nn.Identity() __UpperCAmelCase = config.use_layer_scale if config.use_layer_scale: __UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase__) ) , requires_grad=lowercase__ ) __UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase__) ) , requires_grad=lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: if self.use_layer_scale: __UpperCAmelCase = self.pooling(self.before_norm(lowercase__ ) ) __UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __UpperCAmelCase = hidden_states + self.drop_path(lowercase__ ) __UpperCAmelCase = () __UpperCAmelCase = self.output(self.after_norm(lowercase__ ) ) __UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __UpperCAmelCase = hidden_states + self.drop_path(lowercase__ ) __UpperCAmelCase = (output,) + outputs return outputs else: __UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(lowercase__ ) ) ) # First residual connection __UpperCAmelCase = pooling_output + hidden_states __UpperCAmelCase = () # Second residual connection inside the PoolFormerOutput block __UpperCAmelCase = self.drop_path(self.output(self.after_norm(lowercase__ ) ) ) __UpperCAmelCase = hidden_states + layer_output __UpperCAmelCase = (output,) + outputs return outputs class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ ) -> str: super().__init__() __UpperCAmelCase = config # stochastic depth decay rule __UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __UpperCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __UpperCAmelCase = nn.ModuleList(lowercase__ ) # Transformer blocks __UpperCAmelCase = [] __UpperCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __UpperCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowercase__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowercase__ ) ) __UpperCAmelCase = nn.ModuleList(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=False , lowercase__=True ) -> List[Any]: __UpperCAmelCase = () if output_hidden_states else None __UpperCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __UpperCAmelCase , __UpperCAmelCase = layers # Get patch embeddings from hidden_states __UpperCAmelCase = embedding_layer(lowercase__ ) # Send the embeddings through the blocks for _, blk in enumerate(lowercase__ ): __UpperCAmelCase = blk(lowercase__ ) __UpperCAmelCase = layer_outputs[0] if output_hidden_states: __UpperCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase__ , hidden_states=lowercase__ ) class A_ ( _a ): '''simple docstring''' a__ = PoolFormerConfig a__ = "poolformer" a__ = "pixel_values" a__ = True def lowerCAmelCase_ (self , lowercase__ ) -> str: if isinstance(lowercase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=False ) -> Optional[int]: if isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = value A_ : Dict = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' A_ : Optional[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , _a , ) class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ ) -> Union[str, Any]: super().__init__(lowercase__ ) __UpperCAmelCase = config __UpperCAmelCase = PoolFormerEncoder(lowercase__ ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase_ (self ) -> Any: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ (self , lowercase__ = None , lowercase__ = None , lowercase__ = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: __UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __UpperCAmelCase = self.encoder( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , ) __UpperCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowercase__ , hidden_states=encoder_outputs.hidden_states , ) class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ ) -> Optional[Any]: super().__init__() __UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase_ (self , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = self.dense(lowercase__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , _a , ) class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ ) -> Union[str, Any]: super().__init__(lowercase__ ) __UpperCAmelCase = config.num_labels __UpperCAmelCase = PoolFormerModel(lowercase__ ) # Final norm __UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __UpperCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ (self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = self.poolformer( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , ) __UpperCAmelCase = outputs[0] __UpperCAmelCase = self.classifier(self.norm(lowercase__ ).mean([-2, -1] ) ) __UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase = '''single_label_classification''' else: __UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCAmelCase = MSELoss() if self.num_labels == 1: __UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase = loss_fct(lowercase__ , lowercase__ ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase = CrossEntropyLoss() __UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase = BCEWithLogitsLoss() __UpperCAmelCase = loss_fct(lowercase__ , lowercase__ ) if not return_dict: __UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states )
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import os import re import shutil import sys import tempfile import unittest import black A_ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. A_ : Union[str, Any] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) __UpperCAmelCase = self.diffusers_dir shutil.copy( os.path.join(lowercase__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ) -> Any: __UpperCAmelCase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __UpperCAmelCase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __UpperCAmelCase = black.format_str(lowercase__ , mode=lowercase__ ) __UpperCAmelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(lowercase__ , '''w''' , newline='''\n''' ) as f: f.write(lowercase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase__ ) with open(lowercase__ , '''r''' ) as f: self.assertTrue(f.read() , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> int: # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowercase__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowercase__ ) , ) # Copy consistency with a really long name __UpperCAmelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub('''Bert''' , lowercase__ , lowercase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowercase__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowercase__ ) , )
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(lowercase__ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase__ , atol=1E-3 ) ) @slow def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(lowercase__ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase__ , atol=1E-3 ) )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A_ : str = None A_ : Optional[int] = logging.get_logger(__name__) A_ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} A_ : Union[str, Any] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } A_ : Tuple = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off A_ : Union[str, Any] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = MBartTokenizer a__ = [] a__ = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) __UpperCAmelCase = vocab_file __UpperCAmelCase = False if not self.vocab_file else True __UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __UpperCAmelCase = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase = self.convert_tokens_to_ids(self._src_lang ) __UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ (self ) -> str: return self._src_lang @src_lang.setter def lowerCAmelCase_ (self , lowercase__ ) -> None: __UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __UpperCAmelCase = src_lang __UpperCAmelCase = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) __UpperCAmelCase = self.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = tgt_lang_id return inputs def lowerCAmelCase_ (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ) -> BatchEncoding: __UpperCAmelCase = src_lang __UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ (self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ (self , lowercase__ ) -> None: __UpperCAmelCase = self.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = [] __UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ (self , lowercase__ ) -> None: __UpperCAmelCase = self.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = [] __UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : str = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class A_ ( _a ): '''simple docstring''' a__ = "marian" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=58_101 , lowercase__=None , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=58_100 , lowercase__=False , lowercase__=58_100 , lowercase__=0 , lowercase__=0 , lowercase__=True , **lowercase__ , ) -> Any: __UpperCAmelCase = vocab_size __UpperCAmelCase = decoder_vocab_size or vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) class A_ ( _a ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCAmelCase = {0: '''batch'''} __UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCAmelCase , __UpperCAmelCase = self.num_layers for i in range(lowercase__ ): __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = super().outputs else: __UpperCAmelCase = super(lowercase__ , self ).outputs if self.use_past: __UpperCAmelCase , __UpperCAmelCase = self.num_layers for i in range(lowercase__ ): __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowerCAmelCase_ (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: __UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Generate decoder inputs __UpperCAmelCase = seq_length if not self.use_past else 1 __UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCAmelCase = dict(**lowercase__ , **lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape __UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] __UpperCAmelCase , __UpperCAmelCase = self.num_attention_heads __UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase = decoder_seq_length + 3 __UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ , lowercase__ )] , dim=1 ) __UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCAmelCase , __UpperCAmelCase = self.num_layers __UpperCAmelCase = min(lowercase__ , lowercase__ ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) - min_num_layers __UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ , lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def lowerCAmelCase_ (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: __UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase , __UpperCAmelCase = self.num_layers __UpperCAmelCase , __UpperCAmelCase = self.num_attention_heads __UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase = common_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) __UpperCAmelCase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def lowerCAmelCase_ (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCAmelCase = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase__ ) __UpperCAmelCase = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCAmelCase = dict(tokenizer(lowercase__ , return_tensors=lowercase__ ) ) return common_inputs def lowerCAmelCase_ (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) else: __UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) return common_inputs def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: __UpperCAmelCase = super(lowercase__ , self )._flatten_past_key_values_( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) @property def lowerCAmelCase_ (self ) -> float: return 1E-4
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
import json import sys def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: __UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = results[benchmark_name] __UpperCAmelCase = benchmark_name.split('''/''' )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) __UpperCAmelCase = '''| metric |''' __UpperCAmelCase = '''|--------|''' __UpperCAmelCase = '''| new / old (diff) |''' for metric_name in sorted(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = benchmark_res[metric_name] __UpperCAmelCase = metric_vals['''new'''] __UpperCAmelCase = metric_vals.get('''old''' , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = metric_vals.get('''diff''' , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = f''' {new_val:f}''' if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else '''None''' if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": A_ : List[str] = sys.argv[1] A_ : List[str] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ ( _a ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "AutoImageProcessor" a__ = "AutoTokenizer" def __init__(self , lowercase__ , lowercase__ ) -> Tuple: super().__init__(lowercase__ , lowercase__ ) __UpperCAmelCase = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ) -> Optional[int]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: __UpperCAmelCase = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Dict: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Optional[Any]: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def lowerCAmelCase_ (self ) -> str: return ["input_ids", "attention_mask", "pixel_values"]
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : Tuple = logging.get_logger(__name__) A_ : int = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class A_ ( _a ): '''simple docstring''' a__ = "table-transformer" a__ = ["past_key_values"] a__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self , lowercase__=True , lowercase__=None , lowercase__=3 , lowercase__=100 , lowercase__=6 , lowercase__=2_048 , lowercase__=8 , lowercase__=6 , lowercase__=2_048 , lowercase__=8 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__="relu" , lowercase__=256 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1.0 , lowercase__=False , lowercase__="sine" , lowercase__="resnet50" , lowercase__=True , lowercase__=False , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=1 , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=0.1 , **lowercase__ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __UpperCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = backbone_config.get('''model_type''' ) __UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase = config_class.from_dict(lowercase__ ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None, None, None __UpperCAmelCase = use_timm_backbone __UpperCAmelCase = backbone_config __UpperCAmelCase = num_channels __UpperCAmelCase = num_queries __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = init_xavier_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = encoder_layers __UpperCAmelCase = auxiliary_loss __UpperCAmelCase = position_embedding_type __UpperCAmelCase = backbone __UpperCAmelCase = use_pretrained_backbone __UpperCAmelCase = dilation # Hungarian matcher __UpperCAmelCase = class_cost __UpperCAmelCase = bbox_cost __UpperCAmelCase = giou_cost # Loss coefficients __UpperCAmelCase = mask_loss_coefficient __UpperCAmelCase = dice_loss_coefficient __UpperCAmelCase = bbox_loss_coefficient __UpperCAmelCase = giou_loss_coefficient __UpperCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model class A_ ( _a ): '''simple docstring''' a__ = version.parse("1.11" ) @property def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def lowerCAmelCase_ (self ) -> float: return 1E-5 @property def lowerCAmelCase_ (self ) -> int: return 12
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ ) -> Dict: __UpperCAmelCase = data def __iter__(self ) -> Optional[int]: for element in self.data: yield element def __a ( SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' __UpperCAmelCase = Accelerator(even_batches=SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> List[str]: '''simple docstring''' if iterable: __UpperCAmelCase = DummyIterableDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) else: __UpperCAmelCase = TensorDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) return dl def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' __UpperCAmelCase = create_dataloader(accelerator=SCREAMING_SNAKE_CASE , dataset_size=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __a ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __a ( ) -> int: '''simple docstring''' __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) __UpperCAmelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ddp_model(batch[0].float() ) __UpperCAmelCase = output.sum() loss.backward() batch_idxs.append(SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def __a ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): __UpperCAmelCase = train_dl.batch_sampler.even_batches __UpperCAmelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __a ( ) -> int: '''simple docstring''' __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): __UpperCAmelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = create_accelerator() __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def __a ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) __UpperCAmelCase = accelerator.state.distributed_type __UpperCAmelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = original_state if __name__ == "__main__": main()
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = emb.weight.data return lin_layer def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCAmelCase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __UpperCAmelCase = mam_aaa['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __UpperCAmelCase = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __UpperCAmelCase = state_dict['''decoder.embed_tokens.weight'''] __UpperCAmelCase = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE ) model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A_ : Optional[int] = parser.parse_args() A_ : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) A_ : Optional[int] = 'bert-base-cased' A_ : int = 'fp16' A_ : Any = 'bf16' A_ : Optional[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> int: super().setUp() __UpperCAmelCase = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def lowerCAmelCase_ (self ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase__ ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = F'''{i + 1}''' __UpperCAmelCase = strategy with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCAmelCase_ (self ) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase__ ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = prefetch_policy with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCAmelCase_ (self ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase__ ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = state_dict_type with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = AutoModel.from_pretrained(lowercase__ ) for policy in FSDP_AUTO_WRAP_POLICY: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = policy if policy == "TRANSFORMER_BASED_WRAP": __UpperCAmelCase = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": __UpperCAmelCase = '''2000''' with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = '''TRANSFORMER_BASED_WRAP''' __UpperCAmelCase = '''T5Layer''' with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase__ ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = '''SIZE_BASED_WRAP''' __UpperCAmelCase = '''0''' with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCAmelCase_ (self ) -> Any: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = mp_dtype with mockenv_context(**lowercase__ ): __UpperCAmelCase = Accelerator() if mp_dtype == "fp16": __UpperCAmelCase = torch.floataa elif mp_dtype == "bf16": __UpperCAmelCase = torch.bfloataa __UpperCAmelCase = MixedPrecision(param_dtype=lowercase__ , reduce_dtype=lowercase__ , buffer_dtype=lowercase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase__ ) def lowerCAmelCase_ (self ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = str(lowercase__ ).lower() with mockenv_context(**lowercase__ ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase__ ) ) @require_fsdp @require_multi_gpu @slow class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> List[Any]: super().setUp() __UpperCAmelCase = 0.82 __UpperCAmelCase = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] __UpperCAmelCase = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __UpperCAmelCase = 160 __UpperCAmelCase = 160 __UpperCAmelCase = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: __UpperCAmelCase = cmd.copy() for i, strategy in enumerate(lowercase__ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) __UpperCAmelCase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(lowercase__ ): __UpperCAmelCase = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue __UpperCAmelCase = len(lowercase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: __UpperCAmelCase = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() ) __UpperCAmelCase = cmd_config[:-1] __UpperCAmelCase = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) __UpperCAmelCase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __UpperCAmelCase = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(lowercase__ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase__ , env=os.environ.copy() )
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=30 , lowercase__=2 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=10 , lowercase__=0.02 , lowercase__=3 , lowercase__=0.6 , lowercase__=None , ) -> List[str]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = mask_ratio __UpperCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCAmelCase = (image_size // patch_size) ** 2 __UpperCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Union[str, Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = ViTMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __UpperCAmelCase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = (self.image_size // self.patch_size) ** 2 __UpperCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCAmelCase = 1 __UpperCAmelCase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a__ = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = ViTMAEModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def lowerCAmelCase_ (self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> int: pass def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: # make masks reproducible np.random.seed(2 ) __UpperCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCAmelCase = torch.from_numpy(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCAmelCase = pt_noise super().check_pt_tf_models(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs[0].cpu().numpy() __UpperCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) __UpperCAmelCase = model_class.from_pretrained(lowercase__ ) model.to(lowercase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) # Make sure we don't have nans __UpperCAmelCase = after_outputs[0].cpu().numpy() __UpperCAmelCase = 0 __UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase_ (self ) -> Any: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase_ (self ) -> Tuple: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase_ (self ) -> Optional[int]: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass @slow def lowerCAmelCase_ (self ) -> Optional[int]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = ViTMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def __a ( ) -> Dict: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> List[Any]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __UpperCAmelCase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCAmelCase = ViTMAEConfig() __UpperCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ , noise=torch.from_numpy(lowercase__ ).to(device=lowercase__ ) ) # verify the logits __UpperCAmelCase = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase__ ) , atol=1E-4 ) )
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Any: '''simple docstring''' try: __UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: __UpperCAmelCase = strtobool(SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A_ : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return unittest.skip('''Test was skipped''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' if test_case is None: return partial(SCREAMING_SNAKE_CASE , version=SCREAMING_SNAKE_CASE ) return unittest.skipUnless(is_torch_version('''>=''' , SCREAMING_SNAKE_CASE ) , f'''test requires torch version >= {version}''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(SCREAMING_SNAKE_CASE ) A_ : List[str] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(SCREAMING_SNAKE_CASE ) class A_ ( unittest.TestCase ): '''simple docstring''' a__ = True @classmethod def lowerCAmelCase_ (cls ) -> Optional[Any]: __UpperCAmelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase_ (cls ) -> int: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase_ (self ) -> Tuple: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase__ ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Tuple: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ ) -> Any: __UpperCAmelCase = mocks if isinstance(lowercase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = AcceleratorState() __UpperCAmelCase = tensor[None].clone().to(state.device ) __UpperCAmelCase = gather(SCREAMING_SNAKE_CASE ).cpu() __UpperCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , SCREAMING_SNAKE_CASE ): return False return True class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = returncode __UpperCAmelCase = stdout __UpperCAmelCase = stderr async def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' while True: __UpperCAmelCase = await stream.readline() if line: callback(SCREAMING_SNAKE_CASE ) else: break async def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> _RunOutput: '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCAmelCase = [] __UpperCAmelCase = [] def tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" ): __UpperCAmelCase = line.decode('''utf-8''' ).rstrip() sink.append(SCREAMING_SNAKE_CASE ) if not quiet: print(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , file=SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1_8_0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True ) -> _RunOutput: '''simple docstring''' __UpperCAmelCase = asyncio.get_event_loop() __UpperCAmelCase = loop.run_until_complete( _stream_subprocess(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , stdin=SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE , quiet=SCREAMING_SNAKE_CASE , echo=SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = ''' '''.join(SCREAMING_SNAKE_CASE ) if result.returncode > 0: __UpperCAmelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class A_ ( _a ): '''simple docstring''' pass def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: '''simple docstring''' try: __UpperCAmelCase = subprocess.check_output(SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(SCREAMING_SNAKE_CASE , '''decode''' ): __UpperCAmelCase = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = SMALL_MODEL_IDENTIFIER __UpperCAmelCase = '''pt''' __UpperCAmelCase = '''tf''' def lowerCAmelCase_ (self , lowercase__ ) -> Tuple: __UpperCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: __UpperCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase__ ) model_tf.save_pretrained(lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) __UpperCAmelCase = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) __UpperCAmelCase = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Any: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) __UpperCAmelCase = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) __UpperCAmelCase = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase__ ): __UpperCAmelCase = FeaturesManager.determine_framework(lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowercase__ ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCAmelCase = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_torch_available''' , lowercase__ ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_tf ) # Both in environment -> use PyTorch __UpperCAmelCase = MagicMock(return_value=lowercase__ ) __UpperCAmelCase = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowercase__ ), patch( '''transformers.onnx.features.is_torch_available''' , lowercase__ ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # Both not in environment -> raise error __UpperCAmelCase = MagicMock(return_value=lowercase__ ) __UpperCAmelCase = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowercase__ ), patch( '''transformers.onnx.features.is_torch_available''' , lowercase__ ): with self.assertRaises(lowercase__ ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A_ : Any = logging.get_logger(__name__) def __a ( ) -> List[str]: '''simple docstring''' # Get the sagemaker specific mp parameters from smp_options variable. __UpperCAmelCase = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __UpperCAmelCase = json.loads(SCREAMING_SNAKE_CASE ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __UpperCAmelCase = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __UpperCAmelCase = json.loads(SCREAMING_SNAKE_CASE ) if not mpi_options.get('''sagemaker_mpi_enabled''' , SCREAMING_SNAKE_CASE ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class A_ ( _a ): '''simple docstring''' a__ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def lowerCAmelCase_ (self ) -> Dict: super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , lowercase__ , ) @cached_property def lowerCAmelCase_ (self ) -> "torch.device": logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: __UpperCAmelCase = torch.device('''cpu''' ) __UpperCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __UpperCAmelCase = smp.local_rank() __UpperCAmelCase = torch.device('''cuda''' , lowercase__ ) __UpperCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) __UpperCAmelCase = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) __UpperCAmelCase = torch.device('''cuda''' , self.local_rank ) __UpperCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __UpperCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) __UpperCAmelCase = torch.device('''cuda''' , self.local_rank ) __UpperCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(lowercase__ ) return device @property def lowerCAmelCase_ (self ) -> List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowerCAmelCase_ (self ) -> int: return not is_sagemaker_model_parallel_available() @property def lowerCAmelCase_ (self ) -> Optional[Any]: return False
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[int] = {'vocab_file': 'sentencepiece.model'} A_ : List[Any] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } A_ : Dict = { 'google/rembert': 256, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , lowercase__ , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__="[CLS]" , lowercase__="[SEP]" , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , **lowercase__ , ) -> Optional[Any]: super().__init__( do_lower_case=lowercase__ , remove_space=lowercase__ , keep_accents=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , **lowercase__ , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(lowercase__ ) @property def lowerCAmelCase_ (self ) -> Any: return len(self.sp_model ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Any: __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__(self , lowercase__ ) -> Tuple: __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=False ) -> Dict: __UpperCAmelCase = self.sp_model.EncodeAsPieces(lowercase__ ) return pieces def lowerCAmelCase_ (self , lowercase__ ) -> Tuple: return self.sp_model.PieceToId(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: return self.sp_model.IdToPiece(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = self.sp_model.decode_pieces(lowercase__ ) return out_string def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: if not os.path.isdir(lowercase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowercase__ ) ) return __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask A_ : List[Any] = logging.getLogger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "token-classification" def __init__(self , lowercase__ ) -> int: if type(lowercase__ ) == dict: __UpperCAmelCase = Namespace(**lowercase__ ) __UpperCAmelCase = import_module('''tasks''' ) try: __UpperCAmelCase = getattr(lowercase__ , hparams.task_type ) __UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __UpperCAmelCase = self.token_classification_task.get_labels(hparams.labels ) __UpperCAmelCase = CrossEntropyLoss().ignore_index super().__init__(lowercase__ , len(self.labels ) , self.mode ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: return self.model(**lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Dict: __UpperCAmelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCAmelCase = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCAmelCase = self(**lowercase__ ) __UpperCAmelCase = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.hparams for mode in ["train", "dev", "test"]: __UpperCAmelCase = self._feature_file(lowercase__ ) if os.path.exists(lowercase__ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , lowercase__ ) __UpperCAmelCase = torch.load(lowercase__ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) __UpperCAmelCase = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase__ ) __UpperCAmelCase = self.token_classification_task.convert_examples_to_features( lowercase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase__ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , lowercase__ ) torch.save(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = False ) -> DataLoader: __UpperCAmelCase = self._feature_file(lowercase__ ) logger.info('''Loading features from cached file %s''' , lowercase__ ) __UpperCAmelCase = torch.load(lowercase__ ) __UpperCAmelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __UpperCAmelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __UpperCAmelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __UpperCAmelCase = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __UpperCAmelCase = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , batch_size=lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Tuple: """Compute validation""" "" __UpperCAmelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCAmelCase = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCAmelCase = self(**lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = outputs[:2] __UpperCAmelCase = logits.detach().cpu().numpy() __UpperCAmelCase = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase_ (self , lowercase__ ) -> Tuple: __UpperCAmelCase = torch.stack([x['''val_loss'''] for x in outputs] ).mean() __UpperCAmelCase = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) __UpperCAmelCase = np.argmax(lowercase__ , axis=2 ) __UpperCAmelCase = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) __UpperCAmelCase = dict(enumerate(self.labels ) ) __UpperCAmelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCAmelCase = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __UpperCAmelCase = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(lowercase__ , lowercase__ ), '''precision''': precision_score(lowercase__ , lowercase__ ), '''recall''': recall_score(lowercase__ , lowercase__ ), '''f1''': fa_score(lowercase__ , lowercase__ ), } __UpperCAmelCase = dict(results.items() ) __UpperCAmelCase = results return ret, preds_list, out_label_list def lowerCAmelCase_ (self , lowercase__ ) -> str: # when stable __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._eval_end(lowercase__ ) __UpperCAmelCase = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: # updating to test_epoch_end instead of deprecated test_end __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._eval_end(lowercase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCAmelCase = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase_ (lowercase__ , lowercase__ ) -> Optional[int]: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase__ , lowercase__ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=lowercase__ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowercase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=lowercase__ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=lowercase__ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) A_ : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) A_ : Union[str, Any] = parser.parse_args() A_ : Union[str, Any] = NERTransformer(args) A_ : Dict = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 A_ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) A_ : Dict = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ : Dict = logging.get_logger(__name__) A_ : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } A_ : str = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __UpperCAmelCase = '''lm_head''' __UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase = value elif weight_type == "weight_g": __UpperCAmelCase = value elif weight_type == "weight_v": __UpperCAmelCase = value elif weight_type == "bias": __UpperCAmelCase = value else: __UpperCAmelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = fairseq_model.state_dict() __UpperCAmelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCAmelCase = True if "*" in mapped_key: __UpperCAmelCase = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] __UpperCAmelCase = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCAmelCase = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase = '''weight_v''' elif "bias" in name: __UpperCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase = '''weight''' else: __UpperCAmelCase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase = name.split('''.''' ) __UpperCAmelCase = int(items[0] ) __UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Tuple: '''simple docstring''' if config_path is not None: __UpperCAmelCase = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = UniSpeechConfig() if is_finetuned: if dict_path: __UpperCAmelCase = Dictionary.load_from_json(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase = target_dict.pad_index __UpperCAmelCase = target_dict.bos_index __UpperCAmelCase = target_dict.eos_index __UpperCAmelCase = len(target_dict.symbols ) __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase = 4_2 __UpperCAmelCase = 4_3 with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) __UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __UpperCAmelCase = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = UniSpeechForCTC(SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE ) if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCAmelCase = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A_ : List[Any] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=2 , lowercase__=99 , lowercase__=0 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=12 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__="last" , lowercase__=None , lowercase__=None , ) -> Tuple: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_lengths __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = gelu_activation __UpperCAmelCase = sinusoidal_embeddings __UpperCAmelCase = causal __UpperCAmelCase = asm __UpperCAmelCase = n_langs __UpperCAmelCase = vocab_size __UpperCAmelCase = n_special __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = summary_type __UpperCAmelCase = use_proj __UpperCAmelCase = scope def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_input_lengths: __UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ (self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> List[Any]: __UpperCAmelCase = FlaubertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , lengths=lowercase__ , langs=lowercase__ ) __UpperCAmelCase = model(lowercase__ , langs=lowercase__ ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> int: __UpperCAmelCase = FlaubertWithLMHeadModel(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Union[str, Any]: __UpperCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = model(lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> int: __UpperCAmelCase = FlaubertForQuestionAnswering(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = model( lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , cls_index=lowercase__ , is_impossible=lowercase__ , p_mask=lowercase__ , ) __UpperCAmelCase = model( lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , cls_index=lowercase__ , is_impossible=lowercase__ , ) ((__UpperCAmelCase) , ) = result_with_labels.to_tuple() __UpperCAmelCase = model(lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) ((__UpperCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> List[Any]: __UpperCAmelCase = FlaubertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = FlaubertForTokenClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> int: __UpperCAmelCase = self.num_choices __UpperCAmelCase = FlaubertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__=False ) -> List[str]: __UpperCAmelCase = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = FlaubertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowercase__ , emb_dim=37 ) def lowerCAmelCase_ (self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> int: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = FlaubertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase = True __UpperCAmelCase = model_class(config=lowercase__ ) __UpperCAmelCase = self._prepare_for_class(lowercase__ , lowercase__ ) __UpperCAmelCase = torch.jit.trace( lowercase__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ , os.path.join(lowercase__ , '''traced_model.pt''' ) ) __UpperCAmelCase = torch.jit.load(os.path.join(lowercase__ , '''traced_model.pt''' ) , map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) , inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) __UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): __UpperCAmelCase = model(lowercase__ )[0] __UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) __UpperCAmelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() A_ : int = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = UniSpeechSatForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = downstream_dict['''projector.weight'''] __UpperCAmelCase = downstream_dict['''projector.bias'''] __UpperCAmelCase = downstream_dict['''model.post_net.linear.weight'''] __UpperCAmelCase = downstream_dict['''model.post_net.linear.bias'''] return model def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = UniSpeechSatForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = downstream_dict['''model.linear.weight'''] __UpperCAmelCase = downstream_dict['''model.linear.bias'''] return model def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = UniSpeechSatForXVector.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = downstream_dict['''connector.weight'''] __UpperCAmelCase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __UpperCAmelCase = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __UpperCAmelCase = downstream_dict['''objective.W'''] return model @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCAmelCase = checkpoint['''Downstream'''] __UpperCAmelCase = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __UpperCAmelCase = convert_classification(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif arch.endswith('''ForAudioFrameClassification''' ): __UpperCAmelCase = convert_diarization(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif arch.endswith('''ForXVector''' ): __UpperCAmelCase = convert_xvector(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') A_ : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
from __future__ import annotations def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' __UpperCAmelCase = get_failure_array(SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern __UpperCAmelCase , __UpperCAmelCase = 0, 0 # index into text, pattern while i < len(SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __UpperCAmelCase = failure[j - 1] continue i += 1 return False def __a ( SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' __UpperCAmelCase = [0] __UpperCAmelCase = 0 __UpperCAmelCase = 1 while j < len(SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __UpperCAmelCase = failure[i - 1] continue j += 1 failure.append(SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) A_ : int = 'abc1abc12' A_ : str = 'alskfjaldsabc1abc1abc12k23adsfabcabc' A_ : int = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A_ : List[str] = 'ABABX' A_ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) A_ : Union[str, Any] = 'AAAB' A_ : str = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) A_ : Dict = 'abcdabcy' A_ : Union[str, Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) A_ : Optional[int] = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
A_ : Optional[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution A_ : list[bool | None] = [None] * 10000000 A_ : Any = True A_ : Union[str, Any] = False def __a ( SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __UpperCAmelCase = chain(next_number(SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = number_chain while number < 1_0_0_0_0_0_0_0: __UpperCAmelCase = number_chain number *= 1_0 return number_chain def __a ( SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0_0 ) -> int: '''simple docstring''' for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
from datetime import datetime import matplotlib.pyplot as plt import torch def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): __UpperCAmelCase = False def __a ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCAmelCase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def __a ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = datetime.now() __UpperCAmelCase = current_time.strftime('''%H:%M:%S''' ) return timestamp
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' while a != 0: __UpperCAmelCase , __UpperCAmelCase = b % a, a return b def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) != 1: __UpperCAmelCase = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1, 0, a __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0, 1, m while va != 0: __UpperCAmelCase = ua // va __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
from math import sqrt def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE ): total += i return total - n def __a ( SCREAMING_SNAKE_CASE = 1_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase = sum( i for i in range(1 , SCREAMING_SNAKE_CASE ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (KDPMaDiscreteScheduler,) a__ = 10 def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase__ ) return config def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase = sample.to(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = scheduler.scale_model_input(lowercase__ , lowercase__ ) __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ (self ) -> str: if torch_device == "mps": return __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase = sample.to(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = scheduler.scale_model_input(lowercase__ , lowercase__ ) __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ (self ) -> Optional[int]: if torch_device == "mps": return __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase__ ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter.to(lowercase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCAmelCase = scheduler.scale_model_input(lowercase__ , lowercase__ ) __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) if str(lowercase__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
def __a ( SCREAMING_SNAKE_CASE = 1_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase = n * (n + 1) * (2 * n + 1) / 6 __UpperCAmelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = IFPipeline a__ = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCAmelCase_ (self ) -> Tuple: return self._get_dummy_components() def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> Any: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowerCAmelCase_ (self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase_ (self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase_ (self ) -> List[str]: self._test_save_load_local() def lowerCAmelCase_ (self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCAmelCase_ (self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> List[str]: # if __UpperCAmelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) __UpperCAmelCase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=lowercase__ , tokenizer=lowercase__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) __UpperCAmelCase , __UpperCAmelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __UpperCAmelCase = None __UpperCAmelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __UpperCAmelCase = IFImgaImgPipeline(**pipe_a.components ) __UpperCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __UpperCAmelCase = IFInpaintingPipeline(**pipe_a.components ) __UpperCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe_a( prompt_embeds=lowercase__ , negative_prompt_embeds=lowercase__ , num_inference_steps=2 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(lowercase__ , lowercase__ ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = pipe_a( prompt_embeds=lowercase__ , negative_prompt_embeds=lowercase__ , image=lowercase__ , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) __UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe_a( prompt_embeds=lowercase__ , negative_prompt_embeds=lowercase__ , image=lowercase__ , num_inference_steps=2 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(lowercase__ , lowercase__ ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = pipe_a( prompt_embeds=lowercase__ , negative_prompt_embeds=lowercase__ , image=lowercase__ , original_image=lowercase__ , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) __UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(lowercase__ ) __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe_a( prompt_embeds=lowercase__ , negative_prompt_embeds=lowercase__ , image=lowercase__ , mask_image=lowercase__ , num_inference_steps=2 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(lowercase__ , lowercase__ ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(lowercase__ ) __UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(lowercase__ ) __UpperCAmelCase = pipe_a( prompt_embeds=lowercase__ , negative_prompt_embeds=lowercase__ , image=lowercase__ , mask_image=lowercase__ , original_image=lowercase__ , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) __UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def __a ( ) -> Optional[int]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) __UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) __UpperCAmelCase = transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) return image def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if "visual_encoder" in key: __UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , SCREAMING_SNAKE_CASE ) if "blocks" in key: __UpperCAmelCase = re.sub(r'''blocks''' , '''layers''' , SCREAMING_SNAKE_CASE ) if "attn" in key: __UpperCAmelCase = re.sub(r'''attn''' , '''self_attn''' , SCREAMING_SNAKE_CASE ) if "norm1" in key: __UpperCAmelCase = re.sub(r'''norm1''' , '''layer_norm1''' , SCREAMING_SNAKE_CASE ) if "norm2" in key: __UpperCAmelCase = re.sub(r'''norm2''' , '''layer_norm2''' , SCREAMING_SNAKE_CASE ) if "encoder.norm" in key: __UpperCAmelCase = re.sub(r'''encoder.norm''' , '''post_layernorm''' , SCREAMING_SNAKE_CASE ) if "encoder.patch_embed.proj" in key: __UpperCAmelCase = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , SCREAMING_SNAKE_CASE ) if "encoder.pos_embed" in key: __UpperCAmelCase = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , SCREAMING_SNAKE_CASE ) if "encoder.cls_token" in key: __UpperCAmelCase = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , SCREAMING_SNAKE_CASE ) if "self_attn" in key: __UpperCAmelCase = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , SCREAMING_SNAKE_CASE ) return key @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' if config_path is not None: __UpperCAmelCase = BlipConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __UpperCAmelCase = BlipForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() __UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __UpperCAmelCase = blip_decoder(pretrained=SCREAMING_SNAKE_CASE , image_size=3_8_4 , vit='''base''' ) __UpperCAmelCase = pt_model.eval() __UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = 3_8_4 __UpperCAmelCase = load_demo_image(image_size=SCREAMING_SNAKE_CASE , device='''cpu''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids __UpperCAmelCase = hf_model.generate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __UpperCAmelCase = hf_model.generate(SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __UpperCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __UpperCAmelCase = blip_vqa(pretrained=SCREAMING_SNAKE_CASE , image_size=SCREAMING_SNAKE_CASE , vit='''base''' ) vqa_model.eval() __UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = BlipForQuestionAnswering(SCREAMING_SNAKE_CASE ) hf_vqa_model.load_state_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = ['''How many dogs are in this image?'''] __UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __UpperCAmelCase = hf_vqa_model.generate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __UpperCAmelCase = blip_itm(pretrained=SCREAMING_SNAKE_CASE , image_size=SCREAMING_SNAKE_CASE , vit='''base''' ) itm_model.eval() __UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = BlipForImageTextRetrieval(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] __UpperCAmelCase = tokenizer( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(SCREAMING_SNAKE_CASE ) hf_itm_model.eval() __UpperCAmelCase = hf_itm_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , use_itm_head=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = hf_itm_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , use_itm_head=SCREAMING_SNAKE_CASE ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A_ : Union[str, Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = RobertaTokenizer a__ = RobertaTokenizerFast a__ = True a__ = {"cls_token": "<s>"} def lowerCAmelCase_ (self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: pass def lowerCAmelCase_ (self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Tuple = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A_ ( _a ): '''simple docstring''' a__ = "mctct" def __init__(self , lowercase__=8_065 , lowercase__=1_536 , lowercase__=36 , lowercase__=6_144 , lowercase__=4 , lowercase__=384 , lowercase__=920 , lowercase__=1E-5 , lowercase__=0.3 , lowercase__="relu" , lowercase__=0.02 , lowercase__=0.3 , lowercase__=0.3 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__=1 , lowercase__=0.3 , lowercase__=1 , lowercase__=(7,) , lowercase__=(3,) , lowercase__=80 , lowercase__=1 , lowercase__=None , lowercase__="sum" , lowercase__=False , **lowercase__ , ) -> List[Any]: super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = num_attention_heads __UpperCAmelCase = attention_head_dim __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = layerdrop __UpperCAmelCase = hidden_act __UpperCAmelCase = initializer_range __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = conv_glu_dim __UpperCAmelCase = conv_dropout __UpperCAmelCase = num_conv_layers __UpperCAmelCase = input_feat_per_channel __UpperCAmelCase = input_channels __UpperCAmelCase = conv_channels __UpperCAmelCase = ctc_loss_reduction __UpperCAmelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __UpperCAmelCase = list(lowercase__ ) __UpperCAmelCase = list(lowercase__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Any = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = XLMProphetNetTokenizer a__ = False a__ = True def lowerCAmelCase_ (self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = XLMProphetNetTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = '''[PAD]''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowercase__ ) , 1_012 ) def lowerCAmelCase_ (self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = XLMProphetNetTokenizer(lowercase__ , keep_accents=lowercase__ ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def lowerCAmelCase_ (self ) -> Tuple: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = '''Hello World!''' __UpperCAmelCase = [35_389, 6_672, 49, 2] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def lowerCAmelCase_ (self ) -> Optional[int]: # fmt: off __UpperCAmelCase = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
def __a ( SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , 0 , -1 ): __UpperCAmelCase = False for j in range(SCREAMING_SNAKE_CASE , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __UpperCAmelCase , __UpperCAmelCase = unsorted[j - 1], unsorted[j] __UpperCAmelCase = True for j in range(SCREAMING_SNAKE_CASE ): if unsorted[j] > unsorted[j + 1]: __UpperCAmelCase , __UpperCAmelCase = unsorted[j + 1], unsorted[j] __UpperCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A_ : Dict = input('Enter numbers separated by a comma:\n').strip() A_ : Tuple = [int(item) for item in user_input.split(',')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if hor == 1_2_8: __UpperCAmelCase = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __UpperCAmelCase = (3_2, 1_2_8, 2_5_6) __UpperCAmelCase = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 3_2: __UpperCAmelCase = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __UpperCAmelCase = (3_2, 6_4, 1_2_8, 2_5_6) __UpperCAmelCase = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') __UpperCAmelCase = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) __UpperCAmelCase = model.state_dict() __UpperCAmelCase = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 1_4, '''out_channels''': 1_4, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_5_5_3_6, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } __UpperCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __UpperCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = { '''in_channels''': 1_4, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (3_2, 6_4, 1_2_8, 2_5_6), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_5_5_3_6, '''out_channels''': 1_4, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } __UpperCAmelCase = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) __UpperCAmelCase = model __UpperCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __UpperCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": unet(32) # unet(128) value_function()
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Dict = logging.get_logger(__name__) class A_ ( _a , _a ): '''simple docstring''' a__ = "maskformer-swin" a__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , lowercase__=224 , lowercase__=4 , lowercase__=3 , lowercase__=96 , lowercase__=[2, 2, 6, 2] , lowercase__=[3, 6, 12, 24] , lowercase__=7 , lowercase__=4.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=0.02 , lowercase__=1E-5 , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Union[str, Any]: super().__init__(**lowercase__ ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(lowercase__ ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(lowercase__ ) - 1) ) __UpperCAmelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(lowercase__ ) + 1 )] __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowercase__ , out_indices=lowercase__ , stage_names=self.stage_names )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 ) -> Dict: '''simple docstring''' __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) __UpperCAmelCase = '''636036''' __UpperCAmelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = get_daily_ci_runs(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __UpperCAmelCase = workflow_run['''id'''] break return workflow_run_id def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: __UpperCAmelCase = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __UpperCAmelCase = artifacts_links[artifact_name] download_artifact( artifact_name=SCREAMING_SNAKE_CASE , artifact_url=SCREAMING_SNAKE_CASE , output_dir=SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = {} for artifact_name in artifact_names: __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , f'''{artifact_name}.zip''' ) if os.path.isfile(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = {} with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file with z.open(SCREAMING_SNAKE_CASE ) as f: __UpperCAmelCase = f.read().decode('''UTF-8''' ) return results
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
def __a ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase = 1 __UpperCAmelCase = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE , digit + 1 ): __UpperCAmelCase = [] __UpperCAmelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
A_ : Dict = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A_ : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] A_ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
# Lint as: python3 import itertools import os import re A_ : Optional[int] = re.compile(R'([A-Z]+)([A-Z][a-z])') A_ : Union[str, Any] = re.compile(R'([a-z\d])([A-Z])') A_ : Optional[Any] = re.compile(R'(?<!_)_(?!_)') A_ : Optional[Any] = re.compile(R'(_{2,})') A_ : List[Any] = R'^\w+(\.\w+)*$' A_ : str = R'<>:/\|?*' def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = _uppercase_uppercase_re.sub(r'''\1_\2''' , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = _lowercase_uppercase_re.sub(r'''\1_\2''' , SCREAMING_SNAKE_CASE ) return name.lower() def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = _single_underscore_re.split(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [_multiple_underscores_re.split(SCREAMING_SNAKE_CASE ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) if n != '''''' ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , SCREAMING_SNAKE_CASE ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(SCREAMING_SNAKE_CASE )}-{split}''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase = filename_prefix_for_split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return f'''{filepath}*''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = filename_prefix_for_split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if shard_lengths: __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(SCREAMING_SNAKE_CASE )] if filetype_suffix: __UpperCAmelCase = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: __UpperCAmelCase = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __UpperCAmelCase = DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCAmelCase_ (self ) -> Dict: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] __UpperCAmelCase = DisjunctiveConstraint(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(1 ) __UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(2 ) __UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(3 ) __UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCAmelCase = DisjunctiveConstraint(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1