code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): def constraint_to_multiple_of(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=0 , _UpperCamelCase=None ): __lowerCAmelCase : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: __lowerCAmelCase : str = math.floor(val / multiple ) * multiple if x < min_val: __lowerCAmelCase : Dict = math.ceil(val / multiple ) * multiple return x __lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(snake_case_ , snake_case_ ) else output_size __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = get_image_size(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase : str = output_size # determine new height and width __lowerCAmelCase : Union[str, Any] = output_height / input_height __lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __lowerCAmelCase : List[str] = scale_width else: # fit height __lowerCAmelCase : List[str] = scale_height __lowerCAmelCase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=snake_case_ ) __lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=snake_case_ ) return (new_height, new_width) class A__ ( _lowerCAmelCase): A_ : Union[str, Any] = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 2_55 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): super().__init__(**_lowercase ) __lowerCAmelCase : List[str] = size if size is not None else {'height': 3_84, 'width': 3_84} __lowerCAmelCase : Dict = get_size_dict(_lowercase ) __lowerCAmelCase : List[Any] = do_resize __lowerCAmelCase : Any = size __lowerCAmelCase : List[str] = keep_aspect_ratio __lowerCAmelCase : str = ensure_multiple_of __lowerCAmelCase : Dict = resample __lowerCAmelCase : List[str] = do_rescale __lowerCAmelCase : Tuple = rescale_factor __lowerCAmelCase : Union[str, Any] = do_normalize __lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Union[str, Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}" ) __lowerCAmelCase : Any = get_resize_output_image_size( _lowercase , output_size=(size['height'], size['width']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : List[str] = size if size is not None else self.size __lowerCAmelCase : Any = get_size_dict(_lowercase ) __lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __lowerCAmelCase : Optional[int] = resample if resample is not None else self.resample __lowerCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std __lowerCAmelCase : int = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase : int = [to_numpy_array(_lowercase ) for image in images] if do_resize: __lowerCAmelCase : str = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: __lowerCAmelCase : List[Any] = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: __lowerCAmelCase : List[Any] = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] __lowerCAmelCase : Dict = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __lowerCAmelCase : str = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): __lowerCAmelCase : Optional[int] = target_sizes.numpy() __lowerCAmelCase : Optional[int] = [] for idx in range(len(_lowercase ) ): __lowerCAmelCase : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) __lowerCAmelCase : List[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: __lowerCAmelCase : int = logits.argmax(dim=1 ) __lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
86
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class A ( _lowerCAmelCase ): __UpperCAmelCase : Union[str, Any] = "data2vec-vision" def __init__(self : Optional[int] , __UpperCAmelCase : Optional[int]=7_6_8 , __UpperCAmelCase : Tuple=1_2 , __UpperCAmelCase : str=1_2 , __UpperCAmelCase : str=3_0_7_2 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : List[Any]=2_2_4 , __UpperCAmelCase : Dict=1_6 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=[3, 5, 7, 1_1] , __UpperCAmelCase : List[Any]=[1, 2, 3, 6] , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Tuple=0.4 , __UpperCAmelCase : Optional[Any]=2_5_6 , __UpperCAmelCase : str=1 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Union[str, Any]=2_5_5 , **__UpperCAmelCase : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**_lowercase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = use_mask_token UpperCAmelCase__ = use_absolute_position_embeddings UpperCAmelCase__ = use_relative_position_bias UpperCAmelCase__ = use_shared_relative_position_bias UpperCAmelCase__ = layer_scale_init_value UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase__ = out_indices UpperCAmelCase__ = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ = use_auxiliary_head UpperCAmelCase__ = auxiliary_loss_weight UpperCAmelCase__ = auxiliary_channels UpperCAmelCase__ = auxiliary_num_convs UpperCAmelCase__ = auxiliary_concat_input UpperCAmelCase__ = semantic_loss_ignore_index class A ( _lowerCAmelCase ): __UpperCAmelCase : int = version.parse('1.11' ) @property def lowercase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ (self : Dict ) -> List[Any]: """simple docstring""" return 1E-4
65
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Tuple , lowerCAmelCase : int = 768 , ): super().__init__() lowerCAmelCase = nn.Parameter(torch.zeros(1 , _lowercase ) ) lowerCAmelCase = nn.Parameter(torch.ones(1 , _lowercase ) ) def __lowercase ( self : Any , lowerCAmelCase : Optional[Union[str, torch.device]] = None , lowerCAmelCase : Optional[torch.dtype] = None , ): lowerCAmelCase = nn.Parameter(self.mean.to(_lowercase ).to(_lowercase ) ) lowerCAmelCase = nn.Parameter(self.std.to(_lowercase ).to(_lowercase ) ) return self def __lowercase ( self : Optional[int] , lowerCAmelCase : List[Any] ): lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def __lowercase ( self : List[str] , lowerCAmelCase : Optional[int] ): lowerCAmelCase = (embeds * self.std) + self.mean return embeds
155
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] ): '''simple docstring''' lowercase = len(snake_case_ ) for i in range(snake_case_ ): for j in range(i + 1 , snake_case_ ): if numbers[j] < numbers[i]: lowercase , lowercase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _UpperCamelCase : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase : Tuple = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
220
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
from __future__ import annotations def snake_case_ ( snake_case ) -> Dict: return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
196
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
def __snake_case ( __UpperCamelCase : int = 10 ,__UpperCamelCase : int = 1000 ,__UpperCamelCase : bool = True ): """simple docstring""" assert ( isinstance(snake_case_ ,snake_case_ ) and isinstance(snake_case_ ,snake_case_ ) and isinstance(snake_case_ ,snake_case_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" return int((number_a + number_a) / 2 ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" assert ( isinstance(snake_case_ ,snake_case_ ) and isinstance(snake_case_ ,snake_case_ ) and isinstance(snake_case_ ,snake_case_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(__UpperCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) A_ = lower A_ = higher A_ = [] while True: A_ = get_avg(snake_case_ ,snake_case_ ) last_numbers.append(snake_case_ ) if answer(snake_case_ ) == "low": A_ = number elif answer(snake_case_ ) == "high": A_ = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def __snake_case ( ): """simple docstring""" A_ = int(input("Enter lower value : " ).strip() ) A_ = int(input("Enter high value : " ).strip() ) A_ = int(input("Enter value to guess : " ).strip() ) guess_the_number(snake_case_ ,snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
312
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Dict , snake_case_ : List[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): snake_case__ : Any = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def lowerCamelCase ( self : str ): snake_case__ : Union[str, Any] = """sshleifer/tiny-gpt2""" snake_case__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , ) snake_case__ : Tuple = TensorFlowBenchmark(_lowercase ) snake_case__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : str ): snake_case__ : Tuple = """sgugger/tiny-distilbert-classification""" snake_case__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) snake_case__ : List[str] = TensorFlowBenchmark(_lowercase ) snake_case__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : List[str] ): snake_case__ : Optional[int] = """sshleifer/tiny-gpt2""" snake_case__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case__ : List[Any] = TensorFlowBenchmark(_lowercase ) snake_case__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : Any = """sshleifer/tiny-gpt2""" snake_case__ : List[Any] = AutoConfig.from_pretrained(_lowercase ) snake_case__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , ) snake_case__ : Optional[int] = TensorFlowBenchmark(_lowercase , [config] ) snake_case__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = """sshleifer/tiny-gpt2""" snake_case__ : List[Any] = AutoConfig.from_pretrained(_lowercase ) snake_case__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case__ : Any = TensorFlowBenchmark(_lowercase , [config] ) snake_case__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : str ): snake_case__ : Tuple = """sshleifer/tiny-gpt2""" snake_case__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case__ : Optional[Any] = TensorFlowBenchmark(_lowercase ) snake_case__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self : str ): snake_case__ : str = """sshleifer/tiny-gpt2""" snake_case__ : int = AutoConfig.from_pretrained(_lowercase ) snake_case__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case__ : int = TensorFlowBenchmark(_lowercase , [config] ) snake_case__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self : Dict ): snake_case__ : Any = """patrickvonplaten/t5-tiny-random""" snake_case__ : List[str] = AutoConfig.from_pretrained(_lowercase ) snake_case__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case__ : Union[str, Any] = TensorFlowBenchmark(_lowercase , configs=[config] ) snake_case__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def lowerCamelCase ( self : Tuple ): snake_case__ : int = """sshleifer/tiny-gpt2""" snake_case__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_lowercase , multi_process=_lowercase , ) snake_case__ : Optional[Any] = TensorFlowBenchmark(_lowercase ) snake_case__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Dict ): snake_case__ : Dict = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(_lowercase , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(_lowercase , """env.csv""" ) , multi_process=_lowercase , ) snake_case__ : List[Any] = TensorFlowBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """env.csv""" ) ).exists() ) def lowerCamelCase ( self : List[str] ): snake_case__ : Optional[Any] = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(snake_case_ : List[Any] ): self.assertTrue(hasattr(_lowercase , """sequential""" ) ) self.assertTrue(hasattr(_lowercase , """cumulative""" ) ) self.assertTrue(hasattr(_lowercase , """current""" ) ) self.assertTrue(hasattr(_lowercase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , """log.txt""" ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , eager_mode=_lowercase , multi_process=_lowercase , ) snake_case__ : Optional[int] = TensorFlowBenchmark(_lowercase ) snake_case__ : List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowercase , """log.txt""" ) ).exists() )
35
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( _lowerCAmelCase , unittest.TestCase): '''simple docstring''' _A = FunnelTokenizer _A = FunnelTokenizerFast _A = True _A = True def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: super().setUp() __UpperCamelCase : Union[str, Any] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowerCamelCase ( self :List[Any] , **a :Optional[Any] ) -> List[Any]: return FunnelTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def _lowerCamelCase ( self :Union[str, Any] , **a :Dict ) -> List[str]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def _lowerCamelCase ( self :Optional[Any] , a :Dict ) -> Tuple: __UpperCamelCase : List[Any] = "UNwant\u00E9d,running" __UpperCamelCase : int = "unwanted, running" return input_text, output_text def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) __UpperCamelCase : Union[str, Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_lowercase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 1_0, 8, 9] ) def _lowerCamelCase ( self :List[Any] ) -> Tuple: __UpperCamelCase : str = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: __UpperCamelCase : Optional[Any] = tokenizer("UNwant\u00E9d,running" ) __UpperCamelCase : Dict = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) __UpperCamelCase : List[str] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
232
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = ['model.decoder.embed_positions.weights'] def _lowercase ( lowercase__ ): if "emb" in name: __lowerCAmelCase : Dict = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __lowerCAmelCase : Optional[int] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __lowerCAmelCase : int = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __lowerCAmelCase : List[str] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __lowerCAmelCase : str = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __lowerCAmelCase : str = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __lowerCAmelCase : Optional[Any] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __lowerCAmelCase : Union[str, Any] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __lowerCAmelCase : str = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : str = list(state_dict.keys() ) __lowerCAmelCase : Dict = {} for key in keys: __lowerCAmelCase : Optional[int] = state_dict.pop(snake_case_ ) __lowerCAmelCase : List[Any] = rename_keys(snake_case_ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase : str = val[:hidden_size, :] __lowerCAmelCase : Any = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase : Tuple = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase : Optional[Any] = val else: __lowerCAmelCase : Optional[int] = val return state_dict, enc_dec_proj_state_dict def _lowercase ( lowercase__ ): if checkpoint == "small": # default config values __lowerCAmelCase : Optional[Any] = 1_0_2_4 __lowerCAmelCase : Tuple = 2_4 __lowerCAmelCase : List[str] = 1_6 elif checkpoint == "medium": __lowerCAmelCase : Optional[Any] = 1_5_3_6 __lowerCAmelCase : Optional[int] = 4_8 __lowerCAmelCase : List[Any] = 2_4 elif checkpoint == "large": __lowerCAmelCase : List[Any] = 2_0_4_8 __lowerCAmelCase : List[Any] = 4_8 __lowerCAmelCase : Dict = 3_2 else: raise ValueError(f"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" ) __lowerCAmelCase : Any = MusicgenDecoderConfig( hidden_size=snake_case_ , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , ) return config @torch.no_grad() def _lowercase ( lowercase__ , lowercase__=None , lowercase__=None , lowercase__="cpu" ): __lowerCAmelCase : str = MusicGen.get_pretrained(snake_case_ , device=snake_case_ ) __lowerCAmelCase : str = decoder_config_from_checkpoint(snake_case_ ) __lowerCAmelCase : Optional[Any] = fairseq_model.lm.state_dict() __lowerCAmelCase, __lowerCAmelCase : Tuple = rename_state_dict( snake_case_ , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' ) __lowerCAmelCase : Union[str, Any] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __lowerCAmelCase : str = MusicgenForCausalLM(snake_case_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = decoder.load_state_dict(snake_case_ , strict=snake_case_ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case_ ) if len(snake_case_ ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(snake_case_ ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCAmelCase : int = MusicgenForConditionalGeneration(text_encoder=snake_case_ , audio_encoder=snake_case_ , decoder=snake_case_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case_ ) # check we can do a forward pass __lowerCAmelCase : Any = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase : Tuple = model(input_ids=snake_case_ , decoder_input_ids=snake_case_ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''t5-base''' ) __lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __lowerCAmelCase : Optional[int] = MusicgenProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) # set the appropriate bos/pad token ids __lowerCAmelCase : Union[str, Any] = 2_0_4_8 __lowerCAmelCase : Optional[int] = 2_0_4_8 # set other default generation config params __lowerCAmelCase : Optional[int] = int(3_0 * audio_encoder.config.frame_rate ) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[int] = 3.0 if pytorch_dump_folder is not None: Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(snake_case_ ) processor.push_to_hub(snake_case_ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _UpperCamelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
275
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
152
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github UpperCAmelCase_ : Optional[int] = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _A () -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE_ : List[Any] = g.get_repo('''huggingface/diffusers''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE_ : Tuple = sorted(issue.get_comments() , key=lambda __a : i.created_at , reverse=snake_case_ ) SCREAMING_SNAKE_CASE_ : str = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
91
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = "cpu" , _UpperCamelCase = None ): __lowerCAmelCase : Any = torch.load(snake_case_ , map_location=snake_case_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case_ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) __lowerCAmelCase : Any = v.half() if save_path is None: # overwrite src_path __lowerCAmelCase : int = src_path torch.save(snake_case_ , snake_case_ ) if __name__ == "__main__": fire.Fire(convert)
86
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
0
from __future__ import annotations from typing import Any class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0 ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = row, column UpperCAmelCase__ = [[default_value for c in range(_lowercase )] for r in range(_lowercase )] def __str__(self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCAmelCase__ = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase__ = max(_lowercase , len(str(_lowercase ) ) ) UpperCAmelCase__ = f"""%{max_element_length}s""" # Make string and return def single_line(__UpperCAmelCase : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase__ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowercase ) for row_vector in self.array ) return s def __repr__(self : Tuple ) -> Any: """simple docstring""" return str(self ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : tuple[int, int] ) -> Optional[int]: """simple docstring""" if not (isinstance(_lowercase , (list, tuple) ) and len(_lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : str , __UpperCAmelCase : tuple[int, int] ) -> List[Any]: """simple docstring""" assert self.validate_indicies(_lowercase ) return self.array[loc[0]][loc[1]] def __setitem__(self : Any , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : float ) -> List[Any]: """simple docstring""" assert self.validate_indicies(_lowercase ) UpperCAmelCase__ = value def __add__(self : Dict , __UpperCAmelCase : Matrix ) -> List[str]: """simple docstring""" assert isinstance(_lowercase , _lowercase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] + another[r, c] return result def __neg__(self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = -self[r, c] return result def __sub__(self : Optional[int] , __UpperCAmelCase : Matrix ) -> int: """simple docstring""" return self + (-another) def __mul__(self : Optional[Any] , __UpperCAmelCase : int | float | Matrix ) -> Tuple: """simple docstring""" if isinstance(_lowercase , (int, float) ): # Scalar multiplication UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] * another return result elif isinstance(_lowercase , _lowercase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase__ = f"""Unsupported type given for another ({type(_lowercase )})""" raise TypeError(_lowercase ) def lowercase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] return result def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Matrix , __UpperCAmelCase : Matrix ) -> Optional[Any]: """simple docstring""" assert isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase__ = v.transpose() UpperCAmelCase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = Matrix(3, 3, 0 ) for i in range(3 ): UpperCAmelCase__ = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCAmelCase__ = Matrix(3, 1, 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 1, 2, -3 UpperCAmelCase__ = Matrix(3, 1, 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_, snake_case_ )}""" ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' import doctest doctest.testmod() testa()
65
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): _a = JukeboxTokenizer _a = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __lowercase ( self : Union[str, Any] ): import torch lowerCAmelCase = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowerCAmelCase = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __lowercase ( self : Optional[Any] ): import torch lowerCAmelCase = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowerCAmelCase = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
155
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _UpperCamelCase : List[str] = False try: _UpperCamelCase : Dict = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class a : def __init__( self , _lowerCamelCase = None , _lowerCamelCase = [] ): lowercase = 0 lowercase = choices lowercase = prompt if sys.platform == "win32": lowercase = '*' else: lowercase = '➔ ' def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def UpperCamelCase_ ( self , _lowerCamelCase ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 1 ): lowercase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def UpperCamelCase_ ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def UpperCamelCase_ ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def UpperCamelCase_ ( self ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def UpperCamelCase_ ( self ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(1_0 )] ) def UpperCamelCase_ ( self ): lowercase = int(chr(self.current_selection ) ) lowercase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def UpperCamelCase_ ( self , _lowerCamelCase = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) lowercase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: lowercase = int(builtins.input() ) except ValueError: lowercase = default_choice else: lowercase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(_lowercase , '\n' ) return choice
220
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCAmelCase = ['text', 'image', 'audio'] def snake_case_ ( snake_case ) -> Dict: lowercase__: Tuple = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(snake_case_ , snake_case_ ): inputs.append(create_inputs(snake_case_ ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def snake_case_ ( snake_case ) -> Tuple: lowercase__: int = [] for output in outputs: if isinstance(snake_case_ , (str, AgentText) ): output_types.append('text' ) elif isinstance(snake_case_ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(snake_case_ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class __a : def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowercase__: List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _lowercase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase__: str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Any = create_inputs(self.tool.inputs ) lowercase__: Tuple = self.tool(*_lowercase ) # There is a single output if len(self.tool.outputs ) == 1: lowercase__: Dict = [outputs] self.assertListEqual(output_types(_lowercase ) , self.tool.outputs ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: List[str] = create_inputs(self.tool.inputs ) lowercase__: List[Any] = self.tool(*_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase__: str = [outputs] self.assertEqual(len(_lowercase ) , len(self.tool.outputs ) ) for output, output_type in zip(_lowercase , self.tool.outputs ): lowercase__: Dict = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_lowercase , _lowercase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Tuple = create_inputs(self.tool.inputs ) lowercase__: Optional[int] = [] for _input, input_type in zip(_lowercase , self.tool.inputs ): if isinstance(_lowercase , _lowercase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase__: List[Any] = self.tool(*_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase__: Tuple = [outputs] self.assertEqual(len(_lowercase ) , len(self.tool.outputs ) )
196
"""simple docstring""" import argparse import copy def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ): with open(snake_case_ ) as f: __UpperCAmelCase = f.read(1 ) __UpperCAmelCase = start_node __UpperCAmelCase = [] __UpperCAmelCase = start_node __UpperCAmelCase = 0 while visiting not in first_solution: __UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: __UpperCAmelCase = k[1] __UpperCAmelCase = k[0] first_solution.append(snake_case_ ) __UpperCAmelCase = distance_of_first_solution + int(snake_case_ ) __UpperCAmelCase = best_node first_solution.append(snake_case_ ) __UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ): __UpperCAmelCase = [] for n in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) for kn in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) if n == kn: continue __UpperCAmelCase = copy.deepcopy(snake_case_ ) __UpperCAmelCase = kn __UpperCAmelCase = n __UpperCAmelCase = 0 for k in _tmp[:-1]: __UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = first_solution __UpperCAmelCase = [] __UpperCAmelCase = distance_of_first_solution __UpperCAmelCase = solution while count <= iters: __UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = neighborhood[index_of_best_solution] __UpperCAmelCase = len(snake_case_ ) - 1 __UpperCAmelCase = False while not found: __UpperCAmelCase = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: __UpperCAmelCase = best_solution[i] __UpperCAmelCase = solution[i] break __UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCAmelCase = True __UpperCAmelCase = best_solution[:-1] __UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCAmelCase = cost __UpperCAmelCase = solution else: __UpperCAmelCase = index_of_best_solution + 1 __UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) __UpperCAmelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( snake_case_ :str=None ): __UpperCAmelCase = generate_neighbours(args.File ) __UpperCAmelCase , __UpperCAmelCase = generate_first_solution( args.File , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = tabu_search( snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
332
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __a :List[str] = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
312
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __a = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class UpperCAmelCase_ ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , **snake_case_ : Optional[Any] ): super().__init__(**_lowercase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Union[str, Any] , snake_case_ : Union[str, List[str], "Image", List["Image"]] , **snake_case_ : Tuple ): return super().__call__(_lowercase , **_lowercase ) def lowerCamelCase ( self : str , **snake_case_ : Any ): snake_case__ : Any = {} if "candidate_labels" in kwargs: snake_case__ : Any = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: snake_case__ : List[str] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCamelCase ( self : str , snake_case_ : str , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]="This is a photo of {}." ): snake_case__ : Optional[int] = load_image(_lowercase ) snake_case__ : Optional[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) snake_case__ : Optional[Any] = candidate_labels snake_case__ : List[str] = [hypothesis_template.format(_lowercase ) for x in candidate_labels] snake_case__ : List[Any] = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) snake_case__ : List[Any] = [text_inputs] return inputs def lowerCamelCase ( self : Dict , snake_case_ : Any ): snake_case__ : Any = model_inputs.pop("""candidate_labels""" ) snake_case__ : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): snake_case__ : List[Any] = text_inputs[0] else: # Batching case. snake_case__ : Dict = text_inputs[0][0] snake_case__ : str = self.model(**_lowercase , **_lowercase ) snake_case__ : List[str] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def lowerCamelCase ( self : Optional[Any] , snake_case_ : Optional[Any] ): snake_case__ : Dict = model_outputs.pop("""candidate_labels""" ) snake_case__ : str = model_outputs["""logits"""][0] if self.framework == "pt": snake_case__ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case__ : Any = probs.tolist() if not isinstance(_lowercase , _lowercase ): snake_case__ : Any = [scores] elif self.framework == "tf": snake_case__ : Optional[int] = stable_softmax(_lowercase , axis=-1 ) snake_case__ : Any = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) snake_case__ : Union[str, Any] = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda snake_case_ : -x[0] ) ] return result
35
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float) -> Any: '''simple docstring''' return 10 - x * x def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float) -> Union[str, Any]: '''simple docstring''' if equation(snake_case_) * equation(snake_case_) >= 0: raise ValueError("Wrong space!") __UpperCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point __UpperCamelCase : Tuple = (a + b) / 2 # Check if middle point is root if equation(snake_case_) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_) * equation(snake_case_) < 0: __UpperCamelCase : Optional[Any] = c else: __UpperCamelCase : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
232
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : str = '▁' A_ : int = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } A_ : str = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } A_ : Optional[Any] = { 'facebook/s2t-small-librispeech-asr': 1024, } A_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] A_ : str = {'mustc': MUSTC_LANGS} class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = MAX_MODEL_INPUT_SIZES a__ = ["input_ids", "attention_mask"] a__ = [] def __init__(self , lowercase__ , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__="<unk>" , lowercase__=False , lowercase__=False , lowercase__=None , lowercase__=None , lowercase__ = None , **lowercase__ , ) -> None: __UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , do_upper_case=lowercase__ , do_lower_case=lowercase__ , tgt_lang=lowercase__ , lang_codes=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) __UpperCAmelCase = do_upper_case __UpperCAmelCase = do_lower_case __UpperCAmelCase = load_json(lowercase__ ) __UpperCAmelCase = {v: k for k, v in self.encoder.items()} __UpperCAmelCase = spm_file __UpperCAmelCase = load_spm(lowercase__ , self.sp_model_kwargs ) if lang_codes is not None: __UpperCAmelCase = lang_codes __UpperCAmelCase = LANGUAGES[lang_codes] __UpperCAmelCase = [F'''<lang:{lang}>''' for lang in self.langs] __UpperCAmelCase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} __UpperCAmelCase = self.lang_tokens __UpperCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __UpperCAmelCase = {} @property def lowerCAmelCase_ (self ) -> int: return len(self.encoder ) @property def lowerCAmelCase_ (self ) -> str: return self._tgt_lang @tgt_lang.setter def lowerCAmelCase_ (self , lowercase__ ) -> None: __UpperCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> None: __UpperCAmelCase = self.lang_code_to_id[tgt_lang] __UpperCAmelCase = [lang_code_id] def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: return self.encoder.get(lowercase__ , self.encoder[self.unk_token] ) def lowerCAmelCase_ (self , lowercase__ ) -> str: return self.decoder.get(lowercase__ , self.unk_token ) def lowerCAmelCase_ (self , lowercase__ ) -> str: __UpperCAmelCase = [] __UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __UpperCAmelCase = self.sp_model.decode(lowercase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __UpperCAmelCase = [] else: current_sub_tokens.append(lowercase__ ) __UpperCAmelCase = self.sp_model.decode(lowercase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase_ (self , lowercase__ , lowercase__=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) __UpperCAmelCase = [1] * len(self.prefix_tokens ) __UpperCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__(self , lowercase__ ) -> None: __UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase = {} __UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = Path(lowercase__ ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' __UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) __UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , lowercase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase__ ) elif not os.path.isfile(self.spm_file ): with open(lowercase__ , '''wb''' ) as fi: __UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (str(lowercase__ ), str(lowercase__ )) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' __UpperCAmelCase = sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE ) spm.Load(str(SCREAMING_SNAKE_CASE ) ) return spm def __a ( SCREAMING_SNAKE_CASE ) -> Union[Dict, List]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=2 )
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase__ ) ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase__ ) ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase__ ) ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase__ ) ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase__ ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) ) def lowerCAmelCase_ (self ) -> str: # pass variant but use the non-variant filenames __UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] __UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] __UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # pass variant but use the non-variant filenames __UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] __UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase__ , variant=lowercase__ ) )
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = model.config __UpperCAmelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) __UpperCAmelCase = MBartConfig( is_decoder=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , add_cross_attention=SCREAMING_SNAKE_CASE , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=SCREAMING_SNAKE_CASE , add_final_layer_norm=SCREAMING_SNAKE_CASE , ) return encoder_config, decoder_config def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "encoder.model" in name: __UpperCAmelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: __UpperCAmelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: __UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCAmelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __UpperCAmelCase = '''encoder.''' + name if "attn.proj" in name: __UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: __UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __UpperCAmelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": __UpperCAmelCase = '''encoder.layernorm.bias''' return name def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): __UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: __UpperCAmelCase = key.split('''.''' ) __UpperCAmelCase = int(key_split[3] ) __UpperCAmelCase = int(key_split[5] ) __UpperCAmelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCAmelCase = val[:dim, :] __UpperCAmelCase = val[dim : dim * 2, :] __UpperCAmelCase = val[-dim:, :] else: __UpperCAmelCase = val[:dim] __UpperCAmelCase = val[dim : dim * 2] __UpperCAmelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCAmelCase = val return orig_state_dict def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False ) -> Dict: '''simple docstring''' # load original model __UpperCAmelCase = DonutModel.from_pretrained(SCREAMING_SNAKE_CASE ).eval() # load HuggingFace model __UpperCAmelCase , __UpperCAmelCase = get_configs(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = DonutSwinModel(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = MBartForCausalLM(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase = original_model.state_dict() __UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify results on scanned document __UpperCAmelCase = load_dataset('''hf-internal-testing/example-documents''' ) __UpperCAmelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) __UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE , from_slow=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __UpperCAmelCase = DonutProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __UpperCAmelCase = '''When is the coffee break?''' __UpperCAmelCase = task_prompt.replace('''{user_input}''' , SCREAMING_SNAKE_CASE ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCAmelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCAmelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCAmelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCAmelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCAmelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) __UpperCAmelCase = original_model.decoder.tokenizer(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )[ '''input_ids''' ] __UpperCAmelCase = original_model.encoder.model.patch_embed(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = model.encoder.embeddings(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) # verify encoder hidden states __UpperCAmelCase = original_model.encoder(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = model.encoder(SCREAMING_SNAKE_CASE ).last_hidden_state assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-2 ) # verify decoder hidden states __UpperCAmelCase = original_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).logits __UpperCAmelCase = model(SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A_ : Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
A_ : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' # Return True if there is node that has not iterated. __UpperCAmelCase = [False] * len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [s] __UpperCAmelCase = True while queue: __UpperCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = True __UpperCAmelCase = u return visited[t] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = [-1] * (len(SCREAMING_SNAKE_CASE )) __UpperCAmelCase = 0 __UpperCAmelCase = [] __UpperCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = float('''Inf''' ) __UpperCAmelCase = sink while s != source: # Find the minimum value in select path __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) __UpperCAmelCase = parent[s] max_flow += path_flow __UpperCAmelCase = sink while v != source: __UpperCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCAmelCase = parent[v] for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A_ : List[str] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if args.student_type == "roberta": __UpperCAmelCase = False def __a ( ) -> int: '''simple docstring''' __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=SCREAMING_SNAKE_CASE , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=SCREAMING_SNAKE_CASE , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=SCREAMING_SNAKE_CASE , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=SCREAMING_SNAKE_CASE , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=SCREAMING_SNAKE_CASE , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=SCREAMING_SNAKE_CASE , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=SCREAMING_SNAKE_CASE , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=SCREAMING_SNAKE_CASE , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=SCREAMING_SNAKE_CASE , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=SCREAMING_SNAKE_CASE , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=SCREAMING_SNAKE_CASE , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=SCREAMING_SNAKE_CASE , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=SCREAMING_SNAKE_CASE , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=SCREAMING_SNAKE_CASE , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=SCREAMING_SNAKE_CASE , default=5_0 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=SCREAMING_SNAKE_CASE , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=SCREAMING_SNAKE_CASE , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=SCREAMING_SNAKE_CASE , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=SCREAMING_SNAKE_CASE , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=SCREAMING_SNAKE_CASE , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=SCREAMING_SNAKE_CASE , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=SCREAMING_SNAKE_CASE , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=SCREAMING_SNAKE_CASE , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=SCREAMING_SNAKE_CASE , default=5_6 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=SCREAMING_SNAKE_CASE , default=5_0_0 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=SCREAMING_SNAKE_CASE , default=4_0_0_0 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE ) set_seed(SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = np.maximum(SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=SCREAMING_SNAKE_CASE , data=SCREAMING_SNAKE_CASE ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = student_model_class(SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=SCREAMING_SNAKE_CASE , dataset=SCREAMING_SNAKE_CASE , token_probs=SCREAMING_SNAKE_CASE , student=SCREAMING_SNAKE_CASE , teacher=SCREAMING_SNAKE_CASE ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A_ : Union[str, Any] = logging.get_logger(__name__) logging.set_verbosity_info() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = ['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCAmelCase = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCAmelCase = key.split('''.''' ) if attributes[0] == "lm_head": __UpperCAmelCase = prophet __UpperCAmelCase = prophet_old else: __UpperCAmelCase = prophet.prophetnet __UpperCAmelCase = prophet_old.model __UpperCAmelCase = False for attribute in attributes: if attribute in mapping: __UpperCAmelCase = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCAmelCase = attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) __UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) __UpperCAmelCase = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 __UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." __UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) __UpperCAmelCase = True break if attribute.isdigit(): __UpperCAmelCase = model[int(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = old_model[int(SCREAMING_SNAKE_CASE )] else: __UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __UpperCAmelCase = old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) __UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : int = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(SCREAMING_SNAKE_CASE ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class A_ ( _a ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "BlipImageProcessor" a__ = "AutoTokenizer" def __init__(self , lowercase__ , lowercase__ , lowercase__ ) -> Any: super().__init__(lowercase__ , lowercase__ ) # add QFormer tokenizer __UpperCAmelCase = qformer_tokenizer def __call__(self , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ) -> BatchFeature: if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) __UpperCAmelCase = BatchFeature() if text is not None: __UpperCAmelCase = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) encoding.update(lowercase__ ) __UpperCAmelCase = self.qformer_tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) __UpperCAmelCase = qformer_text_encoding.pop('''input_ids''' ) __UpperCAmelCase = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: __UpperCAmelCase = self.image_processor(lowercase__ , return_tensors=lowercase__ ) encoding.update(lowercase__ ) return encoding def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Dict: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Optional[Any]: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.tokenizer.model_input_names __UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase_ (self , lowercase__ , **lowercase__ ) -> Union[str, Any]: if os.path.isfile(lowercase__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) __UpperCAmelCase = os.path.join(lowercase__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(lowercase__ ) return super().save_pretrained(lowercase__ , **lowercase__ ) @classmethod def lowerCAmelCase_ (cls , lowercase__ , **lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = AutoTokenizer.from_pretrained(lowercase__ , subfolder='''qformer_tokenizer''' ) __UpperCAmelCase = cls._get_arguments_from_pretrained(lowercase__ , **lowercase__ ) args.append(lowercase__ ) return cls(*lowercase__ )
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) A_ : Any = logging.getLogger(__name__) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) A_ : Union[str, Any] = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, 'rb') as fp: A_ : Any = pickle.load(fp) logger.info('Counting occurrences for MLM.') A_ : Dict = Counter() for tk_ids in data: counter.update(tk_ids) A_ : List[Any] = [0] * args.vocab_size for k, v in counter.items(): A_ : Tuple = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A_ : List[str] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __UpperCAmelCase = get_sagemaker_input() else: __UpperCAmelCase = get_cluster_input() return config def __a ( SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''config''' , description=SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = get_user_input() if args.config_file is not None: __UpperCAmelCase = args.config_file else: if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def __a ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = config_command_parser() __UpperCAmelCase = parser.parse_args() config_command(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
class A_ : '''simple docstring''' def __init__(self ) -> List[str]: __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = {} def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: if vertex not in self.adjacency: __UpperCAmelCase = {} self.num_vertices += 1 def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: self.add_vertex(lowercase__ ) self.add_vertex(lowercase__ ) if head == tail: return __UpperCAmelCase = weight __UpperCAmelCase = weight def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.get_edges() for edge in edges: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase__ ) ): __UpperCAmelCase = list(edges[i] ) edges.sort(key=lambda lowercase__ : e[2] ) for i in range(len(lowercase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __UpperCAmelCase = edges[i][2] + 1 for edge in edges: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = edge __UpperCAmelCase = weight __UpperCAmelCase = weight def __str__(self ) -> Optional[Any]: __UpperCAmelCase = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __UpperCAmelCase = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip('''\n''' ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCAmelCase_ (self ) -> int: return self.adjacency.keys() @staticmethod def lowerCAmelCase_ (lowercase__=None , lowercase__=None ) -> Dict: __UpperCAmelCase = Graph() if vertices is None: __UpperCAmelCase = [] if edges is None: __UpperCAmelCase = [] for vertex in vertices: g.add_vertex(lowercase__ ) for edge in edges: g.add_edge(*lowercase__ ) return g class A_ : '''simple docstring''' def __init__(self ) -> List[Any]: __UpperCAmelCase = {} __UpperCAmelCase = {} def __len__(self ) -> Tuple: return len(self.parent ) def lowerCAmelCase_ (self , lowercase__ ) -> Tuple: if item in self.parent: return self.find(lowercase__ ) __UpperCAmelCase = item __UpperCAmelCase = 0 return item def lowerCAmelCase_ (self , lowercase__ ) -> Tuple: if item not in self.parent: return self.make_set(lowercase__ ) if item != self.parent[item]: __UpperCAmelCase = self.find(self.parent[item] ) return self.parent[item] def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.find(lowercase__ ) __UpperCAmelCase = self.find(lowercase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __UpperCAmelCase = roota return roota if self.rank[roota] < self.rank[roota]: __UpperCAmelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __UpperCAmelCase = roota return roota return None @staticmethod def lowerCAmelCase_ (lowercase__ ) -> Any: __UpperCAmelCase = graph.num_vertices __UpperCAmelCase = Graph.UnionFind() __UpperCAmelCase = [] while num_components > 1: __UpperCAmelCase = {} for vertex in graph.get_vertices(): __UpperCAmelCase = -1 __UpperCAmelCase = graph.get_edges() for edge in edges: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = edge __UpperCAmelCase = union_find.find(lowercase__ ) __UpperCAmelCase = union_find.find(lowercase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCAmelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCAmelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = cheap_edge[vertex] if union_find.find(lowercase__ ) != union_find.find(lowercase__ ): union_find.union(lowercase__ , lowercase__ ) mst_edges.append(cheap_edge[vertex] ) __UpperCAmelCase = num_components - 1 __UpperCAmelCase = Graph.build(edges=lowercase__ ) return mst
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : str = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ (cls ) -> int: __UpperCAmelCase = TOKEN HfFolder.save_token(lowercase__ ) @classmethod def lowerCAmelCase_ (cls ) -> Any: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __UpperCAmelCase = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase__ , repo_id='''test-config''' , push_to_hub=lowercase__ , use_auth_token=self._token ) __UpperCAmelCase = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowercase__ , use_auth_token=self._token ) __UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def lowerCAmelCase_ (self ) -> List[Any]: CustomConfig.register_for_auto_class() __UpperCAmelCase = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __UpperCAmelCase = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __UpperCAmelCase = c.n_embd + 1 # int __UpperCAmelCase = c.resid_pdrop + 1.0 # float __UpperCAmelCase = not c.scale_attn_weights # bool __UpperCAmelCase = c.summary_type + '''foo''' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowercase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowercase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowercase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowercase__ , c.summary_type , '''mismatch for key: summary_type''' ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = PretrainedConfig() __UpperCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __UpperCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase__ , lowercase__ )] if len(lowercase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F''' {', '.join(lowercase__ )}.''' ) def lowerCAmelCase_ (self ) -> Union[str, Any]: with self.assertRaises(lowercase__ ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowercase__ ) def lowerCAmelCase_ (self ) -> int: # A mock response for an HTTP head request to emulate server down __UpperCAmelCase = mock.Mock() __UpperCAmelCase = 500 __UpperCAmelCase = {} __UpperCAmelCase = HTTPError __UpperCAmelCase = {} # Download this model to make sure it's in the cache. __UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase__ ) as mock_head: __UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ (self ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __UpperCAmelCase = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = AutoConfig.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase__ ) __UpperCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __UpperCAmelCase = AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __UpperCAmelCase = ['''config.42.0.0.json'''] __UpperCAmelCase = 768 configuration.save_pretrained(lowercase__ ) shutil.move(os.path.join(lowercase__ , '''config.4.0.0.json''' ) , os.path.join(lowercase__ , '''config.42.0.0.json''' ) ) __UpperCAmelCase = AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def lowerCAmelCase_ (self ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __UpperCAmelCase = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __UpperCAmelCase = '''v4.0.0''' __UpperCAmelCase , __UpperCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase__ , return_unused_kwargs=lowercase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __UpperCAmelCase = '''v3.0.0''' __UpperCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
from typing import Dict, Optional import numpy as np import datasets A_ : Optional[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' A_ : str = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' A_ : Optional[Any] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> Optional[int]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase = new_id # turn into Numpy arrays __UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE ) if reduce_labels: __UpperCAmelCase = 2_5_5 __UpperCAmelCase = label - 1 __UpperCAmelCase = 2_5_5 __UpperCAmelCase = label != ignore_index __UpperCAmelCase = np.not_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = pred_label[mask] __UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE )[mask] __UpperCAmelCase = pred_label[pred_label == label] __UpperCAmelCase = np.histogram(SCREAMING_SNAKE_CASE , bins=SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] __UpperCAmelCase = np.histogram(SCREAMING_SNAKE_CASE , bins=SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] __UpperCAmelCase = np.histogram(SCREAMING_SNAKE_CASE , bins=SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] __UpperCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = intersect_and_union( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = total_intersect_and_union( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # compute metrics __UpperCAmelCase = {} __UpperCAmelCase = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase = total_area_intersect / total_area_union __UpperCAmelCase = total_area_intersect / total_area_label __UpperCAmelCase = np.nanmean(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = np.nanmean(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = all_acc __UpperCAmelCase = iou __UpperCAmelCase = acc if nan_to_num is not None: __UpperCAmelCase = {metric: np.nan_to_num(SCREAMING_SNAKE_CASE , nan=SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ) -> Optional[int]: __UpperCAmelCase = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser A_ : Dict = logging.getLogger(__name__) torch.set_grad_enabled(False) A_ : str = 'cuda' if torch.cuda.is_available() else 'cpu' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_0_0 , SCREAMING_SNAKE_CASE=" " ) -> List[str]: '''simple docstring''' __UpperCAmelCase = text.split(SCREAMING_SNAKE_CASE ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )] def __a ( SCREAMING_SNAKE_CASE ) -> dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE ): titles.append(title if title is not None else '''''' ) texts.append(SCREAMING_SNAKE_CASE ) return {"title": titles, "text": texts} def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> dict: '''simple docstring''' __UpperCAmelCase = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] __UpperCAmelCase = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE ) , return_dict=SCREAMING_SNAKE_CASE ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __UpperCAmelCase = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __UpperCAmelCase = dataset.map(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , num_proc=processing_args.num_proc ) # And compute the embeddings __UpperCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __UpperCAmelCase = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space __UpperCAmelCase = dataset.map( partial(SCREAMING_SNAKE_CASE , ctx_encoder=SCREAMING_SNAKE_CASE , ctx_tokenizer=SCREAMING_SNAKE_CASE ) , batched=SCREAMING_SNAKE_CASE , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE , ) # And finally save your dataset __UpperCAmelCase = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(SCREAMING_SNAKE_CASE ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __UpperCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=SCREAMING_SNAKE_CASE ) # And save the index __UpperCAmelCase = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(SCREAMING_SNAKE_CASE ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A_ : '''simple docstring''' a__ = field( default=str(Path(_a ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) a__ = field( default=_a , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) a__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) a__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) a__ = field( default=str(Path(_a ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class A_ : '''simple docstring''' a__ = field( default=_a , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) a__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class A_ : '''simple docstring''' a__ = field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) a__ = field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) A_ : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) A_ , A_ , A_ : Any = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: A_ : Optional[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
from scipy.stats import pearsonr import datasets A_ : List[Any] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' A_ : str = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' A_ : List[Any] = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__=False ) -> str: if return_pvalue: __UpperCAmelCase = pearsonr(lowercase__ , lowercase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase__ , lowercase__ )[0] )}
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Dict = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class A_ ( _a ): '''simple docstring''' a__ = "dpr" def __init__(self , lowercase__=30_522 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase__ , **lowercase__ ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = projection_dim __UpperCAmelCase = position_embedding_type
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import sys import turtle def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , depth - 1 ) triangle(SCREAMING_SNAKE_CASE , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , depth - 1 ) triangle(SCREAMING_SNAKE_CASE , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) A_ : Optional[Any] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') A_ : Optional[Any] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = '''ZinengTang/tvlt-base''' __UpperCAmelCase = tempfile.mkdtemp() def lowerCAmelCase_ (self , **lowercase__ ) -> Optional[int]: return TvltImageProcessor.from_pretrained(self.checkpoint , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> List[str]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) self.assertIsInstance(processor.image_processor , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ ) __UpperCAmelCase = np.ones([12_000] ) __UpperCAmelCase = feature_extractor(lowercase__ , return_tensors='''np''' ) __UpperCAmelCase = processor(audio=lowercase__ , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ ) __UpperCAmelCase = np.ones([3, 224, 224] ) __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''np''' ) __UpperCAmelCase = processor(images=lowercase__ , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ ) __UpperCAmelCase = np.ones([12_000] ) __UpperCAmelCase = np.ones([3, 224, 224] ) __UpperCAmelCase = processor(audio=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = params __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = np.array([len(lowercase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__(self , lowercase__ ) -> Any: return (self.token_ids[index], self.lengths[index]) def __len__(self ) -> Optional[int]: return len(self.lengths ) def lowerCAmelCase_ (self ) -> Optional[Any]: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.params.max_model_input_size __UpperCAmelCase = self.lengths > max_len logger.info(F'''Splitting {sum(lowercase__ )} too long sequences.''' ) def divide_chunks(lowercase__ , lowercase__ ): return [l[i : i + n] for i in range(0 , len(lowercase__ ) , lowercase__ )] __UpperCAmelCase = [] __UpperCAmelCase = [] if self.params.mlm: __UpperCAmelCase , __UpperCAmelCase = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: __UpperCAmelCase , __UpperCAmelCase = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __UpperCAmelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __UpperCAmelCase = np.insert(lowercase__ , 0 , lowercase__ ) if sub_s[-1] != sep_id: __UpperCAmelCase = np.insert(lowercase__ , len(lowercase__ ) , lowercase__ ) assert len(lowercase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase__ ) new_tok_ids.extend(lowercase__ ) new_lengths.extend([len(lowercase__ ) for l in sub_seqs] ) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = len(self ) __UpperCAmelCase = self.lengths > 11 __UpperCAmelCase = self.token_ids[indices] __UpperCAmelCase = self.lengths[indices] __UpperCAmelCase = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowerCAmelCase_ (self ) -> Any: if "unk_token" not in self.params.special_tok_ids: return else: __UpperCAmelCase = self.params.special_tok_ids['''unk_token'''] __UpperCAmelCase = len(self ) __UpperCAmelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __UpperCAmelCase = (unk_occs / self.lengths) < 0.5 __UpperCAmelCase = self.token_ids[indices] __UpperCAmelCase = self.lengths[indices] __UpperCAmelCase = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowerCAmelCase_ (self ) -> Dict: if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowerCAmelCase_ (self , lowercase__ ) -> int: __UpperCAmelCase = [t[0] for t in batch] __UpperCAmelCase = [t[1] for t in batch] assert len(lowercase__ ) == len(lowercase__ ) # Max for paddings __UpperCAmelCase = max(lowercase__ ) # Pad token ids if self.params.mlm: __UpperCAmelCase = self.params.special_tok_ids['''pad_token'''] else: __UpperCAmelCase = self.params.special_tok_ids['''unk_token'''] __UpperCAmelCase = [list(t.astype(lowercase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase__ )) for t in token_ids] assert len(tk_ ) == len(lowercase__ ) assert all(len(lowercase__ ) == max_seq_len_ for t in tk_ ) __UpperCAmelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) __UpperCAmelCase = torch.tensor(lowercase__ ) # (bs) return tk_t, lg_t
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: __UpperCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
import requests from bsa import BeautifulSoup def __a ( SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' __UpperCAmelCase = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) __UpperCAmelCase = soup.findAll('''h1''' ) __UpperCAmelCase = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = SamImageProcessor() __UpperCAmelCase = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ (self , **lowercase__ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def lowerCAmelCase_ (self ) -> str: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) __UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = SamProcessor(image_processor=lowercase__ ) __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''np''' ) __UpperCAmelCase = processor(images=lowercase__ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = SamProcessor(image_processor=lowercase__ ) __UpperCAmelCase = [torch.ones((1, 3, 5, 5) )] __UpperCAmelCase = [[1_764, 2_646]] __UpperCAmelCase = [[683, 1_024]] __UpperCAmelCase = processor.post_process_masks(lowercase__ , lowercase__ , lowercase__ ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __UpperCAmelCase = processor.post_process_masks( lowercase__ , torch.tensor(lowercase__ ) , torch.tensor(lowercase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __UpperCAmelCase = [np.ones((1, 3, 5, 5) )] __UpperCAmelCase = processor.post_process_masks(lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(lowercase__ ): __UpperCAmelCase = processor.post_process_masks(lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) ) @require_vision @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = SamImageProcessor() __UpperCAmelCase = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ (self , **lowercase__ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def lowerCAmelCase_ (self ) -> Any: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) __UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = SamProcessor(image_processor=lowercase__ ) __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''np''' ) __UpperCAmelCase = processor(images=lowercase__ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = SamProcessor(image_processor=lowercase__ ) __UpperCAmelCase = [tf.ones((1, 3, 5, 5) )] __UpperCAmelCase = [[1_764, 2_646]] __UpperCAmelCase = [[683, 1_024]] __UpperCAmelCase = processor.post_process_masks(lowercase__ , lowercase__ , lowercase__ , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __UpperCAmelCase = processor.post_process_masks( lowercase__ , tf.convert_to_tensor(lowercase__ ) , tf.convert_to_tensor(lowercase__ ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __UpperCAmelCase = [np.ones((1, 3, 5, 5) )] __UpperCAmelCase = processor.post_process_masks( lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __UpperCAmelCase = processor.post_process_masks( lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) , return_tensors='''tf''' ) @require_vision @require_torchvision class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = SamImageProcessor() __UpperCAmelCase = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ (self , **lowercase__ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def lowerCAmelCase_ (self ) -> str: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = SamProcessor(image_processor=lowercase__ ) __UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __UpperCAmelCase = [tf.convert_to_tensor(lowercase__ )] __UpperCAmelCase = [torch.tensor(lowercase__ )] __UpperCAmelCase = [[1_764, 2_646]] __UpperCAmelCase = [[683, 1_024]] __UpperCAmelCase = processor.post_process_masks( lowercase__ , lowercase__ , lowercase__ , return_tensors='''tf''' ) __UpperCAmelCase = processor.post_process_masks( lowercase__ , lowercase__ , lowercase__ , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = SamProcessor(image_processor=lowercase__ ) __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''pt''' )['''pixel_values'''].numpy() __UpperCAmelCase = processor(images=lowercase__ , return_tensors='''pt''' )['''pixel_values'''].numpy() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''tf''' )['''pixel_values'''].numpy() __UpperCAmelCase = processor(images=lowercase__ , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) )
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A_ ( _a ): '''simple docstring''' def __get__(self , lowercase__ , lowercase__=None ) -> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) __UpperCAmelCase = '''__cached_''' + self.fget.__name__ __UpperCAmelCase = getattr(lowercase__ , lowercase__ , lowercase__ ) if cached is None: __UpperCAmelCase = self.fget(lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) return cached def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if is_torch_fx_proxy(SCREAMING_SNAKE_CASE ): return True if is_torch_available(): import torch if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(SCREAMING_SNAKE_CASE , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(SCREAMING_SNAKE_CASE , (jnp.ndarray, Tracer) ): return True return isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' return _is_numpy(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' import torch return isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return False if not is_torch_available() else _is_torch(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' import torch return isinstance(SCREAMING_SNAKE_CASE , torch.device ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' import torch if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return False return isinstance(SCREAMING_SNAKE_CASE , torch.dtype ) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' import tensorflow as tf return isinstance(SCREAMING_SNAKE_CASE , tf.Tensor ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(SCREAMING_SNAKE_CASE , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(SCREAMING_SNAKE_CASE ) return type(SCREAMING_SNAKE_CASE ) == tf.Tensor def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(SCREAMING_SNAKE_CASE , jnp.ndarray ) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return False if not is_flax_available() else _is_jax(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , (dict, UserDict) ): return {k: to_py_obj(SCREAMING_SNAKE_CASE ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_py_obj(SCREAMING_SNAKE_CASE ) for o in obj] elif is_tf_tensor(SCREAMING_SNAKE_CASE ): return obj.numpy().tolist() elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return obj.detach().cpu().tolist() elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return np.asarray(SCREAMING_SNAKE_CASE ).tolist() elif isinstance(SCREAMING_SNAKE_CASE , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , (dict, UserDict) ): return {k: to_numpy(SCREAMING_SNAKE_CASE ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): return np.array(SCREAMING_SNAKE_CASE ) elif is_tf_tensor(SCREAMING_SNAKE_CASE ): return obj.numpy() elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return obj.detach().cpu().numpy() elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return np.asarray(SCREAMING_SNAKE_CASE ) else: return obj class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = fields(self ) # Safety and consistency checks if not len(lowercase__ ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) __UpperCAmelCase = getattr(self , class_fields[0].name ) __UpperCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = first_field.items() __UpperCAmelCase = True else: try: __UpperCAmelCase = iter(lowercase__ ) __UpperCAmelCase = True except TypeError: __UpperCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase__ ): if ( not isinstance(lowercase__ , (list, tuple) ) or not len(lowercase__ ) == 2 or not isinstance(element[0] , lowercase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __UpperCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __UpperCAmelCase = element[1] elif first_field is not None: __UpperCAmelCase = first_field else: for field in class_fields: __UpperCAmelCase = getattr(self , field.name ) if v is not None: __UpperCAmelCase = v def __delitem__(self , *lowercase__ , **lowercase__ ) -> Optional[int]: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> str: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> List[str]: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__(self , lowercase__ ) -> Any: if isinstance(lowercase__ , lowercase__ ): __UpperCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self , lowercase__ , lowercase__ ) -> Any: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase__ , lowercase__ ) super().__setattr__(lowercase__ , lowercase__ ) def __setitem__(self , lowercase__ , lowercase__ ) -> Union[str, Any]: # Will raise a KeyException if needed super().__setitem__(lowercase__ , lowercase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class A_ ( _a , _a ): '''simple docstring''' @classmethod def lowerCAmelCase_ (cls , lowercase__ ) -> Any: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class A_ ( _a ): '''simple docstring''' a__ = "longest" a__ = "max_length" a__ = "do_not_pad" class A_ ( _a ): '''simple docstring''' a__ = "pt" a__ = "tf" a__ = "np" a__ = "jax" class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> Tuple: __UpperCAmelCase = context_managers __UpperCAmelCase = ExitStack() def __enter__(self ) -> Optional[int]: for context_manager in self.context_managers: self.stack.enter_context(lowercase__ ) def __exit__(self , *lowercase__ , **lowercase__ ) -> Optional[int]: self.stack.__exit__(*lowercase__ , **lowercase__ ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = infer_framework(SCREAMING_SNAKE_CASE ) if framework == "tf": __UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: __UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = model_class.__name__ __UpperCAmelCase = infer_framework(SCREAMING_SNAKE_CASE ) if framework == "tf": __UpperCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: __UpperCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE = "." ) -> List[str]: '''simple docstring''' def _flatten_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE="." ): for k, v in d.items(): __UpperCAmelCase = str(SCREAMING_SNAKE_CASE ) + delimiter + str(SCREAMING_SNAKE_CASE ) if parent_key else k if v and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): yield from flatten_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , delimiter=SCREAMING_SNAKE_CASE ).items() else: yield key, v return dict(_flatten_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) @contextmanager def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Tuple: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE ): return np.transpose(SCREAMING_SNAKE_CASE , axes=SCREAMING_SNAKE_CASE ) elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return array.T if axes is None else array.permute(*SCREAMING_SNAKE_CASE ) elif is_tf_tensor(SCREAMING_SNAKE_CASE ): import tensorflow as tf return tf.transpose(SCREAMING_SNAKE_CASE , perm=SCREAMING_SNAKE_CASE ) elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return jnp.transpose(SCREAMING_SNAKE_CASE , axes=SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Type not supported for transpose: {type(SCREAMING_SNAKE_CASE )}.''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE ): return np.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return array.reshape(*SCREAMING_SNAKE_CASE ) elif is_tf_tensor(SCREAMING_SNAKE_CASE ): import tensorflow as tf return tf.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return jnp.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Type not supported for reshape: {type(SCREAMING_SNAKE_CASE )}.''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE ): return np.squeeze(SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE ) elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return array.squeeze() if axis is None else array.squeeze(dim=SCREAMING_SNAKE_CASE ) elif is_tf_tensor(SCREAMING_SNAKE_CASE ): import tensorflow as tf return tf.squeeze(SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE ) elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return jnp.squeeze(SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Type not supported for squeeze: {type(SCREAMING_SNAKE_CASE )}.''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE ): return np.expand_dims(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return array.unsqueeze(dim=SCREAMING_SNAKE_CASE ) elif is_tf_tensor(SCREAMING_SNAKE_CASE ): import tensorflow as tf return tf.expand_dims(SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE ) elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return jnp.expand_dims(SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE )}.''' ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if is_numpy_array(SCREAMING_SNAKE_CASE ): return np.size(SCREAMING_SNAKE_CASE ) elif is_torch_tensor(SCREAMING_SNAKE_CASE ): return array.numel() elif is_tf_tensor(SCREAMING_SNAKE_CASE ): import tensorflow as tf return tf.size(SCREAMING_SNAKE_CASE ) elif is_jax_tensor(SCREAMING_SNAKE_CASE ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE )}.''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(SCREAMING_SNAKE_CASE , (tuple, list) ): __UpperCAmelCase = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: __UpperCAmelCase = f'''{repo_id}--{value}''' return auto_map def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' for base_class in inspect.getmro(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = base_class.__module__ __UpperCAmelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller A_ : int = 3 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' print('''Generating primitive root of p''' ) while True: __UpperCAmelCase = random.randrange(3 , SCREAMING_SNAKE_CASE ) if pow(SCREAMING_SNAKE_CASE , 2 , SCREAMING_SNAKE_CASE ) == 1: continue if pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) == 1: continue return g def __a ( SCREAMING_SNAKE_CASE ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('''Generating prime p...''' ) __UpperCAmelCase = rabin_miller.generate_large_prime(SCREAMING_SNAKE_CASE ) # select large prime number. __UpperCAmelCase = primitive_root(SCREAMING_SNAKE_CASE ) # one primitive root on modulo p. __UpperCAmelCase = random.randrange(3 , SCREAMING_SNAKE_CASE ) # private_key -> have to be greater than 2 for safety. __UpperCAmelCase = cryptomath.find_mod_inverse(pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = (key_size, e_a, e_a, p) __UpperCAmelCase = (key_size, d) return public_key, private_key def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __UpperCAmelCase , __UpperCAmelCase = generate_key(SCREAMING_SNAKE_CASE ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , '''w''' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , '''w''' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def __a ( ) -> None: '''simple docstring''' print('''Making key files...''' ) make_key_files('''elgamal''' , 2_0_4_8 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType A_ : List[str] = logging.get_logger(__name__) A_ : Union[str, Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class A_ ( _a ): '''simple docstring''' a__ = "imagegpt" a__ = ["past_key_values"] a__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , lowercase__=512 + 1 , lowercase__=32 * 32 , lowercase__=512 , lowercase__=24 , lowercase__=8 , lowercase__=None , lowercase__="quick_gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1E-5 , lowercase__=0.02 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Union[str, Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = n_inner __UpperCAmelCase = activation_function __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = scale_attn_weights __UpperCAmelCase = use_cache __UpperCAmelCase = scale_attn_by_inverse_layer_idx __UpperCAmelCase = reorder_and_upcast_attn __UpperCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase__ , **lowercase__ ) class A_ ( _a ): '''simple docstring''' @property def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = 1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 32 , lowercase__ = 32 , ) -> Mapping[str, Any]: __UpperCAmelCase = self._generate_dummy_images(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = dict(preprocessor(images=lowercase__ , return_tensors=lowercase__ ) ) return inputs
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A_ ( _a ): '''simple docstring''' a__ = 42 a__ = jnp.floataa a__ = True def lowerCAmelCase_ (self ) -> Optional[int]: super().setup() __UpperCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__(self , *lowercase__ , **lowercase__ ) -> Tuple: __UpperCAmelCase = super().__call__(*lowercase__ , **lowercase__ ) __UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A_ ( _a ): '''simple docstring''' a__ = FlaxBigBirdForNaturalQuestionsModule def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' def cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): __UpperCAmelCase = logits.shape[-1] __UpperCAmelCase = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE )[None]).astype('''f4''' ) __UpperCAmelCase = jax.nn.log_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) __UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __UpperCAmelCase = reduction(SCREAMING_SNAKE_CASE ) return loss __UpperCAmelCase = partial(SCREAMING_SNAKE_CASE , reduction=jnp.mean ) __UpperCAmelCase = cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = cross_entropy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A_ : '''simple docstring''' a__ = "google/bigbird-roberta-base" a__ = 30_00 a__ = 1_05_00 a__ = 1_28 a__ = 3 a__ = 1 a__ = 5 # tx_args a__ = 3e-5 a__ = 0.0 a__ = 2_00_00 a__ = 0.00_95 a__ = "bigbird-roberta-natural-questions" a__ = "training-expt" a__ = "data/nq-training.jsonl" a__ = "data/nq-validation.jsonl" def lowerCAmelCase_ (self ) -> Optional[int]: os.makedirs(self.base_dir , exist_ok=lowercase__ ) __UpperCAmelCase = os.path.join(self.base_dir , self.save_dir ) __UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 40_96 # no dynamic padding on TPUs def __call__(self , lowercase__ ) -> int: __UpperCAmelCase = self.collate_fn(lowercase__ ) __UpperCAmelCase = jax.tree_util.tree_map(lowercase__ , lowercase__ ) return batch def lowerCAmelCase_ (self , lowercase__ ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.fetch_inputs(features['''input_ids'''] ) __UpperCAmelCase = { '''input_ids''': jnp.array(lowercase__ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowercase__ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowerCAmelCase_ (self , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = [self._fetch_inputs(lowercase__ ) for ids in input_ids] return zip(*lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = [1 for _ in range(len(lowercase__ ) )] while len(lowercase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' if seed is not None: __UpperCAmelCase = dataset.shuffle(seed=SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) // batch_size ): __UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE ) @partial(jax.pmap , axis_name='''batch''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' def loss_fn(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = model_inputs.pop('''start_labels''' ) __UpperCAmelCase = model_inputs.pop('''end_labels''' ) __UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) __UpperCAmelCase = state.apply_fn(**SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE , dropout_rng=SCREAMING_SNAKE_CASE , train=SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = outputs return state.loss_fn( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) __UpperCAmelCase , __UpperCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = jax.value_and_grad(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = grad_fn(state.params ) __UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __UpperCAmelCase = jax.lax.pmean(SCREAMING_SNAKE_CASE , '''batch''' ) __UpperCAmelCase = state.apply_gradients(grads=SCREAMING_SNAKE_CASE ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __a ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = model_inputs.pop('''start_labels''' ) __UpperCAmelCase = model_inputs.pop('''end_labels''' ) __UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) __UpperCAmelCase = state.apply_fn(**SCREAMING_SNAKE_CASE , params=state.params , train=SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = outputs __UpperCAmelCase = state.loss_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class A_ ( train_state.TrainState ): '''simple docstring''' a__ = struct.field(pytree_node=_a ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = None def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ) -> int: __UpperCAmelCase = model.params __UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , loss_fn=lowercase__ , ) if ckpt_dir is not None: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = restore_checkpoint(lowercase__ , lowercase__ ) __UpperCAmelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __UpperCAmelCase , __UpperCAmelCase = build_tx(**lowercase__ ) __UpperCAmelCase = train_state.TrainState( step=lowercase__ , apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , opt_state=lowercase__ , ) __UpperCAmelCase = args __UpperCAmelCase = data_collator __UpperCAmelCase = lr __UpperCAmelCase = params __UpperCAmelCase = jax_utils.replicate(lowercase__ ) return state def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = self.args __UpperCAmelCase = len(lowercase__ ) // args.batch_size __UpperCAmelCase = jax.random.PRNGKey(0 ) __UpperCAmelCase = jax.random.split(lowercase__ , jax.device_count() ) for epoch in range(args.max_epochs ): __UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __UpperCAmelCase = get_batched_dataset(lowercase__ , args.batch_size , seed=lowercase__ ) __UpperCAmelCase = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc=F'''Running EPOCH-{epoch}''' ): __UpperCAmelCase = self.data_collator(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.train_step_fn(lowercase__ , lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __UpperCAmelCase = jax_utils.unreplicate(state.step ) __UpperCAmelCase = running_loss.item() / i __UpperCAmelCase = self.scheduler_fn(state_step - 1 ) __UpperCAmelCase = self.evaluate(lowercase__ , lowercase__ ) __UpperCAmelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowercase__ ) ) self.logger.log(lowercase__ , commit=lowercase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Tuple: __UpperCAmelCase = get_batched_dataset(lowercase__ , self.args.batch_size ) __UpperCAmelCase = len(lowercase__ ) // self.args.batch_size __UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __UpperCAmelCase = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc='''Evaluating ... ''' ): __UpperCAmelCase = self.data_collator(lowercase__ ) __UpperCAmelCase = self.val_step_fn(lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Any: __UpperCAmelCase = jax_utils.unreplicate(lowercase__ ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(lowercase__ , params=state.params ) with open(os.path.join(lowercase__ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowercase__ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowercase__ , '''data_collator.joblib''' ) ) with open(os.path.join(lowercase__ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowercase__ ) print('''DONE''' ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''flax_model.msgpack''' ) , '''rb''' ) as f: __UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''opt_state.msgpack''' ) , '''rb''' ) as f: __UpperCAmelCase = from_bytes(state.opt_state , f.read() ) __UpperCAmelCase = joblib.load(os.path.join(SCREAMING_SNAKE_CASE , '''args.joblib''' ) ) __UpperCAmelCase = joblib.load(os.path.join(SCREAMING_SNAKE_CASE , '''data_collator.joblib''' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''training_state.json''' ) , '''r''' ) as f: __UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = num_train_steps - warmup_steps __UpperCAmelCase = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE , end_value=SCREAMING_SNAKE_CASE , transition_steps=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' def weight_decay_mask(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = scheduler_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE , weight_decay=SCREAMING_SNAKE_CASE , mask=SCREAMING_SNAKE_CASE ) return tx, lr
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Dict = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : Tuple = concatenate_datasets A_ : Union[str, Any] = DownloadConfig A_ : Any = DownloadManager A_ : Any = DownloadMode A_ : int = DownloadConfig A_ : int = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class A_ ( _a ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: with open(lowercase__ , encoding='''utf-8''' ) as input_file: __UpperCAmelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) __UpperCAmelCase = input_file.read() __UpperCAmelCase = regexp.search(lowercase__ ) return match def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: with open(lowercase__ , encoding='''utf-8''' ) as input_file: __UpperCAmelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) __UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __UpperCAmelCase = regexp.finditer(lowercase__ ) __UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = Path('''./datasets''' ) __UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowercase__ ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = Path('''./datasets''' ) __UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowercase__ ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Initialise PyTorch model __UpperCAmelCase = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase = FunnelBaseModel(SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) A_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
from typing import Union import fire import torch from tqdm import tqdm def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "cpu" , SCREAMING_SNAKE_CASE = None ) -> None: '''simple docstring''' __UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) __UpperCAmelCase = v.half() if save_path is None: # overwrite src_path __UpperCAmelCase = src_path torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') A_ : Dict = logging.getLogger(__name__) @dataclass class A_ : '''simple docstring''' a__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ = field( default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a__ = field( default=_a , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) a__ = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a__ = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) a__ = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class A_ : '''simple docstring''' a__ = field( default=_a , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a__ = field( default=_a , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) a__ = field( default=_a , metadata={"help": "Train language if it is different from the evaluation language."} ) a__ = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a__ = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a__ = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a__ = field( default=_a , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) a__ = field( default=_a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a__ = field( default=_a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a__ = field( default=_a , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __a ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __UpperCAmelCase = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCAmelCase = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase = train_dataset.features['''label'''].names if training_args.do_eval: __UpperCAmelCase = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase = eval_dataset.features['''label'''].names if training_args.do_predict: __UpperCAmelCase = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase = predict_dataset.features['''label'''].names # Labels __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel={str(SCREAMING_SNAKE_CASE ): label for i, label in enumerate(SCREAMING_SNAKE_CASE )} , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __UpperCAmelCase = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __UpperCAmelCase = False def preprocess_function(SCREAMING_SNAKE_CASE ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length , truncation=SCREAMING_SNAKE_CASE , ) if training_args.do_train: if data_args.max_train_samples is not None: __UpperCAmelCase = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) __UpperCAmelCase = train_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): __UpperCAmelCase = train_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __UpperCAmelCase = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_eval_samples ) __UpperCAmelCase = eval_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): __UpperCAmelCase = eval_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __UpperCAmelCase = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_predict_samples ) __UpperCAmelCase = predict_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): __UpperCAmelCase = predict_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function __UpperCAmelCase = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , SCREAMING_SNAKE_CASE ) else p.predictions __UpperCAmelCase = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __UpperCAmelCase = default_data_collator elif training_args.fpaa: __UpperCAmelCase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) else: __UpperCAmelCase = None # Initialize our Trainer __UpperCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase = last_checkpoint __UpperCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = train_result.metrics __UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''train''' , SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = trainer.predict(SCREAMING_SNAKE_CASE , metric_key_prefix='''predict''' ) __UpperCAmelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics('''predict''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''predict''' , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) __UpperCAmelCase = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A_ : Optional[int] = None A_ : Dict = logging.get_logger(__name__) A_ : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } A_ : Union[str, Any] = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } A_ : str = '▁' class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = BigBirdTokenizer a__ = ["input_ids", "attention_mask"] a__ = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__="[SEP]" , lowercase__="[MASK]" , lowercase__="[CLS]" , **lowercase__ , ) -> str: __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , **lowercase__ , ) __UpperCAmelCase = vocab_file __UpperCAmelCase = False if not self.vocab_file else True def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A_ ( _a ): '''simple docstring''' a__ = 42 class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__=3 , lowercase__=3 , lowercase__=("DownEncoderBlock2D",) , lowercase__=(64,) , lowercase__=2 , lowercase__=32 , lowercase__="silu" , lowercase__=True , ) -> Optional[Any]: super().__init__() __UpperCAmelCase = layers_per_block __UpperCAmelCase = torch.nn.Convad( lowercase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __UpperCAmelCase = None __UpperCAmelCase = nn.ModuleList([] ) # down __UpperCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(lowercase__ ): __UpperCAmelCase = output_channel __UpperCAmelCase = block_out_channels[i] __UpperCAmelCase = i == len(lowercase__ ) - 1 __UpperCAmelCase = get_down_block( lowercase__ , num_layers=self.layers_per_block , in_channels=lowercase__ , out_channels=lowercase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowercase__ , resnet_groups=lowercase__ , attention_head_dim=lowercase__ , temb_channels=lowercase__ , ) self.down_blocks.append(lowercase__ ) # mid __UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase__ , temb_channels=lowercase__ , ) # out __UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase__ , eps=1E-6 ) __UpperCAmelCase = nn.SiLU() __UpperCAmelCase = 2 * out_channels if double_z else out_channels __UpperCAmelCase = nn.Convad(block_out_channels[-1] , lowercase__ , 3 , padding=1 ) __UpperCAmelCase = False def lowerCAmelCase_ (self , lowercase__ ) -> Any: __UpperCAmelCase = x __UpperCAmelCase = self.conv_in(lowercase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase__ ): def custom_forward(*lowercase__ ): return module(*lowercase__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: __UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase__ ) , lowercase__ , use_reentrant=lowercase__ ) # middle __UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase__ , use_reentrant=lowercase__ ) else: for down_block in self.down_blocks: __UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase__ ) , lowercase__ ) # middle __UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase__ ) else: # down for down_block in self.down_blocks: __UpperCAmelCase = down_block(lowercase__ ) # middle __UpperCAmelCase = self.mid_block(lowercase__ ) # post-process __UpperCAmelCase = self.conv_norm_out(lowercase__ ) __UpperCAmelCase = self.conv_act(lowercase__ ) __UpperCAmelCase = self.conv_out(lowercase__ ) return sample class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__=3 , lowercase__=3 , lowercase__=("UpDecoderBlock2D",) , lowercase__=(64,) , lowercase__=2 , lowercase__=32 , lowercase__="silu" , lowercase__="group" , ) -> Optional[Any]: super().__init__() __UpperCAmelCase = layers_per_block __UpperCAmelCase = nn.Convad( lowercase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __UpperCAmelCase = None __UpperCAmelCase = nn.ModuleList([] ) __UpperCAmelCase = in_channels if norm_type == '''spatial''' else None # mid __UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase__ , temb_channels=lowercase__ , ) # up __UpperCAmelCase = list(reversed(lowercase__ ) ) __UpperCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowercase__ ): __UpperCAmelCase = output_channel __UpperCAmelCase = reversed_block_out_channels[i] __UpperCAmelCase = i == len(lowercase__ ) - 1 __UpperCAmelCase = get_up_block( lowercase__ , num_layers=self.layers_per_block + 1 , in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowercase__ , resnet_groups=lowercase__ , attention_head_dim=lowercase__ , temb_channels=lowercase__ , resnet_time_scale_shift=lowercase__ , ) self.up_blocks.append(lowercase__ ) __UpperCAmelCase = output_channel # out if norm_type == "spatial": __UpperCAmelCase = SpatialNorm(block_out_channels[0] , lowercase__ ) else: __UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase__ , eps=1E-6 ) __UpperCAmelCase = nn.SiLU() __UpperCAmelCase = nn.Convad(block_out_channels[0] , lowercase__ , 3 , padding=1 ) __UpperCAmelCase = False def lowerCAmelCase_ (self , lowercase__ , lowercase__=None ) -> int: __UpperCAmelCase = z __UpperCAmelCase = self.conv_in(lowercase__ ) __UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase__ ): def custom_forward(*lowercase__ ): return module(*lowercase__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle __UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase__ , lowercase__ , use_reentrant=lowercase__ ) __UpperCAmelCase = sample.to(lowercase__ ) # up for up_block in self.up_blocks: __UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase__ ) , lowercase__ , lowercase__ , use_reentrant=lowercase__ ) else: # middle __UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase__ , lowercase__ ) __UpperCAmelCase = sample.to(lowercase__ ) # up for up_block in self.up_blocks: __UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase__ ) , lowercase__ , lowercase__ ) else: # middle __UpperCAmelCase = self.mid_block(lowercase__ , lowercase__ ) __UpperCAmelCase = sample.to(lowercase__ ) # up for up_block in self.up_blocks: __UpperCAmelCase = up_block(lowercase__ , lowercase__ ) # post-process if latent_embeds is None: __UpperCAmelCase = self.conv_norm_out(lowercase__ ) else: __UpperCAmelCase = self.conv_norm_out(lowercase__ , lowercase__ ) __UpperCAmelCase = self.conv_act(lowercase__ ) __UpperCAmelCase = self.conv_out(lowercase__ ) return sample class A_ ( nn.Module ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__="random" , lowercase__=False , lowercase__=True ) -> Tuple: super().__init__() __UpperCAmelCase = n_e __UpperCAmelCase = vq_embed_dim __UpperCAmelCase = beta __UpperCAmelCase = legacy __UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __UpperCAmelCase = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) __UpperCAmelCase = self.used.shape[0] __UpperCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __UpperCAmelCase = self.re_embed __UpperCAmelCase = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: __UpperCAmelCase = n_e __UpperCAmelCase = sane_index_shape def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = inds.shape assert len(lowercase__ ) > 1 __UpperCAmelCase = inds.reshape(ishape[0] , -1 ) __UpperCAmelCase = self.used.to(lowercase__ ) __UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __UpperCAmelCase = match.argmax(-1 ) __UpperCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __UpperCAmelCase = self.unknown_index return new.reshape(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Any: __UpperCAmelCase = inds.shape assert len(lowercase__ ) > 1 __UpperCAmelCase = inds.reshape(ishape[0] , -1 ) __UpperCAmelCase = self.used.to(lowercase__ ) if self.re_embed > self.used.shape[0]: # extra token __UpperCAmelCase = 0 # simply set to zero __UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase__ ) return back.reshape(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Any: # reshape z -> (batch, height, width, channel) and flatten __UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() __UpperCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __UpperCAmelCase = torch.argmin(torch.cdist(lowercase__ , self.embedding.weight ) , dim=1 ) __UpperCAmelCase = self.embedding(lowercase__ ).view(z.shape ) __UpperCAmelCase = None __UpperCAmelCase = None # compute loss for embedding if not self.legacy: __UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __UpperCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __UpperCAmelCase = self.remap_to_used(lowercase__ ) __UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Dict: # shape specifying (batch, height, width, channel) if self.remap is not None: __UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis __UpperCAmelCase = self.unmap_to_all(lowercase__ ) __UpperCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __UpperCAmelCase = self.embedding(lowercase__ ) if shape is not None: __UpperCAmelCase = z_q.view(lowercase__ ) # reshape back to match original input shape __UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__=False ) -> Tuple: __UpperCAmelCase = parameters __UpperCAmelCase , __UpperCAmelCase = torch.chunk(lowercase__ , 2 , dim=1 ) __UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) __UpperCAmelCase = deterministic __UpperCAmelCase = torch.exp(0.5 * self.logvar ) __UpperCAmelCase = torch.exp(self.logvar ) if self.deterministic: __UpperCAmelCase = __UpperCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase_ (self , lowercase__ = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype __UpperCAmelCase = randn_tensor( self.mean.shape , generator=lowercase__ , device=self.parameters.device , dtype=self.parameters.dtype ) __UpperCAmelCase = self.mean + self.std * sample return x def lowerCAmelCase_ (self , lowercase__=None ) -> Any: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=[1, 2, 3] ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) __UpperCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: return self.mean
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_a ) class A_ ( _a ): '''simple docstring''' a__ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a__ = Features({"text": Value("string" )} ) a__ = Features({"labels": ClassLabel} ) a__ = "text" a__ = "labels" def lowerCAmelCase_ (self , lowercase__ ) -> str: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCAmelCase = copy.deepcopy(self ) __UpperCAmelCase = self.label_schema.copy() __UpperCAmelCase = features[self.label_column] __UpperCAmelCase = label_schema return task_template @property def lowerCAmelCase_ (self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
import os def __a ( SCREAMING_SNAKE_CASE = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) as input_file: __UpperCAmelCase = [ [int(SCREAMING_SNAKE_CASE ) for element in line.split(''',''' )] for line in input_file.readlines() ] __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = len(matrix[0] ) __UpperCAmelCase = [[-1 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = matrix[i][0] for j in range(1 , SCREAMING_SNAKE_CASE ): for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
from ...configuration_utils import PretrainedConfig A_ : Optional[int] = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class A_ ( _a ): '''simple docstring''' a__ = "tapas" def __init__(self , lowercase__=30_522 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_024 , lowercase__=[3, 256, 256, 2, 256, 256, 10] , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=0 , lowercase__=10.0 , lowercase__=0 , lowercase__=1.0 , lowercase__=None , lowercase__=1.0 , lowercase__=False , lowercase__=None , lowercase__=1.0 , lowercase__=1.0 , lowercase__=False , lowercase__=False , lowercase__="ratio" , lowercase__=None , lowercase__=None , lowercase__=64 , lowercase__=32 , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=None , lowercase__=None , **lowercase__ , ) -> int: super().__init__(pad_token_id=lowercase__ , **lowercase__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_sizes __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters __UpperCAmelCase = positive_label_weight __UpperCAmelCase = num_aggregation_labels __UpperCAmelCase = aggregation_loss_weight __UpperCAmelCase = use_answer_as_supervision __UpperCAmelCase = answer_loss_importance __UpperCAmelCase = use_normalized_answer_loss __UpperCAmelCase = huber_loss_delta __UpperCAmelCase = temperature __UpperCAmelCase = aggregation_temperature __UpperCAmelCase = use_gumbel_for_cells __UpperCAmelCase = use_gumbel_for_aggregation __UpperCAmelCase = average_approximation_function __UpperCAmelCase = cell_selection_preference __UpperCAmelCase = answer_loss_cutoff __UpperCAmelCase = max_num_rows __UpperCAmelCase = max_num_columns __UpperCAmelCase = average_logits_per_cell __UpperCAmelCase = select_one_column __UpperCAmelCase = allow_empty_column_selection __UpperCAmelCase = init_cell_selection_weights_to_zero __UpperCAmelCase = reset_position_index_per_cell __UpperCAmelCase = disable_per_token_loss # Aggregation hyperparameters __UpperCAmelCase = aggregation_labels __UpperCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase__ ): __UpperCAmelCase = {int(lowercase__ ): v for k, v in aggregation_labels.items()}
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> Tuple: __UpperCAmelCase = [[] for _ in range(lowercase__ )] __UpperCAmelCase = size def __getitem__(self , lowercase__ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def lowerCAmelCase_ (self ) -> int: return self._size def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowercase__ , lowercase__ ) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> int | None: __UpperCAmelCase = deque([start_vertex] ) __UpperCAmelCase = [None] * self.size __UpperCAmelCase = 0 while queue: __UpperCAmelCase = queue.popleft() __UpperCAmelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCAmelCase = current_distance + edge.weight __UpperCAmelCase = distances[edge.destination_vertex] if ( isinstance(lowercase__ , lowercase__ ) and new_distance >= dest_vertex_distance ): continue __UpperCAmelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Tuple = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A_ ( _a ): '''simple docstring''' a__ = "segformer" def __init__(self , lowercase__=3 , lowercase__=4 , lowercase__=[2, 2, 2, 2] , lowercase__=[8, 4, 2, 1] , lowercase__=[32, 64, 160, 256] , lowercase__=[7, 3, 3, 3] , lowercase__=[4, 2, 2, 2] , lowercase__=[1, 2, 5, 8] , lowercase__=[4, 4, 4, 4] , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=0.1 , lowercase__=1E-6 , lowercase__=256 , lowercase__=255 , **lowercase__ , ) -> List[Any]: super().__init__(**lowercase__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , lowercase__ , ) __UpperCAmelCase = num_channels __UpperCAmelCase = num_encoder_blocks __UpperCAmelCase = depths __UpperCAmelCase = sr_ratios __UpperCAmelCase = hidden_sizes __UpperCAmelCase = patch_sizes __UpperCAmelCase = strides __UpperCAmelCase = mlp_ratios __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = classifier_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = drop_path_rate __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = decoder_hidden_size __UpperCAmelCase = kwargs.get('''reshape_last_stage''' , lowercase__ ) __UpperCAmelCase = semantic_loss_ignore_index class A_ ( _a ): '''simple docstring''' a__ = version.parse("1.11" ) @property def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase_ (self ) -> float: return 1E-4 @property def lowerCAmelCase_ (self ) -> int: return 12
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer A_ : List[str] = ['gpt2'] A_ : Union[str, Any] = 'gpt2' if is_tf_available(): class A_ ( tf.Module ): '''simple docstring''' def __init__(self , lowercase__ ) -> int: super().__init__() __UpperCAmelCase = tokenizer __UpperCAmelCase = AutoConfig.from_pretrained(lowercase__ ) __UpperCAmelCase = TFGPTaLMHeadModel.from_config(lowercase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: __UpperCAmelCase = self.tokenizer(lowercase__ ) __UpperCAmelCase = tokenized['''input_ids'''].to_tensor() __UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCAmelCase = self.model(input_ids=lowercase__ , attention_mask=lowercase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Optional[Any]: super().setUp() __UpperCAmelCase = [GPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCAmelCase_ (self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCAmelCase = python_outputs[key].numpy() __UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase__ , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCAmelCase_ (self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.function(lowercase__ ) for test_inputs in self.test_sentences: __UpperCAmelCase = tf.constant(lowercase__ ) __UpperCAmelCase = compiled_tokenizer(lowercase__ ) __UpperCAmelCase = tf_tokenizer(lowercase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCAmelCase_ (self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = ModelToSave(tokenizer=lowercase__ ) __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = model.serving(lowercase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase = Path(lowercase__ ) / '''saved.model''' tf.saved_model.save(lowercase__ , lowercase__ , signatures={'''serving_default''': model.serving} ) __UpperCAmelCase = tf.saved_model.load(lowercase__ ) __UpperCAmelCase = loaded_model.signatures['''serving_default'''](lowercase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCAmelCase_ (self ) -> str: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(lowercase__ ) # Build model with some sample inputs __UpperCAmelCase = tf_tokenizer.get_config() __UpperCAmelCase = TFGPTaTokenizer.from_config(lowercase__ ) __UpperCAmelCase = model_from_config(lowercase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCAmelCase_ (self ) -> int: for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCAmelCase = 123_123 for max_length in [3, 5, 1_024]: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(lowercase__ , max_length=lowercase__ ) __UpperCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
from math import log from scipy.constants import Boltzmann, physical_constants A_ : Optional[Any] = 300 # TEMPERATURE (unit = K) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
import functools def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' # Validation if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(SCREAMING_SNAKE_CASE ) == 0: return 0 if min(SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(SCREAMING_SNAKE_CASE ) >= 3_6_6: raise ValueError('''All days elements should be less than 366''' ) __UpperCAmelCase = set(SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from __future__ import annotations A_ : Tuple = 10 def __a ( SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' __UpperCAmelCase = 1 __UpperCAmelCase = max(SCREAMING_SNAKE_CASE ) while placement <= max_digit: # declare and initialize empty buckets __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # split list_of_ints between the buckets for i in list_of_ints: __UpperCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE ) # put each buckets' contents into list_of_ints __UpperCAmelCase = 0 for b in range(SCREAMING_SNAKE_CASE ): for i in buckets[b]: __UpperCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Any = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = DPTConfig() if "large" in checkpoint_url: __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = [5, 1_1, 1_7, 2_3] __UpperCAmelCase = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __UpperCAmelCase = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: __UpperCAmelCase = True __UpperCAmelCase = 1_5_0 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''ade20k-id2label.json''' __UpperCAmelCase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: __UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: __UpperCAmelCase = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: __UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: __UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: __UpperCAmelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: __UpperCAmelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: __UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: __UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: __UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: __UpperCAmelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: __UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: __UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: __UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: __UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: __UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __UpperCAmelCase = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __UpperCAmelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: __UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: __UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: __UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: __UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: __UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: __UpperCAmelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: __UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: __UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __UpperCAmelCase = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[: config.hidden_size, :] __UpperCAmelCase = in_proj_bias[: config.hidden_size] __UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __a ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = get_dpt_config(SCREAMING_SNAKE_CASE ) # load original state_dict from URL __UpperCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE ) # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model __UpperCAmelCase = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Check outputs on an image __UpperCAmelCase = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4 __UpperCAmelCase = DPTImageProcessor(size=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # forward pass __UpperCAmelCase = model(**SCREAMING_SNAKE_CASE ).logits if '''ade''' in checkpoint_url else model(**SCREAMING_SNAKE_CASE ).predicted_depth # Assert logits __UpperCAmelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __UpperCAmelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE ) ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) A_ : int = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
def __a ( SCREAMING_SNAKE_CASE = 1_0 , SCREAMING_SNAKE_CASE = 1_0_0_0 , SCREAMING_SNAKE_CASE = True ) -> int: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(SCREAMING_SNAKE_CASE ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) __UpperCAmelCase = lower __UpperCAmelCase = higher __UpperCAmelCase = [] while True: __UpperCAmelCase = get_avg(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) last_numbers.append(SCREAMING_SNAKE_CASE ) if answer(SCREAMING_SNAKE_CASE ) == "low": __UpperCAmelCase = number elif answer(SCREAMING_SNAKE_CASE ) == "high": __UpperCAmelCase = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def __a ( ) -> None: '''simple docstring''' __UpperCAmelCase = int(input('''Enter lower value : ''' ).strip() ) __UpperCAmelCase = int(input('''Enter high value : ''' ).strip() ) __UpperCAmelCase = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __a ( SCREAMING_SNAKE_CASE ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Predict target for test data __UpperCAmelCase = xgb.predict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = predictions.reshape(len(SCREAMING_SNAKE_CASE ) , 1 ) return predictions def __a ( ) -> None: '''simple docstring''' __UpperCAmelCase = fetch_california_housing() __UpperCAmelCase , __UpperCAmelCase = data_handling(SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1 ) __UpperCAmelCase = xgboost(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}''' ) print(f'''Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES A_ : int = 'tiny-wmt19-en-ru' # Build # borrowed from a test A_ : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A_ : Optional[int] = dict(zip(vocab, range(len(vocab)))) A_ : str = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = Path(tmpdirname) A_ : List[Any] = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] A_ : Optional[int] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] A_ : List[str] = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) A_ : Any = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) A_ : Optional[Any] = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) A_ : Dict = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test A_ : List[Any] = tokenizer(['Making tiny model'], return_tensors='pt') A_ : Optional[Any] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A_ : List[str] = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = {} state_dict.pop('''pixel_mean''' , SCREAMING_SNAKE_CASE ) state_dict.pop('''pixel_std''' , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __UpperCAmelCase = key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = int(re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).group(2 ) ) if layer_nb == 0: __UpperCAmelCase = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: __UpperCAmelCase = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: __UpperCAmelCase = key.replace('''layers.2''' , '''proj_out''' ) __UpperCAmelCase = value __UpperCAmelCase = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="ybelkada/segment-anything" ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = hf_hub_download(SCREAMING_SNAKE_CASE , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: __UpperCAmelCase = SamConfig() elif "sam_vit_l" in model_name: __UpperCAmelCase = SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) __UpperCAmelCase = SamConfig( vision_config=SCREAMING_SNAKE_CASE , ) elif "sam_vit_h" in model_name: __UpperCAmelCase = SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) __UpperCAmelCase = SamConfig( vision_config=SCREAMING_SNAKE_CASE , ) __UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCAmelCase = replace_keys(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = SamImageProcessor() __UpperCAmelCase = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = SamModel(SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = hf_model.to('''cuda''' ) __UpperCAmelCase = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) __UpperCAmelCase = [[[4_0_0, 6_5_0]]] __UpperCAmelCase = [[1]] __UpperCAmelCase = processor(images=np.array(SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE ) __UpperCAmelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 __UpperCAmelCase = processor( images=np.array(SCREAMING_SNAKE_CASE ) , input_points=SCREAMING_SNAKE_CASE , input_labels=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE ) __UpperCAmelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 __UpperCAmelCase = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) __UpperCAmelCase = processor(images=np.array(SCREAMING_SNAKE_CASE ) , input_boxes=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE ) __UpperCAmelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. __UpperCAmelCase = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] __UpperCAmelCase = [[1, 1]] __UpperCAmelCase = processor( images=np.array(SCREAMING_SNAKE_CASE ) , input_points=SCREAMING_SNAKE_CASE , input_labels=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE ) __UpperCAmelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() A_ : List[Any] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) A_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import os import numpy import onnx def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = a.name __UpperCAmelCase = b.name __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = a == b __UpperCAmelCase = name_a __UpperCAmelCase = name_b return res def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = list(model.graph.initializer ) __UpperCAmelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __UpperCAmelCase = inits[i].name __UpperCAmelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = os.path.dirname(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = os.path.basename(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = onnx.load(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = list(model.graph.initializer ) __UpperCAmelCase = set() __UpperCAmelCase = {} __UpperCAmelCase = [] __UpperCAmelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE ) dup_set.add(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = inits[j].data_type __UpperCAmelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('''unexpected data type: ''' , SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size __UpperCAmelCase = inits[i].name __UpperCAmelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , '''GB''' ) __UpperCAmelCase = sorted(SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''optimized_''' + model_file_name __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) onnx.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return new_model
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
from __future__ import annotations import math class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = size # approximate the overall size of segment tree with given value __UpperCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCAmelCase = [0 for i in range(0 , 4 * size )] __UpperCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCAmelCase_ (self , lowercase__ ) -> int: return idx * 2 def lowerCAmelCase_ (self , lowercase__ ) -> int: return idx * 2 + 1 def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> None: if left_element == right_element: __UpperCAmelCase = a[left_element - 1] else: __UpperCAmelCase = (left_element + right_element) // 2 self.build(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ ) self.build(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ ) __UpperCAmelCase = max( self.segment_tree[self.left(lowercase__ )] , self.segment_tree[self.right(lowercase__ )] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> bool: if self.flag[idx] is True: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = False if left_element != right_element: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = True __UpperCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCAmelCase = val if left_element != right_element: __UpperCAmelCase = val __UpperCAmelCase = val __UpperCAmelCase = True __UpperCAmelCase = True return True __UpperCAmelCase = (left_element + right_element) // 2 self.update(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.update(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = max( self.segment_tree[self.left(lowercase__ )] , self.segment_tree[self.right(lowercase__ )] ) return True def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int | float: if self.flag[idx] is True: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = False if left_element != right_element: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = True __UpperCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCAmelCase = (left_element + right_element) // 2 __UpperCAmelCase = self.query(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = self.query(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ , lowercase__ ) return max(lowercase__ , lowercase__ ) def __str__(self ) -> str: return str([self.query(1 , 1 , self.size , lowercase__ , lowercase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": A_ : List[Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] A_ : Optional[Any] = 15 A_ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer A_ : Tuple = logging.get_logger(__name__) A_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A_ : Optional[int] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } A_ : Union[str, Any] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] a__ = RobertaTokenizer def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , lowercase__=True , **lowercase__ , ) -> int: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = '''post_processor''' __UpperCAmelCase = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: __UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCAmelCase = tuple(state['''sep'''] ) if "cls" in state: __UpperCAmelCase = tuple(state['''cls'''] ) __UpperCAmelCase = False if state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = add_prefix_space __UpperCAmelCase = True if state.get('''trim_offsets''' , lowercase__ ) != trim_offsets: __UpperCAmelCase = trim_offsets __UpperCAmelCase = True if changes_to_apply: __UpperCAmelCase = getattr(lowercase__ , state.pop('''type''' ) ) __UpperCAmelCase = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property def lowerCAmelCase_ (self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value __UpperCAmelCase = value def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=None ) -> Optional[int]: __UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> Optional[int]: __UpperCAmelCase = n __UpperCAmelCase = [None] * self.n __UpperCAmelCase = 0 # index of the first element __UpperCAmelCase = 0 __UpperCAmelCase = 0 def __len__(self ) -> int: return self.size def lowerCAmelCase_ (self ) -> bool: return self.size == 0 def lowerCAmelCase_ (self ) -> Dict: return False if self.is_empty() else self.array[self.front] def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) __UpperCAmelCase = data __UpperCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase_ (self ) -> Any: if self.size == 0: raise Exception('''UNDERFLOW''' ) __UpperCAmelCase = self.array[self.front] __UpperCAmelCase = None __UpperCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[float, float]: '''simple docstring''' # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = equationa __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = equationa # Calculate the determinants of the matrices __UpperCAmelCase = aa * ba - aa * ba __UpperCAmelCase = ca * ba - ca * ba __UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __UpperCAmelCase = determinant_x / determinant __UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = gather(SCREAMING_SNAKE_CASE ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = [state.process_index] __UpperCAmelCase = gather_object(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == state.num_processes, f'''{gathered_obj}, {len(SCREAMING_SNAKE_CASE )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = broadcast(SCREAMING_SNAKE_CASE ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __UpperCAmelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: __UpperCAmelCase = torch.arange(state.num_processes ).to(state.device ) __UpperCAmelCase = pad_across_processes(SCREAMING_SNAKE_CASE ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return __UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = reduce(SCREAMING_SNAKE_CASE , '''sum''' ) __UpperCAmelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), f'''{reduced_tensor} != {truth_tensor}''' def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return __UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = reduce(SCREAMING_SNAKE_CASE , '''mean''' ) __UpperCAmelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), f'''{reduced_tensor} != {truth_tensor}''' def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' # For xla_spawn (TPUs) main() def __a ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = PartialState() state.print(f'''State: {state}''' ) state.print('''testing gather''' ) test_gather(SCREAMING_SNAKE_CASE ) state.print('''testing gather_object''' ) test_gather_object(SCREAMING_SNAKE_CASE ) state.print('''testing broadcast''' ) test_broadcast(SCREAMING_SNAKE_CASE ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(SCREAMING_SNAKE_CASE ) state.print('''testing reduce_sum''' ) test_reduce_sum(SCREAMING_SNAKE_CASE ) state.print('''testing reduce_mean''' ) test_reduce_mean(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
class A_ : '''simple docstring''' def __init__(self , lowercase__ = "" , lowercase__ = False ) -> None: # Mapping from the first character of the prefix of the node __UpperCAmelCase = {} # A node will be a leaf if the tree contains its word __UpperCAmelCase = is_leaf __UpperCAmelCase = prefix def lowerCAmelCase_ (self , lowercase__ ) -> tuple[str, str, str]: __UpperCAmelCase = 0 for q, w in zip(self.prefix , lowercase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCAmelCase_ (self , lowercase__ ) -> None: for word in words: self.insert(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __UpperCAmelCase = RadixNode(prefix=lowercase__ , is_leaf=lowercase__ ) else: __UpperCAmelCase = self.nodes[word[0]] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = incoming_node.match( lowercase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowercase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __UpperCAmelCase = remaining_prefix __UpperCAmelCase = self.nodes[matching_string[0]] __UpperCAmelCase = RadixNode(lowercase__ , lowercase__ ) __UpperCAmelCase = aux_node if remaining_word == "": __UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> bool: __UpperCAmelCase = self.nodes.get(word[0] , lowercase__ ) if not incoming_node: return False else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = incoming_node.match( lowercase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> bool: __UpperCAmelCase = self.nodes.get(word[0] , lowercase__ ) if not incoming_node: return False else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = incoming_node.match( lowercase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowercase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __UpperCAmelCase = list(self.nodes.values() )[0] __UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix __UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: __UpperCAmelCase = list(incoming_node.nodes.values() )[0] __UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __UpperCAmelCase = merging_node.nodes return True def lowerCAmelCase_ (self , lowercase__ = 0 ) -> None: if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __a ( ) -> bool: '''simple docstring''' __UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() __UpperCAmelCase = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __a ( ) -> None: '''simple docstring''' assert test_trie() def __a ( ) -> None: '''simple docstring''' __UpperCAmelCase = RadixNode() __UpperCAmelCase = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(SCREAMING_SNAKE_CASE ) print('''Words:''' , SCREAMING_SNAKE_CASE ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A_ ( _a ): '''simple docstring''' a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def lowerCAmelCase_ (self ) -> str: super().setup() __UpperCAmelCase = self.model.config __UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __UpperCAmelCase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Any: __UpperCAmelCase = labels return self.pre_processor( [text] * len(lowercase__ ) , [F'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class A_ ( _a ): '''simple docstring''' a__ = "open-llama" def __init__(self , lowercase__=100_000 , lowercase__=4_096 , lowercase__=11_008 , lowercase__=32 , lowercase__=32 , lowercase__="silu" , lowercase__=2_048 , lowercase__=0.02 , lowercase__=1E-6 , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=True , lowercase__=True , lowercase__=None , **lowercase__ , ) -> Union[str, Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = intermediate_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = initializer_range __UpperCAmelCase = rms_norm_eps __UpperCAmelCase = use_cache __UpperCAmelCase = kwargs.pop( '''use_memorry_efficient_attention''' , lowercase__ ) __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_dropout_prob __UpperCAmelCase = use_stable_embedding __UpperCAmelCase = shared_input_output_embedding __UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , ) def lowerCAmelCase_ (self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) __UpperCAmelCase = self.rope_scaling.get('''type''' , lowercase__ ) __UpperCAmelCase = self.rope_scaling.get('''factor''' , lowercase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ ( _a ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "CLIPImageProcessor" a__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ) -> Dict: __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __UpperCAmelCase = kwargs.pop('''feature_extractor''' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ) -> int: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: __UpperCAmelCase = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Optional[int]: return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> Dict: return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.tokenizer.model_input_names __UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase_ (self ) -> str: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def lowerCAmelCase_ (self ) -> List[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
333
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" __UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] __UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import functools from typing import Any def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' # Validation if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie __UpperCAmelCase = {} __UpperCAmelCase = '''WORD_KEEPER''' for word in words: __UpperCAmelCase = trie for c in word: if c not in trie_node: __UpperCAmelCase = {} __UpperCAmelCase = trie_node[c] __UpperCAmelCase = True __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) # Dynamic programming method @functools.cache def is_breakable(SCREAMING_SNAKE_CASE ) -> bool: if index == len_string: return True __UpperCAmelCase = trie for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = trie_node.get(string[i] , SCREAMING_SNAKE_CASE ) if trie_node is None: return False if trie_node.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
333
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class A_ ( yaml.SafeLoader ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ ) -> int: __UpperCAmelCase = [self.constructed_objects[key_node] for key_node, _ in node.value] __UpperCAmelCase = [tuple(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else key for key in keys] __UpperCAmelCase = Counter(lowercase__ ) __UpperCAmelCase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCAmelCase_ (self , lowercase__ , lowercase__=False ) -> Union[str, Any]: __UpperCAmelCase = super().construct_mapping(lowercase__ , deep=lowercase__ ) self._check_no_duplicates_on_constructed_node(lowercase__ ) return mapping def __a ( SCREAMING_SNAKE_CASE ) -> Tuple[Optional[str], str]: '''simple docstring''' __UpperCAmelCase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __UpperCAmelCase = full_content[1:].index('''---''' ) + 1 __UpperCAmelCase = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(SCREAMING_SNAKE_CASE ) class A_ ( _a ): '''simple docstring''' a__ = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def lowerCAmelCase_ (cls , lowercase__ ) -> "DatasetMetadata": with open(lowercase__ , encoding='''utf-8''' ) as readme_file: __UpperCAmelCase , __UpperCAmelCase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase__ ) else: return cls() def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: if path.exists(): with open(lowercase__ , encoding='''utf-8''' ) as readme_file: __UpperCAmelCase = readme_file.read() else: __UpperCAmelCase = None __UpperCAmelCase = self._to_readme(lowercase__ ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ = None ) -> str: if readme_content is not None: __UpperCAmelCase , __UpperCAmelCase = _split_yaml_from_readme(lowercase__ ) __UpperCAmelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: __UpperCAmelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def lowerCAmelCase_ (cls , lowercase__ ) -> "DatasetMetadata": __UpperCAmelCase = yaml.load(lowercase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __UpperCAmelCase = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase__ ) def lowerCAmelCase_ (self ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase__ , allow_unicode=lowercase__ , encoding='''utf-8''' , ).decode('''utf-8''' ) A_ : str = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser A_ : Optional[int] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') A_ : Optional[Any] = ap.parse_args() A_ : Union[str, Any] = Path(args.readme_filepath) A_ : List[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
333
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class A_ ( _a ): '''simple docstring''' a__ = "distilbert" a__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self , lowercase__=30_522 , lowercase__=512 , lowercase__=False , lowercase__=6 , lowercase__=12 , lowercase__=768 , lowercase__=4 * 768 , lowercase__=0.1 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=0.02 , lowercase__=0.1 , lowercase__=0.2 , lowercase__=0 , **lowercase__ , ) -> List[Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = sinusoidal_pos_embds __UpperCAmelCase = n_layers __UpperCAmelCase = n_heads __UpperCAmelCase = dim __UpperCAmelCase = hidden_dim __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation __UpperCAmelCase = initializer_range __UpperCAmelCase = qa_dropout __UpperCAmelCase = seq_classif_dropout super().__init__(**lowercase__ , pad_token_id=lowercase__ ) class A_ ( _a ): '''simple docstring''' @property def lowerCAmelCase_ (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
1
from __future__ import annotations from typing import Any def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE , [] , 0 ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE ) return create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Dict = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” A_ : int = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py A_ : List[Any] = 0 A_ : int = 0xe_000 A_ : List[str] = 0xe_001 A_ : List[Any] = 0xe_002 A_ : List[str] = 0xe_003 A_ : Tuple = 0xe_004 # Maps special codepoints to human-readable names. A_ : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. A_ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A_ ( _a ): '''simple docstring''' a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=False , lowercase__=2_048 , **lowercase__ , ) -> str: __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , model_max_length=lowercase__ , **lowercase__ , ) # Creates a mapping for looking up the IDs of special symbols. __UpperCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __UpperCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __UpperCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } __UpperCAmelCase = UNICODE_VOCAB_SIZE __UpperCAmelCase = len(self._special_codepoints ) @property def lowerCAmelCase_ (self ) -> int: return self._unicode_vocab_size def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: return list(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> int: try: return ord(lowercase__ ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def lowerCAmelCase_ (self , lowercase__ ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase__ ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def lowerCAmelCase_ (self , lowercase__ ) -> List[str]: return "".join(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) __UpperCAmelCase = [1] + ([0] * len(lowercase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase__ )) + [1] return result def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Optional[int]: return ()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() A_ : Dict = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = RobertaPreLayerNormConfig.from_pretrained( SCREAMING_SNAKE_CASE , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict __UpperCAmelCase = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE , filename='''pytorch_model.bin''' ) ) __UpperCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): __UpperCAmelCase = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue __UpperCAmelCase = tensor_value __UpperCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE , state_dict=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # convert tokenizer __UpperCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
333
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> Union[str, Any]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = embedding_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ (self ) -> Dict: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = MegatronBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) __UpperCAmelCase = model(lowercase__ , token_type_ids=lowercase__ ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: __UpperCAmelCase = MegatronBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = MegatronBertForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: __UpperCAmelCase = MegatronBertForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __UpperCAmelCase = MegatronBertForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , next_sentence_label=lowercase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> str: __UpperCAmelCase = MegatronBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_choices __UpperCAmelCase = MegatronBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__=False ) -> List[Any]: __UpperCAmelCase = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase__ ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = MegatronBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def lowerCAmelCase_ (self ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase__ ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) A_ : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __UpperCAmelCase = os.path.join(os.environ['''MYDIR'''] , lowercase__ ) __UpperCAmelCase = MegatronBertModel.from_pretrained(lowercase__ ) model.to(lowercase__ ) model.half() __UpperCAmelCase = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __UpperCAmelCase = model(lowercase__ )[0] __UpperCAmelCase = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , lowercase__ ) __UpperCAmelCase = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __UpperCAmelCase = output[0, ii, jj] __UpperCAmelCase = expected[3 * ii + jj] __UpperCAmelCase = '''ii={} jj={} a={} b={}'''.format(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(math.isclose(lowercase__ , lowercase__ , rel_tol=lowercase__ , abs_tol=lowercase__ ) , msg=lowercase__ )
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
import requests from bsa import BeautifulSoup def __a ( SCREAMING_SNAKE_CASE = "AAPL" ) -> str: '''simple docstring''' __UpperCAmelCase = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' __UpperCAmelCase = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
333
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() A_ : int = logging.get_logger(__name__) A_ : Optional[int] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase = k.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if k.startswith('''encoder''' ): __UpperCAmelCase = k.replace('''.attn''' , '''.self_attn''' ) __UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) __UpperCAmelCase = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): __UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) __UpperCAmelCase = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) __UpperCAmelCase = k.replace('''norm3''' , '''final_layer_norm''' ) return k def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: __UpperCAmelCase = sd.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd __UpperCAmelCase = v A_ : str = ['START'] @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCAmelCase = model['''model'''] __UpperCAmelCase = BlenderbotConfig.from_json_file(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = BlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = m.model.state_dict().keys() __UpperCAmelCase = [] __UpperCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase = rename_state_dict_key(SCREAMING_SNAKE_CASE ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(SCREAMING_SNAKE_CASE ) m.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) m.half() m.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) A_ : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
333
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (DDIMParallelScheduler,) a__ = (("eta", 0.0), ("num_inference_steps", 50)) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , **lowercase__ ) -> str: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = 10, 0.0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for t in scheduler.timesteps: __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> List[str]: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowerCAmelCase_ (self ) -> str: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def lowerCAmelCase_ (self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase__ ) def lowerCAmelCase_ (self ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , ) def lowerCAmelCase_ (self ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Dict: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase__ , num_inference_steps=lowercase__ ) def lowerCAmelCase_ (self ) -> int: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase__ , eta=lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = 10, 0.0 scheduler.set_timesteps(lowercase__ ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = self.dummy_sample_deter + 0.1 __UpperCAmelCase = self.dummy_sample_deter - 0.1 __UpperCAmelCase = samplea.shape[0] __UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCAmelCase = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ ) __UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCAmelCase = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase__ ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowerCAmelCase_ (self ) -> int: # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowerCAmelCase_ (self ) -> Any: # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} __UpperCAmelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() __UpperCAmelCase = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = requests.get(url + f'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Dict: '''simple docstring''' __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} __UpperCAmelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() __UpperCAmelCase = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = requests.get(url + f'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE , allow_redirects=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = result.headers['''Location'''] __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE , allow_redirects=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , f'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fp: fp.write(response.content ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE ) as f: for line in f: __UpperCAmelCase = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCAmelCase = line[: line.index(''': ''' )] __UpperCAmelCase = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __UpperCAmelCase = line[len('''FAILED ''' ) :] failed_tests.append(SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": __UpperCAmelCase = line if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE )} for `errors` ''' f'''and {len(SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) __UpperCAmelCase = None if job_name and job_links: __UpperCAmelCase = job_links.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) __UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] return result def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Dict: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE , job_links=SCREAMING_SNAKE_CASE ) ) return errors def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) __UpperCAmelCase = counter.most_common() __UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCAmelCase = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE ) ) return r def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __UpperCAmelCase = test.split('''/''' )[2] else: __UpperCAmelCase = None return test def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[str]: '''simple docstring''' __UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCAmelCase = [x for x in logs if x[2] is not None] __UpperCAmelCase = {x[2] for x in logs} __UpperCAmelCase = {} for test in tests: __UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCAmelCase = counter.most_common() __UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: __UpperCAmelCase = {'''count''': n_errors, '''errors''': error_counts} __UpperCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE ) ) return r def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = '''| no. | error | status |''' __UpperCAmelCase = '''|-:|:-|:-|''' __UpperCAmelCase = [header, sep] for error in reduced_by_error: __UpperCAmelCase = reduced_by_error[error]['''count'''] __UpperCAmelCase = f'''| {count} | {error[:1_0_0]} | |''' lines.append(SCREAMING_SNAKE_CASE ) return "\n".join(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = '''| model | no. of errors | major error | count |''' __UpperCAmelCase = '''|-:|-:|-:|-:|''' __UpperCAmelCase = [header, sep] for model in reduced_by_model: __UpperCAmelCase = reduced_by_model[model]['''count'''] __UpperCAmelCase , __UpperCAmelCase = list(reduced_by_model[model]['''errors'''].items() )[0] __UpperCAmelCase = f'''| {model} | {count} | {error[:6_0]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE ) return "\n".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') A_ : str = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[Any] = get_job_links(args.workflow_run_id, token=args.token) A_ : int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : Dict = k.find(' / ') A_ : Any = k[index + len(' / ') :] A_ : Dict = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : int = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : str = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : List[Any] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : List[Any] = reduce_by_error(errors) A_ : Tuple = reduce_by_model(errors) A_ : int = make_github_table(reduced_by_error) A_ : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
333
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : int = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: '''simple docstring''' __UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase = '''''' else: __UpperCAmelCase = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase = in_proj_bias[: config.hidden_size] __UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = val def __a ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __UpperCAmelCase = DeiTConfig() # all deit models have fine-tuned heads __UpperCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase = 1_0_0_0 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''imagenet-1k-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = int(deit_name[-6:-4] ) __UpperCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): __UpperCAmelCase = 1_9_2 __UpperCAmelCase = 7_6_8 __UpperCAmelCase = 1_2 __UpperCAmelCase = 3 elif deit_name[9:].startswith('''small''' ): __UpperCAmelCase = 3_8_4 __UpperCAmelCase = 1_5_3_6 __UpperCAmelCase = 1_2 __UpperCAmelCase = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 # load original model from timm __UpperCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys __UpperCAmelCase = timm_model.state_dict() __UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model __UpperCAmelCase = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor __UpperCAmelCase = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __UpperCAmelCase = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE , crop_size=config.image_size ) __UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase = encoding['''pixel_values'''] __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A_ : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
333
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = tempfile.mkdtemp() # fmt: off __UpperCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) __UpperCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __UpperCAmelCase = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Optional[int]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> str: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase__ ) self.assertIsInstance(processor_fast.tokenizer , lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase__ ) self.assertIsInstance(processor_fast.image_processor , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __UpperCAmelCase = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) __UpperCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''np''' ) __UpperCAmelCase = processor(images=lowercase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = processor(text=lowercase__ ) __UpperCAmelCase = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase = processor.batch_decode(lowercase__ ) __UpperCAmelCase = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = CLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
333
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
1