code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
2
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM A : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ): A : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A : List[Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : Tuple = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Optional[int] = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : Union[str, Any] = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) A : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
3
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[[] for _ in range(__snake_case )] _lowercase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__snake_case ) <= key: return input_string for position, character in enumerate(__snake_case ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__snake_case ) _lowercase =[''''''.join(__snake_case ) for row in temp_grid] _lowercase =''''''.join(__snake_case ) return output_string def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[] _lowercase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string _lowercase =[[] for _ in range(__snake_case )] # generates template for position in range(len(__snake_case ) ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) _lowercase =0 for row in temp_grid: # fills in the characters _lowercase =input_string[counter : counter + len(__snake_case )] grid.append(list(__snake_case ) ) counter += len(__snake_case ) _lowercase ='''''' # reads as zigzag for position in range(len(__snake_case ) ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase_ ( __snake_case ) -> dict[int, str]: """simple docstring""" _lowercase ={} for key_guess in range(1 , len(__snake_case ) ): # tries every key _lowercase =decrypt(__snake_case , __snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
5
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A( a , a , unittest.TestCase ): snake_case_ = VQModel snake_case_ = '''sample''' @property def SCREAMING_SNAKE_CASE_ ( self , _snake_case=(32, 32) ) -> Union[str, Any]: '''simple docstring''' __a = 4 __a = 3 __a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } __a = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , __a = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_snake_case ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_snake_case ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __a = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __a = image.to(_snake_case ) with torch.no_grad(): __a = model(_snake_case ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __a = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
6
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A__ = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: A__ = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , ) A__ = val return f[i][j] def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: '''simple docstring''' A__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: A__ = dp[i - 1][w_] return dp[n][w_], dp def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]: '''simple docstring''' if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) A__ = len(SCREAMING_SNAKE_CASE__ ) if num_items != len(SCREAMING_SNAKE_CASE__ ): A__ = ( 'The number of weights must be the same as the number of values.\n' f'But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ): A__ = ( 'All weights must be integers but got weight of ' f'type {type(wt[i] )} at index {i}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) A__ , A__ = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = set() _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return optimal_val, example_optional_set def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ) -> Optional[int]: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: optimal_set.add(SCREAMING_SNAKE_CASE__ ) _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = [3, 2, 4, 4] lowercase_ = [4, 3, 2, 3] lowercase_ = 4 lowercase_ = 6 lowercase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase_ , lowercase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase_ , lowercase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
7
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
import random class snake_case_ : '''simple docstring''' @staticmethod def snake_case__( _UpperCamelCase : str ) ->tuple[list[int], list[int]]: snake_case_ = [ord(_UpperCamelCase ) for i in text] snake_case_ = [] snake_case_ = [] for i in plain: snake_case_ = random.randint(1 , 3_0_0 ) snake_case_ = (i + k) * k cipher.append(_UpperCamelCase ) key.append(_UpperCamelCase ) return cipher, key @staticmethod def snake_case__( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] ) ->str: snake_case_ = [] for i in range(len(_UpperCamelCase ) ): snake_case_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCamelCase ) ) return "".join(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
8
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
0
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
9
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any ="ZinengTang/tvlt-base" lowerCamelCase__: Dict =tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ (self : Tuple , **UpperCAmelCase_ : int) ->int: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , **UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_image_processor() lowerCamelCase__: Any =self.get_feature_extractor() lowerCamelCase__: Tuple =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: Any =TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_image_processor() lowerCamelCase__: Tuple =self.get_feature_extractor() lowerCamelCase__: int =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) lowerCamelCase__: List[Any] =np.ones([12_000]) lowerCamelCase__: Optional[Any] =feature_extractor(UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Dict =processor(audio=UpperCAmelCase_ , return_tensors="np") for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: List[Any] =self.get_feature_extractor() lowerCamelCase__: Any =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) lowerCamelCase__: str =np.ones([3, 224, 224]) lowerCamelCase__: Optional[int] =image_processor(UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Union[str, Any] =processor(images=UpperCAmelCase_ , return_tensors="np") for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Union[str, Any] =self.get_feature_extractor() lowerCamelCase__: Union[str, Any] =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) lowerCamelCase__: Any =np.ones([12_000]) lowerCamelCase__: Any =np.ones([3, 224, 224]) lowerCamelCase__: Union[str, Any] =processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"]) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Any =self.get_feature_extractor() lowerCamelCase__: Tuple =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
10
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _UpperCAmelCase (UpperCamelCase__ : str ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : Dict = model_type_to_module_name(UpperCamelCase__ ) _A : Tuple = importlib.import_module(f".{module_name}" , "transformers.models" ) try: return getattr(UpperCamelCase__ , UpperCamelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase__ , "__name__" , UpperCamelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : Any = importlib.import_module("transformers" ) if hasattr(UpperCamelCase__ , UpperCamelCase__ ): return getattr(UpperCamelCase__ , UpperCamelCase__ ) return None def _UpperCAmelCase (UpperCamelCase__ : Union[str, os.PathLike] , UpperCamelCase__ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[Dict[str, str]] = None , UpperCamelCase__ : Optional[Union[bool, str]] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): _A : Tuple = get_file_from_repo( UpperCamelCase__ , UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , resume_download=UpperCamelCase__ , proxies=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , local_files_only=UpperCamelCase__ , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase__ , encoding="utf-8" ) as reader: return json.load(UpperCamelCase__ ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> Any: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.") @classmethod @replace_list_option_in_docstrings(__lowerCamelCase) def _lowerCamelCase ( cls , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: _A : Optional[int] = kwargs.pop("config" , __lowerCamelCase) _A : Tuple = kwargs.pop("trust_remote_code" , __lowerCamelCase) _A : List[Any] = True _A , _A : Optional[int] = FeatureExtractionMixin.get_feature_extractor_dict(__lowerCamelCase , **__lowerCamelCase) _A : List[Any] = config_dict.get("feature_extractor_type" , __lowerCamelCase) _A : int = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {}): _A : Any = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase): _A : str = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase) # It could be in `config.feature_extractor_type`` _A : List[Any] = getattr(__lowerCamelCase , "feature_extractor_type" , __lowerCamelCase) if hasattr(__lowerCamelCase , "auto_map") and "AutoFeatureExtractor" in config.auto_map: _A : Optional[int] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: _A : List[Any] = feature_extractor_class_from_name(__lowerCamelCase) _A : Any = feature_extractor_auto_map is not None _A : Optional[int] = feature_extractor_class is not None or type(__lowerCamelCase) in FEATURE_EXTRACTOR_MAPPING _A : int = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) if has_remote_code and trust_remote_code: _A : List[Any] = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) _A : List[str] = kwargs.pop("code_revision" , __lowerCamelCase) if os.path.isdir(__lowerCamelCase): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__lowerCamelCase) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(__lowerCamelCase)] return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}") @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: FEATURE_EXTRACTOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase)
11
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) __lowerCamelCase = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=None ): __lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowerCamelCase = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) __lowerCamelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(UpperCamelCase_ , """w""" , newline="""\n""" ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , """r""" ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) # Copy consistency with a really long name __lowerCamelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , UpperCamelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) self.assertFalse(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase_ ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
12
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
0
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : List[Any]=None): SCREAMING_SNAKE_CASE_: str = data SCREAMING_SNAKE_CASE_: Optional[int] = None def __repr__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: int = self while temp: string_rep.append(F"{temp.data}") SCREAMING_SNAKE_CASE_: Union[str, Any] = temp.next return "->".join(lowerCAmelCase__) def A_ ( _UpperCAmelCase ): if not elements_list: raise Exception("The Elements List is empty" ) SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[i] ) SCREAMING_SNAKE_CASE_: Any = current.next return head def A_ ( _UpperCAmelCase ): if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def A_ ( ): from doctest import testmod testmod() SCREAMING_SNAKE_CASE_: Optional[Any] = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_UpperCAmelCase ) print("Elements in Reverse:" ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
13
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
0
import heapq import sys import numpy as np _lowerCamelCase : int = tuple[int, int] class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = [] A__ = set() def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' return len(self.elements) == 0 def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(UpperCAmelCase__) else: # update # print("update", item) A__ = [] ((A__) , (A__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((A__) , (A__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' if item in self.set: self.set.remove(UpperCAmelCase__) A__ = [] ((A__) , (A__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((A__) , (A__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' return self.elements[0][1] def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' ((A__) , (A__)) = heapq.heappop(self.elements) self.set.remove(UpperCAmelCase__) return (priority, item) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = np.array(lowercase_ ) A__ = np.array(lowercase_ ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" return consistent_heuristic(lowercase_ , lowercase_ ) // t def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): A__ = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: A__ = '''#''' A__ = '''-''' A__ = back_pointer[goal] while x != start: ((A__) , (A__)) = x # print(x) A__ = '''-''' A__ = back_pointer[x] A__ = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A__ = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) A__ = back_pointer[x] print(lowercase_ ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: """simple docstring""" for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((A__) , (A__)) = s A__ = (x - 1, y) A__ = (x + 1, y) A__ = (x, y + 1) A__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) A__ = -1 A__ = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: A__ = g_function[s] + 1 A__ = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCamelCase : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCamelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _lowerCamelCase : Dict = make_common_ground() _lowerCamelCase : List[Any] = blocks_blk # hyper parameters _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : Any = 1 _lowerCamelCase : List[Any] = 20 _lowerCamelCase : str = 3 # one consistent and two other inconsistent # start and end destination _lowerCamelCase : Union[str, Any] = (0, 0) _lowerCamelCase : Any = (n - 1, n - 1) _lowerCamelCase : Optional[int] = 1 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = {start: 0, goal: float('''inf''' )} A__ = {start: -1, goal: -1} A__ = [] A__ = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) A__ = [] A__ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: A__ , A__ = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: A__ = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
14
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } SCREAMING_SNAKE_CASE :int = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = [] def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCamelCase_ ( self : List[str] ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self : Optional[Any] ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : str ,A : Optional[Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Tuple ): return self.sp_model.piece_to_id(A ) def UpperCamelCase_ ( self : List[Any] ,A : Tuple ): __A = self.sp_model.IdToPiece(A ) return token def UpperCamelCase_ ( self : List[Any] ,A : int ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,): __A = kwargs.pop("use_source_tokenizer" ,A ) __A = self.convert_ids_to_tokens(A ,skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A = [] __A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) __A = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) ) else: __A = "".join(A ) __A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A = self.clean_up_tokenization(A ) return clean_text else: return text def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
15
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __UpperCAmelCase ( __lowerCamelCase = "" ) -> dict[str, float]: lowercase__ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__ : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , '''html.parser''' ) lowercase__ : Dict = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCamelCase , __lowerCamelCase ) } def __UpperCAmelCase ( __lowerCamelCase = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__ : str = get_imdb_top_aaa_movies() with open(__lowerCamelCase , '''w''' , newline='''''' ) as out_file: lowercase__ : Dict = csv.writer(__lowerCamelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
16
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict=(), UpperCamelCase_ : int=None, UpperCamelCase_ : List[str]="no", UpperCamelCase_ : int="29500") -> Dict: '''simple docstring''' __lowercase = False __lowercase = False if any(key.startswith("KAGGLE") for key in os.environ.keys()): __lowercase = True elif "IPython" in sys.modules: __lowercase = "google.colab" in str(sys.modules["IPython"].get_ipython()) try: __lowercase = PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""") if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", UpperCamelCase_) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`.") if num_processes is None: __lowercase = 8 __lowercase = PrepareForLaunch(UpperCamelCase_, distributed_type="TPU") print(F"""Launching a training on {num_processes} TPU cores.""") xmp.spawn(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork") elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on one CPU.") function(*UpperCamelCase_) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.") if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`.") if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function.") # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_, master_addr="127.0.01", master_port=UpperCamelCase_, mixed_precision=UpperCamelCase_): __lowercase = PrepareForLaunch(UpperCamelCase_, distributed_type="MULTI_GPU") print(F"""Launching training on {num_processes} GPUs.""") try: start_processes(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork") except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic.") from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowercase = "1" print("Launching training on MPS.") elif torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on CPU.") function(*UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]=(), UpperCamelCase_ : Optional[int]=2) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ): __lowercase = PrepareForLaunch(UpperCamelCase_, debug=UpperCamelCase_) start_processes(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork")
17
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __lowerCamelCase : Tuple = { '''roberta-base''': 5_12, '''roberta-large''': 5_12, '''roberta-large-mnli''': 5_12, '''distilroberta-base''': 5_12, '''roberta-base-openai-detector''': 5_12, '''roberta-large-openai-detector''': 5_12, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] A = RobertaTokenizer def __init__( self : Optional[int],_A : str=None,_A : Any=None,_A : Tuple=None,_A : Optional[Any]="replace",_A : int="<s>",_A : int="</s>",_A : Tuple="</s>",_A : Optional[int]="<s>",_A : List[Any]="<unk>",_A : Optional[Any]="<pad>",_A : Dict="<mask>",_A : List[str]=False,_A : Optional[Any]=True,**_A : int,): """simple docstring""" super().__init__( _A,_A,tokenizer_file=_A,errors=_A,bos_token=_A,eos_token=_A,sep_token=_A,cls_token=_A,unk_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,trim_offsets=_A,**_A,) SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",_A ) != add_prefix_space: SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE_ : Optional[int] = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[Any] = add_prefix_space SCREAMING_SNAKE_CASE_ : Optional[int] = "post_processor" SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.backend_tokenizer,_A,_A ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ : Tuple = tuple(state["sep"] ) if "cls" in state: SCREAMING_SNAKE_CASE_ : Optional[Any] = tuple(state["cls"] ) SCREAMING_SNAKE_CASE_ : Optional[int] = False if state.get("add_prefix_space",_A ) != add_prefix_space: SCREAMING_SNAKE_CASE_ : List[Any] = add_prefix_space SCREAMING_SNAKE_CASE_ : int = True if state.get("trim_offsets",_A ) != trim_offsets: SCREAMING_SNAKE_CASE_ : List[Any] = trim_offsets SCREAMING_SNAKE_CASE_ : List[Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE_ : int = getattr(_A,state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : str = component_class(**_A ) setattr(self.backend_tokenizer,_A,_A ) @property def __UpperCamelCase ( self : Any ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase ( self : Tuple,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else value SCREAMING_SNAKE_CASE_ : Union[str, Any] = value def __UpperCamelCase ( self : Union[str, Any],*_A : int,**_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = kwargs.get("is_split_into_words",_A ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A,**_A ) def __UpperCamelCase ( self : Optional[int],*_A : int,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = kwargs.get("is_split_into_words",_A ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_A,**_A ) def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : Dict,_A : Optional[int],_A : List[Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
18
"""simple docstring""" import argparse import copy def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ): with open(snake_case_ ) as f: __UpperCAmelCase = f.read(1 ) __UpperCAmelCase = start_node __UpperCAmelCase = [] __UpperCAmelCase = start_node __UpperCAmelCase = 0 while visiting not in first_solution: __UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: __UpperCAmelCase = k[1] __UpperCAmelCase = k[0] first_solution.append(snake_case_ ) __UpperCAmelCase = distance_of_first_solution + int(snake_case_ ) __UpperCAmelCase = best_node first_solution.append(snake_case_ ) __UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ): __UpperCAmelCase = [] for n in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) for kn in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) if n == kn: continue __UpperCAmelCase = copy.deepcopy(snake_case_ ) __UpperCAmelCase = kn __UpperCAmelCase = n __UpperCAmelCase = 0 for k in _tmp[:-1]: __UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = first_solution __UpperCAmelCase = [] __UpperCAmelCase = distance_of_first_solution __UpperCAmelCase = solution while count <= iters: __UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = neighborhood[index_of_best_solution] __UpperCAmelCase = len(snake_case_ ) - 1 __UpperCAmelCase = False while not found: __UpperCAmelCase = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: __UpperCAmelCase = best_solution[i] __UpperCAmelCase = solution[i] break __UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCAmelCase = True __UpperCAmelCase = best_solution[:-1] __UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCAmelCase = cost __UpperCAmelCase = solution else: __UpperCAmelCase = index_of_best_solution + 1 __UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) __UpperCAmelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( snake_case_ :str=None ): __UpperCAmelCase = generate_neighbours(args.File ) __UpperCAmelCase , __UpperCAmelCase = generate_first_solution( args.File , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = tabu_search( snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
332
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A ='''▁''' __A ={'''vocab_file''': '''spiece.model'''} __A ={ '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } __A ={ '''google/pegasus-xsum''': 5_1_2, } __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCamelCase_ = additional_special_tokens_extended else: lowerCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCamelCase_ = mask_token_sent lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE_( self ) -> int: return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE_( self ) -> Dict[str, int]: lowerCamelCase_ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , lowercase ) -> str: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCamelCase_ = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def SCREAMING_SNAKE_CASE_( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = [] lowerCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCamelCase_ = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def SCREAMING_SNAKE_CASE_( self , lowercase=False ) -> Optional[Any]: return 1 def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict: lowerCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
19
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __snake_case ( lowerCAmelCase ): _a : torch.FloatTensor _a : torch.FloatTensor class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Optional[int]= 1 @register_to_config def __init__( self ,snake_case = 2000 ,snake_case = 0.15 ,snake_case = 0.01 ,snake_case = 1_348.0 ,snake_case = 1e-5 ,snake_case = 1 ,): '''simple docstring''' lowercase : int = sigma_max # setable values lowercase : Optional[int] = None self.set_sigmas(snake_case ,snake_case ,snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ): '''simple docstring''' lowercase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase : Any = torch.linspace(1 ,snake_case ,snake_case ,device=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = None ): '''simple docstring''' lowercase : Optional[int] = sigma_min if sigma_min is not None else self.config.sigma_min lowercase : Dict = sigma_max if sigma_max is not None else self.config.sigma_max lowercase : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case ,snake_case ) lowercase : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase : List[str] = torch.exp(torch.linspace(math.log(snake_case ) ,math.log(snake_case ) ,snake_case ) ) lowercase : List[Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device ) ) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device ) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = None ,snake_case = True ,): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) lowercase : str = timestep * torch.ones( sample.shape[0] ,device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase : Tuple = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device ) lowercase : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) lowercase : Dict = self.get_adjacent_sigma(snake_case ,snake_case ).to(sample.device ) lowercase : List[str] = torch.zeros_like(snake_case ) lowercase : List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase : Dict = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase : List[Any] = diffusion.unsqueeze(-1 ) lowercase : int = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase : Any = randn_tensor( sample.shape ,layout=sample.layout ,generator=snake_case ,device=sample.device ,dtype=sample.dtype ) lowercase : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase : int = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case ,prev_sample_mean=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ,snake_case = True ,): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase : Tuple = randn_tensor(sample.shape ,layout=sample.layout ,generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase : Any = torch.norm(model_output.reshape(model_output.shape[0] ,-1 ) ,dim=-1 ).mean() lowercase : Optional[int] = torch.norm(noise.reshape(noise.shape[0] ,-1 ) ,dim=-1 ).mean() lowercase : Optional[int] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase : str = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase : Union[str, Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase : Optional[Any] = step_size.unsqueeze(-1 ) lowercase : Tuple = sample + step_size * model_output lowercase : Union[str, Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = timesteps.to(original_samples.device ) lowercase : Optional[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) lowercase : Tuple = noise + original_samples return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
from math import factorial SCREAMING_SNAKE_CASE : Dict = {str(d): factorial(d) for d in range(10)} def UpperCamelCase_( lowerCamelCase_ ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(lowerCamelCase_ ) ) def UpperCamelCase_( ) -> int: _lowercase : str = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowerCamelCase_ ) if sum_of_digit_factorial(lowerCamelCase_ ) == i ) if __name__ == "__main__": print(F"{solution() = }")
21
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
0
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCAmelCase_ ( __lowercase : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(__lowercase ) if rows != columns: _UpperCAmelCase = ( "'table' has to be of square shaped array but got a " f'{rows}x{columns} array:\n{table}' ) raise ValueError(__lowercase ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(__lowercase ): for j in range(__lowercase ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(__lowercase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(__lowercase , __lowercase ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(__lowercase ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case_ ( _lowerCAmelCase : Any ) -> Tuple: if "model" in orig_key: UpperCAmelCase : Dict = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: UpperCAmelCase : Dict = orig_key.split('''.''' )[0].split('''_''' )[-1] UpperCAmelCase : Optional[Any] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: UpperCAmelCase : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: UpperCAmelCase : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: UpperCAmelCase : Tuple = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: UpperCAmelCase : Tuple = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: UpperCAmelCase : Optional[int] = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: UpperCAmelCase : List[str] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: UpperCAmelCase : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: UpperCAmelCase : int = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: UpperCAmelCase : Tuple = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: UpperCAmelCase : Union[str, Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: UpperCAmelCase : str = '''yoso.''' + orig_key return orig_key def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> Any: for key in orig_state_dict.copy().keys(): UpperCAmelCase : Any = orig_state_dict.pop(_lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase : Union[str, Any] = val UpperCAmelCase : Dict = orig_state_dict['''cls.predictions.decoder.bias'''] UpperCAmelCase : Union[str, Any] = torch.arange(_lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : str = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model_state_dict'''] UpperCAmelCase : str = YosoConfig.from_json_file(_lowerCAmelCase ) UpperCAmelCase : int = YosoForMaskedLM(_lowerCAmelCase ) UpperCAmelCase : Tuple = convert_checkpoint_helper(config.max_position_embeddings , _lowerCAmelCase ) print(model.load_state_dict(_lowerCAmelCase ) ) model.eval() model.save_pretrained(_lowerCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": UpperCamelCase__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__: List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
23
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Optional[int] , a__ : Optional[int] , a__ : List[str]=12 , a__ : Dict=7 , a__ : Union[str, Any]=True , a__ : List[str]=True , a__ : List[str]=True , a__ : Any=99 , a__ : int=32 , a__ : Optional[int]=32 , a__ : Optional[Any]=2 , a__ : List[Any]=4 , a__ : int=37 , a__ : List[Any]=0.1 , a__ : List[str]=0.1 , a__ : List[str]=512 , a__ : Dict=0.0_2 , a__ : int=0 , a__ : Tuple=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = projection_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = dropout __snake_case = attention_dropout __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = scope __snake_case = bos_token_id def a (self : int ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __snake_case = input_mask.numpy() __snake_case , __snake_case = input_mask.shape __snake_case = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a__ ): __snake_case = 1 __snake_case = 0 __snake_case = self.get_config() return config, input_ids, tf.convert_to_tensor(a__ ) def a (self : Any ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def a (self : Any , a__ : Optional[int] , a__ : Tuple , a__ : List[Any] ): """simple docstring""" __snake_case = TFBlipTextModel(config=a__ ) __snake_case = model(a__ , attention_mask=a__ , training=a__ ) __snake_case = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Dict = (TFBlipTextModel,) if is_tf_available() else () A_ : List[Any] = False A_ : List[str] = False A_ : Tuple = False def a (self : List[Any] ): """simple docstring""" __snake_case = BlipTextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : str ): """simple docstring""" self.config_tester.run_common_tests() def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : str ): """simple docstring""" pass def a (self : Any ): """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a (self : Any ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @slow def a (self : List[Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFBlipTextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def a (self : Tuple , a__ : List[str]=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a__ )
24
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=33 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : str = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = seq_length SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : Dict = use_input_mask SCREAMING_SNAKE_CASE__ : int = use_token_type_ids SCREAMING_SNAKE_CASE__ : Dict = use_labels SCREAMING_SNAKE_CASE__ : Tuple = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE__ : List[str] = num_choices SCREAMING_SNAKE_CASE__ : Tuple = scope def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ (self ) -> List[str]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = EsmModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = False __UpperCamelCase : int = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase : Optional[int] = () __UpperCamelCase : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Any = True def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = EsmModelTester(self ) SCREAMING_SNAKE_CASE__ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __magic_name__ (self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> List[Any]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Tuple = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ : Dict = EsmEmbeddings(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE__ : List[Any] = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ : Any = EsmEmbeddings(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.empty(2 , 4 , 30 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE__ : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ (self ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase_ (a__ ): """simple docstring""" @slow def __magic_name__ (self ) -> Any: """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Tuple = 33 SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__ : Tuple = model(SCREAMING_SNAKE_CASE__ )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
25
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
0
def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) <= 1: return lst _A : int = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: _A , _A : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: _A : Tuple = 1 return lst if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
26
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
'''simple docstring''' import argparse import struct import unittest class __UpperCamelCase : def __init__( self , __a ): '''simple docstring''' __a : str = data # Initialize hash values __a : Any = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants __a : str = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] __a : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def __UpperCAmelCase ( __a ): '''simple docstring''' __a : Dict = b'\x80' + (b'\x00' * (63 - (len(__a ) + 8) % 64)) __a : List[Any] = struct.pack('>Q' , (len(__a ) * 8) ) return data + padding + big_endian_integer def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __a : Union[str, Any] = list(struct.unpack('>16L' , __a ) ) # add 48 0-ed integers words += [0] * 48 __a , __a , __a , __a , __a , __a , __a , __a : str = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __a : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __a : int = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __a : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression __a : Any = self.ror(__a , 6 ) ^ self.ror(__a , 11 ) ^ self.ror(__a , 25 ) __a : Union[str, Any] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) __a : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 __a : Union[str, Any] = self.ror(__a , 2 ) ^ self.ror(__a , 13 ) ^ self.ror(__a , 22 ) __a : Tuple = (a & b) ^ (a & c) ^ (b & c) __a : List[Any] = (sa + maj) % 0x1_00_00_00_00 __a , __a , __a , __a , __a , __a , __a , __a : Optional[Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) __a : List[str] = [a, b, c, d, e, f, g, h] # Modify final values __a : Optional[int] = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] __a : Tuple = ''.join([hex(__a )[2:].zfill(8 ) for value in self.hashes] ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' import hashlib __a : Tuple = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(__a ).hash , hashlib.shaaaa(__a ).hexdigest() ) def lowerCamelCase (): import doctest doctest.testmod() __a : List[str] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) __a : Optional[Any] = parser.parse_args() __a : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: __a : Any = f.read() else: __a : Optional[Any] = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(_SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
27
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class SCREAMING_SNAKE_CASE ( _a , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self : Dict , UpperCamelCase__ : int = 1_0_0_0 , UpperCamelCase__ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(UpperCamelCase__ ) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase = 4 # running values UpperCamelCase = [] def A ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCamelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCamelCase = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase = (1.0 - self.betas**2) ** 0.5 UpperCamelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCamelCase = timesteps.to(UpperCamelCase__ ) UpperCamelCase = [] def A ( self : Tuple , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase = (self.timesteps == timestep).nonzero().item() UpperCamelCase = timestep_index + 1 UpperCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase__ ) if len(self.ets ) == 1: UpperCamelCase = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCamelCase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase = self._get_prev_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def A ( self : List[Any] , UpperCamelCase__ : torch.FloatTensor , *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" return sample def A ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = self.alphas[timestep_index] UpperCamelCase = self.betas[timestep_index] UpperCamelCase = self.alphas[prev_timestep_index] UpperCamelCase = self.betas[prev_timestep_index] UpperCamelCase = (sample - sigma * ets) / max(UpperCamelCase__ , 1E-8 ) UpperCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
28
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['ConditionalDetrFeatureExtractor'] __a = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(_UpperCAmelCase ) , _UpperCAmelCase ) return number - int(_UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
31
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : Optional[Any] = tempfile.mkdtemp() a_ : Any = BlipImageProcessor() a_ : Tuple = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) a_ : Any = BlipaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a_ : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : int ) -> Any: a_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : Dict = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) a_ : Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) a_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: a_ : str = self.get_image_processor() a_ : Dict = self.get_tokenizer() a_ : Dict = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.prepare_image_inputs() a_ : int = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) a_ : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : Optional[Any] = self.get_image_processor() a_ : int = self.get_tokenizer() a_ : List[Any] = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) a_ : int = 'lower newer' a_ : Any = processor(text=SCREAMING_SNAKE_CASE__ ) a_ : str = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Union[str, Any] = self.get_image_processor() a_ : Tuple = self.get_tokenizer() a_ : str = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) a_ : Any = 'lower newer' a_ : Union[str, Any] = self.prepare_image_inputs() a_ : Tuple = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: a_ : int = self.get_image_processor() a_ : int = self.get_tokenizer() a_ : int = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) a_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) a_ : Any = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : str = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : int = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) a_ : int = 'lower newer' a_ : Optional[Any] = self.prepare_image_inputs() a_ : List[Any] = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
32
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
0
"""simple docstring""" __A : Any = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
33
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
'''simple docstring''' def snake_case_ (_a : str ): UpperCAmelCase = 0 for ch in input_str: UpperCAmelCase = ord(_a ) UpperCAmelCase = pow(2 , _a ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
0
'''simple docstring''' from math import ceil def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = list(range(0 , _lowerCAmelCase ) ) snake_case__ : str = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check snake_case__ : str = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCAmelCase ) # Missing blocks snake_case__ : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] snake_case__ : Dict = [i for i in device_map_blocks if i not in blocks] if len(_lowerCAmelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: snake_case__ : str = list(range(_lowerCAmelCase ) ) snake_case__ : Dict = int(ceil(n_layers / len(_lowerCAmelCase ) ) ) snake_case__ : Optional[int] = [layers[i : i + n_blocks] for i in range(0 , _lowerCAmelCase , _lowerCAmelCase )] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) )
35
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=False, __a=True, __a="None", __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Union[str, Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : int = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : List[str] = relative_attention _lowerCAmelCase : Optional[int] = position_biased_input _lowerCAmelCase : Union[str, Any] = pos_att_type _lowerCAmelCase : Dict = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : int = None if self.use_token_type_ids: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.get_config() _lowerCAmelCase : Optional[int] = 300 return config def snake_case__ ( self, __a): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size()), []) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = DebertaModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a, attention_mask=__a, token_type_ids=__a)[0] _lowerCAmelCase : Any = model(__a, token_type_ids=__a)[0] _lowerCAmelCase : Optional[Any] = model(__a)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Union[str, Any] = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : str = DebertaForSequenceClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : List[Any] = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(__a) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : List[str] = DebertaForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = DebertaForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model( __a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = DebertaModelTester(self) _lowerCAmelCase : str = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = DebertaModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason="Model not available yet") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = DebertaModel.from_pretrained("microsoft/deberta-base") _lowerCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]]) _lowerCAmelCase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowerCAmelCase : Dict = model(__a, attention_mask=__a)[0] # compare the actual values for a slice. _lowerCAmelCase : Dict = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __a, atol=1E-4), f"{output[:, 1:4, 1:4]}")
36
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
0
'''simple docstring''' from math import factorial _lowerCAmelCase = {str(d): factorial(d) for d in range(10)} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , UpperCamelCase ) if sum_of_digit_factorial(UpperCamelCase ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
37
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> str: """simple docstring""" UpperCamelCase :Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase :Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase :Dict = 0.01 with locka.acquire(): with pytest.raises(__magic_name__ ): UpperCamelCase :Optional[Any] = time.time() locka.acquire(__magic_name__ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase :Optional[int] = """a""" * 1000 + """.lock""" UpperCamelCase :Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__magic_name__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCamelCase :Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__magic_name__ ): locka.acquire(0 )
38
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
39
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
0
"""simple docstring""" def lowercase ( A_ )-> int: '''simple docstring''' a : Any = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowercase ( A_ = 100 )-> int: '''simple docstring''' a : Tuple = 1 a : Optional[int] = 2 for i in range(2 , max_n + 1 ): a : Optional[Any] = pre_numerator a : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 a : Dict = cur_numerator a : List[str] = e_cont * pre_numerator + temp return sum_digits(A_ ) if __name__ == "__main__": print(f'''{solution() = }''')
40
"""simple docstring""" import argparse import copy def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ): with open(snake_case_ ) as f: __UpperCAmelCase = f.read(1 ) __UpperCAmelCase = start_node __UpperCAmelCase = [] __UpperCAmelCase = start_node __UpperCAmelCase = 0 while visiting not in first_solution: __UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: __UpperCAmelCase = k[1] __UpperCAmelCase = k[0] first_solution.append(snake_case_ ) __UpperCAmelCase = distance_of_first_solution + int(snake_case_ ) __UpperCAmelCase = best_node first_solution.append(snake_case_ ) __UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ): __UpperCAmelCase = [] for n in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) for kn in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) if n == kn: continue __UpperCAmelCase = copy.deepcopy(snake_case_ ) __UpperCAmelCase = kn __UpperCAmelCase = n __UpperCAmelCase = 0 for k in _tmp[:-1]: __UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = first_solution __UpperCAmelCase = [] __UpperCAmelCase = distance_of_first_solution __UpperCAmelCase = solution while count <= iters: __UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = neighborhood[index_of_best_solution] __UpperCAmelCase = len(snake_case_ ) - 1 __UpperCAmelCase = False while not found: __UpperCAmelCase = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: __UpperCAmelCase = best_solution[i] __UpperCAmelCase = solution[i] break __UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCAmelCase = True __UpperCAmelCase = best_solution[:-1] __UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCAmelCase = cost __UpperCAmelCase = solution else: __UpperCAmelCase = index_of_best_solution + 1 __UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) __UpperCAmelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( snake_case_ :str=None ): __UpperCAmelCase = generate_neighbours(args.File ) __UpperCAmelCase , __UpperCAmelCase = generate_first_solution( args.File , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = tabu_search( snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
332
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
0
'''simple docstring''' import re def SCREAMING_SNAKE_CASE__ ( __A ) -> str: if len(re.findall('[ATCG]' , __A ) ) != len(__A ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
42
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
import datasets __lowercase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' __lowercase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' __lowercase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), }) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: return {"accuracy": simple_accuracy(__lowercase , __lowercase)}
43
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _a : Any = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : List[Any] = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" ,type=_lowerCamelCase ,default="""data/dump.txt""" ,help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" ,type=_lowerCamelCase ,default="""bert""" ,choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" ,type=_lowerCamelCase ,default="""bert-base-uncased""" ,help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" ,type=_lowerCamelCase ,default="""data/dump""" ,help="""The dump file prefix.""" ) _lowerCAmelCase : int = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": _lowerCAmelCase : int = BertTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` _lowerCAmelCase : Union[str, Any] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": _lowerCAmelCase : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase : Union[str, Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` _lowerCAmelCase : Dict = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": _lowerCAmelCase : Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase : Any = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` _lowerCAmelCase : List[Any] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path ,"""r""" ,encoding="""utf8""" ) as fp: _lowerCAmelCase : Tuple = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"{len(_lowerCamelCase )} examples to process." ) _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = 10000 _lowerCAmelCase : str = time.time() for text in data: _lowerCAmelCase : Optional[int] = f"{bos} {text.strip()} {sep}" _lowerCAmelCase : Dict = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) rslt.append(_lowerCamelCase ) iter += 1 if iter % interval == 0: _lowerCAmelCase : int = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) _lowerCAmelCase : List[Any] = time.time() logger.info("""Finished binarization""" ) logger.info(f"{len(_lowerCamelCase )} examples processed." ) _lowerCAmelCase : List[Any] = f"{args.dump_file}.{args.tokenizer_name}.pickle" _lowerCAmelCase : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): _lowerCAmelCase : Tuple = [np.uintaa(_lowerCamelCase ) for d in rslt] else: _lowerCAmelCase : str = [np.intaa(_lowerCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(_lowerCamelCase ,"""wb""" ) as handle: pickle.dump(rslt_ ,_lowerCamelCase ,protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
44
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } SCREAMING_SNAKE_CASE__ = {"allegro/herbert-base-cased": 514} SCREAMING_SNAKE_CASE__ = {} class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = HerbertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase="</s>" , **lowercase , ) -> List[Any]: super().__init__( lowercase , lowercase , tokenizer_file=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , sep_token=lowercase , **lowercase , ) def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
46
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
0
'''simple docstring''' def _lowerCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase : Optional[Any] = generate_large_matrix() lowerCamelCase : Optional[int] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] ) -> None: """simple docstring""" assert all(row == sorted(_UpperCamelCase , reverse=_UpperCamelCase ) for row in grid ) assert all(list(_UpperCamelCase ) == sorted(_UpperCamelCase , reverse=_UpperCamelCase ) for col in zip(*_UpperCamelCase ) ) def _lowerCAmelCase ( _UpperCamelCase : list[int] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =len(_UpperCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _SCREAMING_SNAKE_CASE =(left + right) // 2 _SCREAMING_SNAKE_CASE =array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _SCREAMING_SNAKE_CASE =mid + 1 else: _SCREAMING_SNAKE_CASE =mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =len(grid[0] ) for i in range(len(_UpperCamelCase ) ): _SCREAMING_SNAKE_CASE =find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCamelCase ) * len(grid[0] )) - total def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 for row in grid: for i, number in enumerate(_UpperCamelCase ): if number < 0: total += len(_UpperCamelCase ) - i break return total def _lowerCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print('Running benchmarks' ) _SCREAMING_SNAKE_CASE =( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _SCREAMING_SNAKE_CASE =timeit(f"{func}(grid=grid)" , setup=_UpperCamelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
47
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase__ (enum.Enum ): '''simple docstring''' lowerCamelCase_ : Optional[int] = 0 lowerCamelCase_ : Any = 1 lowerCamelCase_ : int = 2 @add_end_docstrings(lowerCAmelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCamelCase : Union[str, Any] = None if self.model.config.prefix is not None: lowerCamelCase : Dict = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCamelCase : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = self._sanitize_parameters(prefix=UpperCamelCase__ , **self._forward_params ) lowerCamelCase : Any = {**self._preprocess_params, **preprocess_params} lowerCamelCase : Union[str, Any] = {**self._forward_params, **forward_params} def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Union[str, Any]: lowerCamelCase : List[Any] = {} if prefix is not None: lowerCamelCase : List[Any] = prefix if prefix: lowerCamelCase : Any = self.tokenizer( UpperCamelCase__ , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) lowerCamelCase : List[str] = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) lowerCamelCase : List[str] = handle_long_generation preprocess_params.update(UpperCamelCase__ ) lowerCamelCase : List[Any] = generate_kwargs lowerCamelCase : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) lowerCamelCase : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) lowerCamelCase : List[Any] = ReturnType.TENSORS if return_type is not None: lowerCamelCase : int = return_type if clean_up_tokenization_spaces is not None: lowerCamelCase : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowerCamelCase : Tuple = self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowerCamelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowercase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*UpperCamelCase__ , **UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__=None , **UpperCamelCase__ ) -> str: lowerCamelCase : Union[str, Any] = self.tokenizer( prefix + prompt_text , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) lowerCamelCase : int = prompt_text if handle_long_generation == "hole": lowerCamelCase : Any = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCamelCase : Union[str, Any] = generate_kwargs["max_new_tokens"] else: lowerCamelCase : Any = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCamelCase : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) lowerCamelCase : List[str] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: lowerCamelCase : Optional[int] = inputs["attention_mask"][:, -keep_length:] return inputs def _lowercase ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = model_inputs["input_ids"] lowerCamelCase : Tuple = model_inputs.get("attention_mask" , UpperCamelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCamelCase : List[Any] = None lowerCamelCase : Any = None lowerCamelCase : Optional[int] = 1 else: lowerCamelCase : Any = input_ids.shape[0] lowerCamelCase : Tuple = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCamelCase : Union[str, Any] = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: lowerCamelCase : Any = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: lowerCamelCase : Any = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCamelCase : List[str] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCamelCase : List[str] = self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": lowerCamelCase : Dict = generated_sequence.reshape(UpperCamelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCamelCase : int = tf.reshape(UpperCamelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=ReturnType.FULL_TEXT , UpperCamelCase__=True ) -> str: lowerCamelCase : Optional[int] = model_outputs["generated_sequence"][0] lowerCamelCase : Tuple = model_outputs["input_ids"] lowerCamelCase : int = model_outputs["prompt_text"] lowerCamelCase : Any = generated_sequence.numpy().tolist() lowerCamelCase : str = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCamelCase : Optional[Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCamelCase : Optional[int] = self.tokenizer.decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCamelCase : Optional[Any] = 0 else: lowerCamelCase : int = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: lowerCamelCase : int = prompt_text + text[prompt_length:] else: lowerCamelCase : Optional[Any] = text[prompt_length:] lowerCamelCase : Optional[Any] = {"generated_text": all_text} records.append(UpperCamelCase__ ) return records
48
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __snake_case :List[Any] = logging.getLogger(__name__) __snake_case :int = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __snake_case :Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } ,) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__UpperCAmelCase )} ,) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } ,) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} ,) UpperCamelCase__ : str = field( default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } ,) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''') @dataclass class _A : UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field(default=__UpperCAmelCase ,metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} ,) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} ,) UpperCamelCase__ : Optional[str] = field( default=__UpperCAmelCase ,metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} ,) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase__ : Optional[int] = field( default=5 ,metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } ,) UpperCamelCase__ : Optional[int] = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } ,) UpperCamelCase__ : Optional[int] = field( default=__UpperCAmelCase ,metadata={'''help''': '''The number of processes to use for the preprocessing.'''} ,) UpperCamelCase__ : float = field( default=0.15 ,metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase__ : bool = field( default=__UpperCAmelCase ,metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } ,) def _lowerCamelCase ( self : int): '''simple docstring''' if self.train_file is not None: __a = self.train_file.split('''.''')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __a = self.validation_file.split('''.''')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: __a = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) __a = {c: dataset[c] for c in dataset.column_names} __a = refs return Dataset.from_dict(_UpperCAmelCase ) def __snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[:{data_args.validation_split_percentage}%]' , ) __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[{data_args.validation_split_percentage}%:]' , ) else: __a = {} if data_args.train_file is not None: __a = data_args.train_file if data_args.validation_file is not None: __a = data_args.validation_file __a = data_args.train_file.split('''.''' )[-1] if extension == "txt": __a = '''text''' __a = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __a = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: __a = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: __a = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) __a = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __a = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: __a = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: __a = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __a = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __a = datasets['''train'''].column_names else: __a = datasets['''validation'''].column_names __a = '''text''' if '''text''' in column_names else column_names[0] __a = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase ): # Remove empty lines __a = [line for line in examples['''text'''] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) __a = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __a = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __a = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __a = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __a = False # Data collator # This one will take care of randomly masking the tokens. __a = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __a = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: __a = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __a = model_args.model_name_or_path else: __a = None __a = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __a = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation __a = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __a = trainer.evaluate() __a = math.exp(eval_output['''eval_loss'''] ) __a = perplexity __a = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def __snake_case ( _UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
49
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
import numpy # List of input, output pairs _UpperCAmelCase : Union[str, Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Dict = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Optional[Any] = len(train_data) _UpperCAmelCase : Optional[Any] = 0.009 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="train" ) -> List[str]: return calculate_hypothesis_value(_UpperCAmelCase , _UpperCAmelCase ) - output( _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : str = 0 for i in range(len(_UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=m ) -> Dict: lowerCamelCase__ : Union[str, Any] = 0 for i in range(_UpperCAmelCase ): if index == -1: summation_value += _error(_UpperCAmelCase ) else: summation_value += _error(_UpperCAmelCase ) * train_data[i][0][index] return summation_value def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : List[Any] = summation_of_cost_derivative(_UpperCAmelCase , _UpperCAmelCase ) / m return cost_derivative_value def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ : List[str] = 0.000_002 lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = 0 while True: j += 1 lowerCamelCase__ : str = [0, 0, 0, 0] for i in range(0 , len(_UpperCAmelCase ) ): lowerCamelCase__ : Optional[Any] = get_cost_derivative(i - 1 ) lowerCamelCase__ : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase , rtol=_UpperCAmelCase , ): break lowerCamelCase__ : str = temp_parameter_vector print(('Number of iterations:', j) ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: for i in range(len(_UpperCAmelCase ) ): print(('Actual output value:', output(_UpperCAmelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_UpperCAmelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
50
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : str = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
def A_ ( _lowerCAmelCase = 50 ) -> int: UpperCamelCase : List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
52
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : Optional[int] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch a__ : Union[str, Any] = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : List[Any]=6.0 , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]="fp4" , UpperCAmelCase__ : Optional[int]=False , **UpperCAmelCase__ : List[str] , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = load_in_abit __SCREAMING_SNAKE_CASE = load_in_abit __SCREAMING_SNAKE_CASE = llm_inta_threshold __SCREAMING_SNAKE_CASE = llm_inta_skip_modules __SCREAMING_SNAKE_CASE = llm_inta_enable_fpaa_cpu_offload __SCREAMING_SNAKE_CASE = llm_inta_has_fpaa_weight __SCREAMING_SNAKE_CASE = bnb_abit_quant_type __SCREAMING_SNAKE_CASE = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __SCREAMING_SNAKE_CASE = torch.floataa elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , torch.dtype ): __SCREAMING_SNAKE_CASE = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: if not isinstance(self.llm_inta_threshold , UpperCAmelCase__ ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCAmelCase__ ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCAmelCase__ ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , UpperCAmelCase__ ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , UpperCAmelCase__ ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , UpperCAmelCase__ ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: return self.load_in_abit or self.load_in_abit def UpperCAmelCase_ ( self : List[str] ) -> int: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase_ ( cls : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = cls(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [] for key, value in kwargs.items(): if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ): setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) to_remove.append(UpperCAmelCase__ ) for key in to_remove: kwargs.pop(UpperCAmelCase__ , UpperCAmelCase__ ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] ) -> List[Any]: with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as writer: __SCREAMING_SNAKE_CASE = self.to_dict() __SCREAMING_SNAKE_CASE = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + "\n" writer.write(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, Any]: __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Optional[int] ) -> List[Any]: return F"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : bool = True ) -> str: if use_diff is True: __SCREAMING_SNAKE_CASE = self.to_diff_dict() else: __SCREAMING_SNAKE_CASE = self.to_dict() return json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + "\n" def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, Any]: __SCREAMING_SNAKE_CASE = self.to_dict() # get the default config dict __SCREAMING_SNAKE_CASE = BitsAndBytesConfig().to_dict() __SCREAMING_SNAKE_CASE = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __SCREAMING_SNAKE_CASE = value return serializable_config_dict
54
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) lowerCamelCase_ = sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
55
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a ( _lowerCamelCase ): def A_ ( self : str ): snake_case_ = tempfile.mkdtemp() snake_case_ = 8 # DPR tok snake_case_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok snake_case_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def A_ ( self : Union[str, Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : Union[str, Any] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : int ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A_ ( self : str ): shutil.rmtree(self.tmpdirname ) def A_ ( self : str ): snake_case_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def A_ ( self : str ): snake_case_ = self.get_dummy_dataset() snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case_ = dataset snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A_ ( self : str , lowercase_ : bool ): snake_case_ = self.get_dummy_dataset() snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: snake_case_ = os.path.join(self.tmpdirname , '''dataset''' ) snake_case_ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowercase_ ) , ) return retriever def A_ ( self : Tuple ): snake_case_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case_ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) snake_case_ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) snake_case_ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowercase_ , open(lowercase_ , '''wb''' ) ) snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def A_ ( self : Optional[Any] ): snake_case_ = 1 snake_case_ = self.get_dummy_canonical_hf_index_retriever() snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : str ): snake_case_ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case_ = self.get_dummy_dataset() retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : int ): snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : int ): snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : str ): snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : Any ): snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : Any ): snake_case_ = 1 snake_case_ = self.get_dummy_legacy_index_retriever() snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : int ): snake_case_ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def A_ ( self : List[str] ): import torch snake_case_ = 1 snake_case_ = self.get_dummy_canonical_hf_index_retriever() snake_case_ = [[5, 7], [10, 11]] snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) snake_case_ ,snake_case_ ,snake_case_ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , np.ndarray ) snake_case_ = retriever( lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ , return_tensors='''pt''' , ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def A_ ( self : Tuple ): snake_case_ = self.get_dpr_ctx_encoder_tokenizer() snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) retriever.set_ctx_encoder_tokenizer(lowercase_ ) snake_case_ = [[5, 7], [10, 11]] snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) self.assertEqual( len(lowercase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , lowercase_ ) # check for doc token related keys in dictionary.
56
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
0
"""simple docstring""" import argparse import os import re import packaging.version A : Any = "examples/" A : Optional[Any] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A : Optional[int] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A : List[Any] = "README.md" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , _UpperCamelCase ) __lowerCAmelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , pattern="examples" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase , patch=_UpperCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = get_version() __lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
57
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
0
'''simple docstring''' lowercase_ = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
58
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "The name of the task to train on."} ,) A__ : Optional[List[str]] = dataclasses.field( default=A_ ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) A__ : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) A__ : Optional[int] = dataclasses.field( default=1_00 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[int] = dataclasses.field( default=A_ ,metadata={"help": "Random seed for initialization."} ,) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): snake_case : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case : Optional[int] = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) snake_case : List[str] = dataset.sort("probability" , reverse=__lowerCamelCase ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) snake_case : List[Any] = dataset.remove_columns(["label", "probability"] ) snake_case : Any = dataset.rename_column("prediction" , "label" ) snake_case : str = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) snake_case : List[str] = dataset.shuffle(seed=args.seed ) snake_case : int = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): snake_case : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case : Dict = STModelArguments(model_name_or_path=__lowerCamelCase ) snake_case : Tuple = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) snake_case : str = STTrainingArguments(output_dir=__lowerCamelCase ) snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks snake_case : List[str] = {} snake_case : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case : str = args.train_file snake_case : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case : Tuple = args.eval_file for key in data_files: snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: snake_case : Union[str, Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case : List[Any] = f"""{args.output_dir}/self-train_iter-{{}}""".format snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Tuple = 0 snake_case : List[Any] = False # Show the progress bar snake_case : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case : str = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case : Dict = os.path.join(__lowerCamelCase , "stage-1" ) snake_case : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) snake_case : int = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case : str = os.path.join(__lowerCamelCase , "best-checkpoint" ) snake_case : Dict = os.path.join(__lowerCamelCase , "stage-2" ) # Update arguments_dict snake_case : List[str] = model_path snake_case : Optional[Any] = data_files["train"] snake_case : Optional[Any] = current_output_dir snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowerCamelCase ) snake_case : int = iteration snake_case : Tuple = data_dir_format(iteration + 1 ) snake_case : Tuple = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , "best-checkpoint" ) ) snake_case : Optional[int] = config.idalabel snake_case : List[Any] = os.path.join(__lowerCamelCase , "eval_results_best-checkpoint.json" ) snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: snake_case : Dict = float(json.load(__lowerCamelCase )[args.eval_metric] ) snake_case : Optional[int] = os.path.join(__lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() snake_case : str = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case : List[Any] = eval_result if best_iteration is None: snake_case : List[Any] = new_iteration snake_case : int = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case : int = new_iteration snake_case : Union[str, Any] = new_eval_result snake_case : str = 0 else: if new_eval_result == best_eval_result: snake_case : Any = new_iteration snake_case : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , )
59
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
0
"""simple docstring""" import numpy as np import datasets snake_case__ : Dict = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' snake_case__ : Union[str, Any] = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' snake_case__ : Any = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ): # convert to numpy arrays lowerCAmelCase : List[str] = np.array(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array(UpperCamelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction lowerCAmelCase : List[Any] = X - np.mean(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: lowerCAmelCase : Dict = np.linalg.inv(UpperCamelCase_ ) except np.linalg.LinAlgError: lowerCAmelCase : List[str] = np.linalg.pinv(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = np.dot(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.dot(UpperCamelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
60
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
0
"""simple docstring""" from __future__ import annotations class A_ : '''simple docstring''' def __init__( self , lowercase_ = 0 ): """simple docstring""" UpperCAmelCase_ : List[str] = key def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 0 ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ : int = "" for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 0 ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ : List[Any] = "" for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 0 ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) try: with open(lowercase_ ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_ , lowercase_ ) ) except OSError: return False return True def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) try: with open(lowercase_ ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_ , lowercase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
61
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
0
import random def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =num - 1 __UpperCamelCase =0 while s % 2 == 0: __UpperCamelCase =s // 2 t += 1 for _ in range(5 ): __UpperCamelCase =random.randrange(2 , num - 1 ) __UpperCamelCase =pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: __UpperCamelCase =0 while v != (num - 1): if i == t - 1: return False else: __UpperCamelCase =i + 1 __UpperCamelCase =(v**2) % num return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if num < 2: return False __UpperCamelCase =[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_24 ): while True: __UpperCamelCase =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": _A = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
62
"""simple docstring""" import argparse import copy def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ): with open(snake_case_ ) as f: __UpperCAmelCase = f.read(1 ) __UpperCAmelCase = start_node __UpperCAmelCase = [] __UpperCAmelCase = start_node __UpperCAmelCase = 0 while visiting not in first_solution: __UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: __UpperCAmelCase = k[1] __UpperCAmelCase = k[0] first_solution.append(snake_case_ ) __UpperCAmelCase = distance_of_first_solution + int(snake_case_ ) __UpperCAmelCase = best_node first_solution.append(snake_case_ ) __UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ): __UpperCAmelCase = [] for n in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) for kn in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) if n == kn: continue __UpperCAmelCase = copy.deepcopy(snake_case_ ) __UpperCAmelCase = kn __UpperCAmelCase = n __UpperCAmelCase = 0 for k in _tmp[:-1]: __UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = first_solution __UpperCAmelCase = [] __UpperCAmelCase = distance_of_first_solution __UpperCAmelCase = solution while count <= iters: __UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = neighborhood[index_of_best_solution] __UpperCAmelCase = len(snake_case_ ) - 1 __UpperCAmelCase = False while not found: __UpperCAmelCase = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: __UpperCAmelCase = best_solution[i] __UpperCAmelCase = solution[i] break __UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCAmelCase = True __UpperCAmelCase = best_solution[:-1] __UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCAmelCase = cost __UpperCAmelCase = solution else: __UpperCAmelCase = index_of_best_solution + 1 __UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) __UpperCAmelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( snake_case_ :str=None ): __UpperCAmelCase = generate_neighbours(args.File ) __UpperCAmelCase , __UpperCAmelCase = generate_first_solution( args.File , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = tabu_search( snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
332
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Optional[int] ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__a ): _a = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _a = FlaxAutoModel.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def UpperCamelCase__ ( self : int ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__a ): _a = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _a = FlaxAutoModel.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def UpperCamelCase__ ( self : Optional[int] ): for model_name in ["bert-base-cased", "bert-large-uncased"]: _a = AutoTokenizer.from_pretrained(__a ) _a = FlaxBertModel.from_pretrained(__a ) _a = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__a : Optional[Any] ): return model(**__a ) eval(**__a ).block_until_ready() @slow def UpperCamelCase__ ( self : Dict ): for model_name in ["roberta-base", "roberta-large"]: _a = AutoTokenizer.from_pretrained(__a ) _a = FlaxRobertaModel.from_pretrained(__a ) _a = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__a : str ): return model(**__a ) eval(**__a ).block_until_ready() def UpperCamelCase__ ( self : Any ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = FlaxAutoModel.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : int ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = FlaxAutoModel.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : Dict ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): _a = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : str ): with self.assertRaisesRegex(__a , "Use `from_pt=True` to load this model" ): _a = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
63
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
65
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __a = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCAmelCase =["gpt2"] __UpperCAmelCase ="gpt2" if is_tf_available(): class a__ ( tf.Module ): def __init__( self : str , a : Union[str, Any] ): """simple docstring""" super().__init__() __lowerCamelCase = tokenizer __lowerCamelCase = AutoConfig.from_pretrained(a ) __lowerCamelCase = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Tuple ): """simple docstring""" __lowerCamelCase = self.tokenizer(a ) __lowerCamelCase = tokenized['''input_ids'''].to_tensor() __lowerCamelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase = self.model(input_ids=a , attention_mask=a )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" super().setUp() __lowerCamelCase = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCamelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCamelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase = python_outputs[key].numpy() __lowerCamelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.function(a ) for test_inputs in self.test_sentences: __lowerCamelCase = tf.constant(a ) __lowerCamelCase = compiled_tokenizer(a ) __lowerCamelCase = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = ModelToSave(tokenizer=a ) __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase = Path(a ) / '''saved.model''' tf.saved_model.save(a , a , signatures={'''serving_default''': model.serving} ) __lowerCamelCase = tf.saved_model.load(a ) __lowerCamelCase = loaded_model.signatures['''serving_default'''](a )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a ) # Build model with some sample inputs __lowerCamelCase = tf_tokenizer.get_config() __lowerCamelCase = TFGPTaTokenizer.from_config(a ) __lowerCamelCase = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a , max_length=a ) __lowerCamelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
67
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class a__ : """simple docstring""" __lowerCamelCase = BlenderbotConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = TFBlenderbotModel(config=lowercase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = inputs_dict["head_mask"] A__ = 1 # first forward pass A__ = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowercase , attention_mask=lowercase )[0] A__ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Any=None , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: List[str]=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: A__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = TFBlenderbotModelTester(self ) A__ = ConfigTester(self , config_class=lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = ['My friends are cool but they eat too many carbs.'] __lowerCamelCase = 'facebook/blenderbot-400M-distill' @cached_property def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.tokenizer(self.src_text , return_tensors="tf" ) A__ = self.model.generate( model_inputs.input_ids , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
68
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCamelCase : SCREAMING_SNAKE_CASE_ = BlenderbotConfig SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = "gelu" def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=99, lowerCAmelCase__=32, lowerCAmelCase__=2, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=20, lowerCAmelCase__=2, lowerCAmelCase__=1, lowerCAmelCase__=0, ) -> Optional[int]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id def a_ ( self) -> List[str]: snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) snake_case_ = tf.concat([input_ids, eos_tensor], axis=1) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) snake_case_ = prepare_blenderbot_inputs_dict(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) return config, inputs_dict def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = TFBlenderbotModel(config=lowerCAmelCase__).get_decoder() snake_case_ = inputs_dict['input_ids'] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict['attention_mask'][:1, :] snake_case_ = inputs_dict['head_mask'] snake_case_ = 1 # first forward pass snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, head_mask=lowerCAmelCase__, use_cache=lowerCAmelCase__) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3), config.vocab_size) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.inta) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens], axis=-1) snake_case_ = tf.concat([attention_mask, next_attn_mask], axis=-1) snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__)[0] snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, past_key_values=lowerCAmelCase__)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice snake_case_ = int(ids_tensor((1,), output_from_past.shape[-1])) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__, lowerCAmelCase__, rtol=1e-3) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Optional[Any]: if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Union[str, Any]: snake_case_ = TFBlenderbotModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__) def a_ ( self) -> Dict: self.config_tester.run_common_tests() def a_ ( self) -> Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__) @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ["My friends are cool but they eat too many carbs."] SCREAMING_SNAKE_CASE_ = "facebook/blenderbot-400M-distill" @cached_property def a_ ( self) -> Union[str, Any]: return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def a_ ( self) -> Union[str, Any]: snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def a_ ( self) -> Dict: snake_case_ = self.tokenizer(self.src_text, return_tensors='tf') snake_case_ = self.model.generate( model_inputs.input_ids, ) snake_case_ = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCAmelCase__)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
69
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType A__ , A__ , A__ : Union[str, Any] =False, False, False @dataclass class UpperCAmelCase : _lowercase: Optional[int] = None _lowercase: bool = True _lowercase: bool = True _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase: str = field(default='''Audio''' , init=snake_case_ , repr=snake_case_ ) def __call__( self : int ) -> int: return self.pa_type def lowercase__ ( self : List[Any] , __snake_case : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(__snake_case , __snake_case ): return {"bytes": None, "path": value} elif isinstance(__snake_case , __snake_case ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCAmelCase = BytesIO() sf.write(__snake_case , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCAmelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: _lowerCAmelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_27_67 _lowerCAmelCase = BytesIO(bytes() ) sf.write(__snake_case , __snake_case , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowercase__ ( self : List[Any] , __snake_case : dict , __snake_case : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) _lowerCAmelCase , _lowerCAmelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err _lowerCAmelCase = xsplitext(__snake_case )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: _lowerCAmelCase = token_per_repo_id or {} _lowerCAmelCase = path.split("""::""" )[-1] try: _lowerCAmelCase = string_to_dict(__snake_case , config.HUB_DATASETS_URL )["""repo_id"""] _lowerCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCAmelCase = None with xopen(__snake_case , """rb""" , use_auth_token=__snake_case ) as f: _lowerCAmelCase , _lowerCAmelCase = sf.read(__snake_case ) else: _lowerCAmelCase , _lowerCAmelCase = sf.read(__snake_case ) _lowerCAmelCase = array.T if self.mono: _lowerCAmelCase = librosa.to_mono(__snake_case ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCAmelCase = librosa.resample(__snake_case , orig_sr=__snake_case , target_sr=self.sampling_rate ) _lowerCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def lowercase__ ( self : int , __snake_case : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.binary() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): _lowerCAmelCase = pa.array([Audio().encode_example(__snake_case ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _lowerCAmelCase = storage.field("""bytes""" ) else: _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _lowerCAmelCase = storage.field("""path""" ) else: _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(__snake_case , self.pa_type ) def lowercase__ ( self : Any , __snake_case : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__snake_case : List[Any] ): with xopen(__snake_case , """rb""" ) as f: _lowerCAmelCase = f.read() return bytes_ _lowerCAmelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCAmelCase = pa.array( [os.path.basename(__snake_case ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__snake_case , self.pa_type )
70
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
def A ( a_ = 100 ) -> int: __UpperCamelCase : List[Any] =(n * (n + 1) // 2) ** 2 __UpperCamelCase : Optional[Any] =n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
71
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def snake_case_ ( A_ : Path, A_ : list ): '''simple docstring''' _lowerCamelCase : int = '''\n'''.join(A_ ) Path(A_ ).open('''w''' ).writelines(A_ ) lowerCAmelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCAmelCase__ = '''sshleifer/bart-tiny-random''' lowerCAmelCase__ = '''sshleifer/tiny-mbart''' lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' _lowerCamelCase : Tuple = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() _lowerCamelCase : Optional[int] = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Any = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) _lowerCamelCase : List[str] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' _lowerCamelCase : Optional[Any] = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_generate() assert Path(__lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[int] ): """simple docstring""" self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' _lowerCamelCase : List[str] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() _lowerCamelCase : List[Any] = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } _lowerCamelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) _lowerCamelCase : List[str] = str(tmp_dir / '''scores.json''' ) _lowerCamelCase : Union[str, Any] = str(tmp_dir / '''val.target''' ) _dump_articles(__lowerCAmelCase , text['''en'''] ) _dump_articles(__lowerCAmelCase , text['''de'''] ) _lowerCamelCase : Union[str, Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' _lowerCamelCase : str = f''' run_eval_search.py {model} {str(__lowerCAmelCase )} {str(__lowerCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): with CaptureStdout() as cs: run_search() _lowerCamelCase : Optional[Any] = [''' num_beams | length_penalty''', model, '''Best score args'''] _lowerCamelCase : Optional[Any] = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(__lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__lowerCAmelCase ).exists() os.remove(Path(__lowerCAmelCase ) )
72
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
from bisect import bisect from itertools import accumulate def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = sorted(zip(lowerCamelCase__ , lowerCamelCase__ ) , key=lambda lowerCamelCase__ : x[0] / x[1] , reverse=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Any = [i[0] for i in r], [i[1] for i in r] __lowerCamelCase : List[str] = list(accumulate(lowerCamelCase__ ) ) __lowerCamelCase : Union[str, Any] = bisect(lowerCamelCase__ , lowerCamelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
74
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Any =CanineTokenizer lowercase : Tuple =False def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return CanineTokenizer.from_pretrained('''google/canine-s''' ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCAmelCase ) lowerCamelCase_ =1_024 return tokenizer @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.canine_tokenizer lowerCamelCase_ =['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off lowerCamelCase_ =[57_344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57_345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ =tokenizer(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertEqual((2, 39), batch.input_ids.shape ) self.assertEqual((2, 39), batch.attention_mask.shape ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.canine_tokenizer lowerCamelCase_ =['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] lowerCamelCase_ =tokenizer(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''', lowerCAmelCase ) self.assertIn('''attention_mask''', lowerCAmelCase ) self.assertIn('''token_type_ids''', lowerCAmelCase ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.canine_tokenizer lowerCamelCase_ =[ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] lowerCamelCase_ =tokenizer( text_target=lowerCAmelCase, max_length=32, padding='''max_length''', truncation=lowerCAmelCase, return_tensors='''pt''' ) self.assertEqual(32, targets['''input_ids'''].shape[1] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowerCamelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =tokenizer.__class__.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =after_tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) shutil.rmtree(lowerCAmelCase ) lowerCamelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ =chr(0xE_007 ) additional_special_tokens.append(lowerCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =tokenizer.__class__.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =after_tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertIn(lowerCAmelCase, after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowerCamelCase_ =tokenizer.__class__.from_pretrained(lowerCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_, lowerCamelCase_ =self.get_clean_sequence(lowerCAmelCase ) # a special token for Canine can be defined as follows: lowerCamelCase_ =0xE_005 lowerCamelCase_ =chr(lowerCAmelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 1 ) lowerCamelCase_ =tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=lowerCAmelCase ) lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase, input_encoded + special_token_id ) lowerCamelCase_ =tokenizer.decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_ =chr(0xE_005 ) lowerCamelCase_ =chr(0xE_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) lowerCamelCase_ =tokenizer.tokenize(lowerCAmelCase ) lowerCamelCase_ =tokenizer.tokenize(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 1 ) self.assertEqual(len(lowerCAmelCase ), 1 ) self.assertEqual(token_a[0], lowerCAmelCase ) self.assertEqual(token_a[0], lowerCAmelCase ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: lowerCamelCase_ =0xE_006 lowerCamelCase_ =chr(lowerCAmelCase ) lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase ) tokenizer.from_pretrained(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase, '''special_tokens_map.json''' ), encoding='''utf-8''' ) as json_file: lowerCamelCase_ =json.load(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase, '''tokenizer_config.json''' ), encoding='''utf-8''' ) as json_file: lowerCamelCase_ =json.load(lowerCAmelCase ) # a special token for Canine can be defined as follows: lowerCamelCase_ =0xE_006 lowerCamelCase_ =chr(lowerCAmelCase ) lowerCamelCase_ =[new_token_a] lowerCamelCase_ =[new_token_a] with open(os.path.join(lowerCAmelCase, '''special_tokens_map.json''' ), '''w''', encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase, lowerCAmelCase ) with open(os.path.join(lowerCAmelCase, '''tokenizer_config.json''' ), '''w''', encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase, lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ =tokenizer_class.from_pretrained(lowerCAmelCase, extra_ids=0 ) self.assertIn(lowerCAmelCase, tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ), ) lowerCamelCase_ =0xE_007 lowerCamelCase_ =chr(lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ =[AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase )] lowerCamelCase_ =tokenizer_class.from_pretrained( lowerCAmelCase, additional_special_tokens=lowerCAmelCase, extra_ids=0 ) self.assertIn(lowerCAmelCase, tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_ ='''hello world''' if self.space_between_special_tokens: lowerCamelCase_ ='''[CLS] hello world [SEP]''' else: lowerCamelCase_ =input lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(lowerCAmelCase, spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase, [output, output.lower()] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_ =[ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase_ ='''a''' lowerCamelCase_ =ord(lowerCAmelCase ) for attr in attributes_list: setattr(lowerCAmelCase, attr + '''_id''', lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase, lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase, attr + '''_id''' ), lowerCAmelCase ) setattr(lowerCAmelCase, attr + '''_id''', lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase, lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(getattr(lowerCAmelCase, attr + '''_id''' ), lowerCAmelCase ) setattr(lowerCAmelCase, '''additional_special_tokens_ids''', [] ) self.assertListEqual(getattr(lowerCAmelCase, '''additional_special_tokens''' ), [] ) self.assertListEqual(getattr(lowerCAmelCase, '''additional_special_tokens_ids''' ), [] ) lowerCamelCase_ =0xE_006 lowerCamelCase_ =chr(lowerCAmelCase ) setattr(lowerCAmelCase, '''additional_special_tokens_ids''', [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase, '''additional_special_tokens''' ), [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase, '''additional_special_tokens_ids''' ), [additional_special_token_id] ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass
75
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def __UpperCamelCase ( self : int , a : Any , a : Tuple , a : str=None , a : int=True , a : Optional[Any]=False ) -> List[str]: """simple docstring""" if rouge_types is None: SCREAMING_SNAKE_CASE : Any = ["rouge1", "rouge2", "rougeL", "rougeLsum"] SCREAMING_SNAKE_CASE : List[str] = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a ) if use_aggregator: SCREAMING_SNAKE_CASE : Union[str, Any] = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for ref, pred in zip(a , a ): SCREAMING_SNAKE_CASE : int = scorer.score(a , a ) if use_aggregator: aggregator.add_scores(a ) else: scores.append(a ) if use_aggregator: SCREAMING_SNAKE_CASE : Optional[int] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE : Tuple = {} for key in scores[0]: SCREAMING_SNAKE_CASE : List[Any] = [score[key] for score in scores] return result
76
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _UpperCamelCase : Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _UpperCamelCase : Any = [0, 25, 50] _UpperCamelCase : List[Any] = [25, 50, 75] _UpperCamelCase : str = fuzz.membership.trimf(X, abca) _UpperCamelCase : str = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _UpperCamelCase : List[str] = np.ones(75) _UpperCamelCase : Optional[Any] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _UpperCamelCase : Dict = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _UpperCamelCase : Tuple = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _UpperCamelCase : int = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _UpperCamelCase : Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _UpperCamelCase : Optional[Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _UpperCamelCase : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _UpperCamelCase : Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
77
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case_ = logging.getLogger() def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = '\n'.join(lowercase_ ) Path(lowercase_ ).open('w' ).writelines(lowercase_ ) snake_case_ = """patrickvonplaten/t5-tiny-random""" snake_case_ = """sshleifer/bart-tiny-random""" snake_case_ = """sshleifer/tiny-mbart""" snake_case_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def UpperCAmelCase__ ( self :str , lowercase_ :int ) -> Union[str, Any]: UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(lowercase_ , lowercase_ ) UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' UpperCAmelCase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowercase_ , 'argv' , lowercase_ ): run_generate() assert Path(lowercase_ ).exists() # os.remove(Path(output_file_name)) def UpperCAmelCase__ ( self :str ) -> List[Any]: self.run_eval_tester(lowercase_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[str] ) -> Tuple: self.run_eval_tester(lowercase_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCAmelCase__ ( self :Any , lowercase_ :int ) -> Optional[int]: UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) UpperCAmelCase = str(tmp_dir / 'scores.json' ) UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(lowercase_ , text['en'] ) _dump_articles(lowercase_ , text['de'] ) UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' UpperCAmelCase = f""" run_eval_search.py {model} {str(lowercase_ )} {str(lowercase_ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowercase_ , 'argv' , lowercase_ ): with CaptureStdout() as cs: run_search() UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowercase_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase_ ).exists() os.remove(Path(lowercase_ ) )
78
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowercase ( __lowercase ) -> Optional[int]: '''simple docstring''' _A = 384 if "tiny" in model_name: _A = [3, 3, 9, 3] _A = [96, 192, 384, 768] if "small" in model_name: _A = [3, 3, 27, 3] _A = [96, 192, 384, 768] if "base" in model_name: _A = [3, 3, 27, 3] _A = [128, 256, 512, 1024] _A = 512 if "large" in model_name: _A = [3, 3, 27, 3] _A = [192, 384, 768, 1536] _A = 768 if "xlarge" in model_name: _A = [3, 3, 27, 3] _A = [256, 512, 1024, 2048] _A = 1024 # set label information _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __lowercase ( __lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' _A = dct.pop(__lowercase ) _A = val def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" )["state_dict"] _A = get_upernet_config(__lowercase ) _A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) if "bn" in key: _A = key.replace("bn" , "batch_norm" ) _A = val # rename keys _A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image _A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("RGB" ) _A = SegformerImageProcessor() _A = processor(__lowercase , return_tensors="pt" ).pixel_values with torch.no_grad(): _A = model(__lowercase ) if model_name == "upernet-convnext-tiny": _A = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": _A = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": _A = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": _A = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": _A = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
79
"""simple docstring""" import pprint import requests _lowercase : Optional[Any] = 'https://zenquotes.io/api' def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase__ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowercase : int = random_quotes() pprint.pprint(response)
332
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class lowercase_ : def __init__( self , a=None , a=None ): # Input as list UpperCamelCase__ = list(poly_a or [0] )[:] UpperCamelCase__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCamelCase__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCamelCase__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCamelCase__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCamelCase__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCamelCase__ = self.__multiply() def __a ( self , a ): UpperCamelCase__ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(a ) <= 1: return dft[0] # UpperCamelCase__ = self.c_max_length // 2 while next_ncol > 0: UpperCamelCase__ = [[] for i in range(a )] UpperCamelCase__ = self.root**next_ncol # First half of next step UpperCamelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCamelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCamelCase__ = new_dft UpperCamelCase__ = next_ncol // 2 return dft[0] def __a ( self ): UpperCamelCase__ = self.__dft("A" ) UpperCamelCase__ = self.__dft("B" ) UpperCamelCase__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCamelCase__ = 2 while next_ncol <= self.c_max_length: UpperCamelCase__ = [[] for i in range(a )] UpperCamelCase__ = self.root ** (next_ncol // 2) UpperCamelCase__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCamelCase__ = new_inverse_c next_ncol *= 2 # Unpack UpperCamelCase__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): UpperCamelCase__ = "A = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCamelCase__ = "B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCamelCase__ = "A*B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
80
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase_ : Union[str, Any] = False class __A ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) a =torch.manual_seed(0 ) a =pipe.dual_guided( prompt='''first prompt''' , image=__A , text_to_image_strength=0.75 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) a =VersatileDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a =generator.manual_seed(0 ) a =pipe.dual_guided( prompt='''first prompt''' , image=__A , text_to_image_strength=0.75 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a ='''cyberpunk 2077''' a =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) a =torch.manual_seed(0 ) a =pipe.dual_guided( prompt=__A , image=__A , text_to_image_strength=0.75 , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a =np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a ='''A painting of a squirrel eating a burger ''' a =torch.manual_seed(0 ) a =pipe.text_to_image( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a =np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a =pipe.image_variation(__A , generator=__A , output_type='''numpy''' ).images a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a =np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
81
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
0
import argparse from collections import defaultdict import yaml A__ = """docs/source/en/_toctree.yml""" def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = defaultdict(snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(snake_case ) _lowerCAmelCase = new_doc_list _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _lowerCAmelCase = sorted(snake_case , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(snake_case ) # Sort return overview_doc def _UpperCAmelCase ( snake_case=False ): """simple docstring""" with open(snake_case , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase = api_doc[scheduler_idx]["""sections"""] _lowerCAmelCase = clean_doc_toc(snake_case ) _lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def _UpperCAmelCase ( snake_case=False ): """simple docstring""" with open(snake_case , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase = False _lowerCAmelCase = api_doc[pipeline_idx]["""sections"""] _lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase = pipeline_doc["""section"""] _lowerCAmelCase = clean_doc_toc(snake_case ) if overwrite: _lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(snake_case ) # sort overall pipeline doc _lowerCAmelCase = clean_doc_toc(snake_case ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
82
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase__ ( lowercase ): lowercase__ = """megatron-bert""" def __init__( self : List[Any] ,lowerCamelCase__ : List[str]=29056 ,lowerCamelCase__ : Optional[int]=1024 ,lowerCamelCase__ : Union[str, Any]=24 ,lowerCamelCase__ : List[Any]=16 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Tuple=512 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Optional[Any]=1E-12 ,lowerCamelCase__ : str=0 ,lowerCamelCase__ : Any="absolute" ,lowerCamelCase__ : Optional[Any]=True ,**lowerCamelCase__ : Dict ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Any = intermediate_size _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : List[str] = position_embedding_type _UpperCamelCase : Tuple = use_cache
83
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Any = "Salesforce/blip-image-captioning-base" UpperCAmelCase_ :str = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) UpperCAmelCase_ :List[Any] = "image_captioner" UpperCAmelCase_ :Tuple = AutoModelForVisionaSeq UpperCAmelCase_ :List[Any] = ["image"] UpperCAmelCase_ :Union[str, Any] = ["text"] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def __lowerCAmelCase ( self , __A ) -> List[Any]: return self.pre_processor(images=__A , return_tensors="""pt""" ) def __lowerCAmelCase ( self , __A ) -> str: return self.model.generate(**__A ) def __lowerCAmelCase ( self , __A ) -> Tuple: return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0].strip()
84
"""simple docstring""" import argparse import copy def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( snake_case_ :Dict , snake_case_ :Optional[Any] ): with open(snake_case_ ) as f: __UpperCAmelCase = f.read(1 ) __UpperCAmelCase = start_node __UpperCAmelCase = [] __UpperCAmelCase = start_node __UpperCAmelCase = 0 while visiting not in first_solution: __UpperCAmelCase = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: __UpperCAmelCase = k[1] __UpperCAmelCase = k[0] first_solution.append(snake_case_ ) __UpperCAmelCase = distance_of_first_solution + int(snake_case_ ) __UpperCAmelCase = best_node first_solution.append(snake_case_ ) __UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowercase__ ( snake_case_ :int , snake_case_ :Tuple ): __UpperCAmelCase = [] for n in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) for kn in solution[1:-1]: __UpperCAmelCase = solution.index(snake_case_ ) if n == kn: continue __UpperCAmelCase = copy.deepcopy(snake_case_ ) __UpperCAmelCase = kn __UpperCAmelCase = n __UpperCAmelCase = 0 for k in _tmp[:-1]: __UpperCAmelCase = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCAmelCase = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = first_solution __UpperCAmelCase = [] __UpperCAmelCase = distance_of_first_solution __UpperCAmelCase = solution while count <= iters: __UpperCAmelCase = find_neighborhood(snake_case_ , snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = neighborhood[index_of_best_solution] __UpperCAmelCase = len(snake_case_ ) - 1 __UpperCAmelCase = False while not found: __UpperCAmelCase = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: __UpperCAmelCase = best_solution[i] __UpperCAmelCase = solution[i] break __UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCAmelCase = True __UpperCAmelCase = best_solution[:-1] __UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCAmelCase = cost __UpperCAmelCase = solution else: __UpperCAmelCase = index_of_best_solution + 1 __UpperCAmelCase = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) __UpperCAmelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( snake_case_ :str=None ): __UpperCAmelCase = generate_neighbours(args.File ) __UpperCAmelCase , __UpperCAmelCase = generate_first_solution( args.File , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = tabu_search( snake_case_ , snake_case_ , snake_case_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
332
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _snake_case : def __init__( self , a__ , a__=3 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ) -> List[str]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=a__ , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = FalconModel(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[int]: '''simple docstring''' snake_case_ = True snake_case_ = FalconModel(a__ ) model.to(a__ ) model.eval() snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) snake_case_ = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> str: '''simple docstring''' snake_case_ = FalconForCausalLM(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Dict: '''simple docstring''' snake_case_ = True snake_case_ = True snake_case_ = FalconForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )["hidden_states"][0] snake_case_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["hidden_states"][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ : List[Any] = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Union[str, Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : List[Any] = False def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = FalconModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , *snake_case_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: snake_case_ = alibi self.model_tester.create_and_check_model(a__ , *a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "single_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = input_dict["input_ids"] snake_case_ = FalconForCausalLM(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , use_cache=a__ ) snake_case_ = input_ids.shape[0] snake_case_ = model._convert_to_rw_cache(result.past_key_values ) snake_case_ = model._convert_cache_to_standard_format(a__ , a__ ) for layer in range(len(a__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "multi_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class in self.all_generative_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(a__ , "use_cache" ): return snake_case_ = model_class(a__ ).to(a__ ) if "use_cache" not in inputs: snake_case_ = True snake_case_ = model(**a__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return snake_case_ = ( getattr(a__ , "decoder_layers" , a__ ) or getattr(a__ , "num_decoder_layers" , a__ ) or config.num_hidden_layers ) snake_case_ = getattr(a__ , "num_kv_heads" , config.num_attention_heads ) snake_case_ = getattr(a__ , "d_model" , config.hidden_size ) snake_case_ = embed_dim // num_attention_heads snake_case_ = outputs["past_key_values"] self.assertEqual(len(a__ ) , a__ ) snake_case_ , snake_case_ = inputs["input_ids"].shape for i in range(a__ ): if config.new_decoder_architecture: snake_case_ = config.num_attention_heads elif config.multi_query: snake_case_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) snake_case_ = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(a__ ) snake_case_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(a__ ) snake_case_ = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) snake_case_ = model.generate(**a__ , do_sample=a__ , max_new_tokens=19 ) snake_case_ = tokenizer.batch_decode(a__ )[0] self.assertEqual(a__ , a__ ) @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: snake_case_ = AutoTokenizer.from_pretrained(a__ ) snake_case_ = FalconForCausalLM.from_pretrained(a__ ) model.eval() model.to(a__ ) snake_case_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(a__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**a__ , do_sample=a__ , max_new_tokens=4 ) model.generate(**a__ , do_sample=a__ , max_new_tokens=4 ) model.generate(**a__ , num_beams=2 , max_new_tokens=4 ) @slow def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: snake_case_ = AutoTokenizer.from_pretrained(a__ ) snake_case_ = FalconForCausalLM.from_pretrained(a__ ) model.eval() model.to(device=a__ ) snake_case_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(a__ ) # Test results are the same with and without cache snake_case_ = model.generate(**a__ , do_sample=a__ , max_new_tokens=20 , use_cache=a__ ) snake_case_ = model.generate(**a__ , do_sample=a__ , max_new_tokens=20 , use_cache=a__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
85
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
0
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowerCamelCase__ = """1""" lowerCamelCase__ = """0""" lowerCamelCase__ = """1""" lowerCamelCase__ = ort.SessionOptions() lowerCamelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") lowerCamelCase__ = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] lowerCamelCase__ = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) lowerCamelCase__ = ort.RunOptions() lowerCamelCase__ = 128 lowerCamelCase__ = 1 lowerCamelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase__ = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") lowerCamelCase__ = time.time() lowerCamelCase__ = 2_000 lowerCamelCase__ = {} for iter in range(max_iters): lowerCamelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_000 / max_iters))
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def lowercase_ ( _lowerCamelCase : Accelerator , _lowerCamelCase : int = 16): lowercase__ : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased") lowercase__ : Optional[int] = load_dataset("glue" , "mrpc") def tokenize_function(_lowerCamelCase : Dict): # max_length=None => use the model max length (it's actually the default) lowercase__ : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Optional[int] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_lowerCamelCase : int): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[Any] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Any = 8 else: lowercase__ : Tuple = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase) lowercase__ : Optional[int] = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase) == "1": lowercase__ : int = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowercase__ : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir) else: lowercase__ : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Any = config["lr"] lowercase__ : List[str] = int(config["num_epochs"]) lowercase__ : List[str] = int(config["seed"]) lowercase__ : int = int(config["batch_size"]) set_seed(_lowerCamelCase) lowercase__ , lowercase__ : Optional[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase) lowercase__ : List[str] = evaluate.load("glue" , "mrpc") # If the batch size is too big we use gradient accumulation lowercase__ : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : Union[str, Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Any = model.to(accelerator.device) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=_lowerCamelCase) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowercase__ : Dict = os.path.split(_lowerCamelCase)[-1].split(".")[0] accelerator.init_trackers(_lowerCamelCase , _lowerCamelCase) # Now we train the model for epoch in range(_lowerCamelCase): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowercase__ : Optional[Any] = 0 for step, batch in enumerate(_lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) lowercase__ : Dict = model(**_lowerCamelCase) lowercase__ : Tuple = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowercase__ : str = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device) with torch.no_grad(): lowercase__ : Tuple = model(**_lowerCamelCase) lowercase__ : str = outputs.logits.argmax(dim=-1) lowercase__ , lowercase__ : Tuple = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) lowercase__ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowerCamelCase) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCamelCase), "epoch": epoch, } , step=_lowerCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase_ ( ): lowercase__ : str = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU.") parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCamelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowercase__ : int = parser.parse_args() lowercase__ : Tuple = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
87
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( A_ ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __magic_name__ = [1, 2, 3] with pytest.raises(A_ ): with parallel_backend("""unsupported backend""" ): map_nested(A_, A_, num_proc=2 ) with pytest.raises(A_ ): with parallel_backend("""unsupported backend""" ): map_nested(A_, A_, num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""", [2, -1] ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = [1, 2] __magic_name__ = {"""a""": 1, """b""": 2} __magic_name__ = {"""a""": [1, 2], """b""": [3, 4]} __magic_name__ = {"""a""": {"""1""": 1}, """b""": 2} __magic_name__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __magic_name__ = [2, 3] __magic_name__ = {"""a""": 2, """b""": 3} __magic_name__ = {"""a""": [2, 3], """b""": [4, 5]} __magic_name__ = {"""a""": {"""1""": 2}, """b""": 3} __magic_name__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa assert map_nested(A_, A_, num_proc=A_ ) == expected_map_nested_sa
88
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a__ : int a__ : Node | None = None a__ : Node | None = None def lowercase__ ( ): __UpperCAmelCase = Node(1 ) __UpperCAmelCase = Node(2 ) __UpperCAmelCase = Node(3 ) __UpperCAmelCase = Node(4 ) __UpperCAmelCase = Node(5 ) return tree def lowercase__ ( snake_case_ :Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( snake_case_ :Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( snake_case_ :Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( snake_case_ :Node | None ): __UpperCAmelCase = [] if root is None: return output __UpperCAmelCase = deque([root] ) while process_queue: __UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None , snake_case_ :int ): __UpperCAmelCase = [] def populate_output(snake_case_ :Node | None , snake_case_ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def lowercase__ ( snake_case_ :Node | None ): if root is None: return [] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __UpperCAmelCase = 0 return output def lowercase__ ( ): # Main function for testing. __UpperCAmelCase = make_tree() print(F'''In-order Traversal: {inorder(snake_case_ )}''' ) print(F'''Pre-order Traversal: {preorder(snake_case_ )}''' ) print(F'''Post-order Traversal: {postorder(snake_case_ )}''' , '''\n''' ) print(F'''Height of Tree: {height(snake_case_ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case_ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=_UpperCamelCase ): lowerCAmelCase : str = ['note_seq'] def __init__( self : Tuple ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : str ): requires_backends(self ,['note_seq'] ) @classmethod def __lowercase ( cls : List[Any] ,*_UpperCAmelCase : str ,**_UpperCAmelCase : Optional[Any] ): requires_backends(cls ,['note_seq'] ) @classmethod def __lowercase ( cls : Union[str, Any] ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Any ): requires_backends(cls ,['note_seq'] )
89
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowercase_ ( self , lowerCamelCase__=0 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((128, 128) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((128, 128) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
90
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
91
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=snake_case__ ): _a : Any = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : int = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : Union[str, Any] = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : int = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : int = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : Tuple = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : List[Any] = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : int = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : Tuple = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : Optional[int] = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : str = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : str = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) class a__ ( metaclass=snake_case__ ): _a : List[str] = ["""flax"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def __SCREAMING_SNAKE_CASE( cls , *_A , **_A ): """simple docstring""" requires_backends(cls , ["flax"] )
92
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Union[str, Any] = int(__SCREAMING_SNAKE_CASE ) if n_element < 1: lowercase_ : str = ValueError('''a should be a positive number''' ) raise my_error lowercase_ : str = [1] lowercase_ , lowercase_ , lowercase_ : Any = (0, 0, 0) lowercase_ : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowercase : str = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _lowercase : List[Any] = hamming(int(n)) print("-----------------------------------------------------") print(f"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
93
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_snake_case ) , 'Tatoeba directory does not exist.' ) class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = tempfile.mkdtemp() return TatoebaConverter(save_dir=_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): self.resolver.convert_models(['''heb-eng'''] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a , a :Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
94
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCAmelCase : Optional[int] = """ import os """ UpperCAmelCase : List[str] = """ def foo(): import os return False """ UpperCAmelCase : Dict = """ def foo(): def bar(): if True: import os return False return bar() """ UpperCAmelCase : Dict = """ import os try: import bar except ImportError: raise ValueError() """ UpperCAmelCase : str = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ UpperCAmelCase : Any = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ UpperCAmelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ UpperCAmelCase : Any = """ import os try: import bar except: raise ValueError() """ UpperCAmelCase : int = """ import os try: import bar import baz except ImportError: raise ValueError() """ UpperCAmelCase : List[Any] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ UpperCAmelCase : List[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" a__ : int =os.path.join(SCREAMING_SNAKE_CASE , "test_file.py" ) with open(SCREAMING_SNAKE_CASE , "w" ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE ) a__ : List[str] =get_imports(SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
95
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
332
0
"""simple docstring""" def _snake_case ( lowercase__ ): assert column_title.isupper() _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(lowercase__ ) - 1 _lowerCamelCase : Optional[Any] = 0 while index >= 0: _lowerCamelCase : Union[str, Any] = (ord(column_title[index] ) - 64) * pow(26 , lowercase__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
96
"""simple docstring""" _lowercase : Any = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowercase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowercase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
332
0
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a ( __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[Any] = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__a , __a ) def a ( __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :int = emb.weight.shape UpperCamelCase__ :Tuple = nn.Linear(__a , __a , bias=__a ) UpperCamelCase__ :Dict = emb.weight.data return lin_layer def a ( __a ) -> str: '''simple docstring''' UpperCamelCase__ :int = torch.load(__a , map_location='''cpu''' ) UpperCamelCase__ :Optional[int] = Namespace(**checkpoint['''cfg''']['''model'''] ) UpperCamelCase__ :Dict = checkpoint['''model'''] remove_ignore_keys_(__a ) UpperCamelCase__ :Optional[int] = state_dict['''decoder.embed_tokens.weight'''].shape[0] UpperCamelCase__ :Optional[int] = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} UpperCamelCase__ :Union[str, Any] = XGLMConfig( vocab_size=__a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCamelCase__ :Any = XGLMForCausalLM(__a ) UpperCamelCase__ :Dict = model.load_state_dict(__a , strict=__a ) print(__a ) UpperCamelCase__ :Optional[int] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __snake_case = parser.parse_args() __snake_case = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
97
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = BartphoTokenizer snake_case__ = False snake_case__ = True def __lowerCAmelCase ( self : Optional[Any] ): super().setUp() UpperCAmelCase__ = ['▁This', '▁is', '▁a', '▁t', 'est'] UpperCAmelCase__ = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) UpperCAmelCase__ = {'unk_token': '<unk>'} UpperCAmelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file ,'w' ,encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) UpperCAmelCase__ = BartphoTokenizer(lowerCamelCase__ ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ,**lowerCamelCase__ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): UpperCAmelCase__ = 'This is a là test' UpperCAmelCase__ = 'This is a<unk><unk> test' return input_text, output_text def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = BartphoTokenizer(lowerCamelCase__ ,self.monolingual_vocab_file ,**self.special_tokens_map ) UpperCAmelCase__ = 'This is a là test' UpperCAmelCase__ = '▁This ▁is ▁a ▁l à ▁t est'.split() UpperCAmelCase__ = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,lowerCamelCase__ )
98
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
0
class A__ : """simple docstring""" def __init__( self , lowercase) -> None: '''simple docstring''' a__ : Optional[Any] = len(lowercase) a__ : Tuple = [0] * len_array if len_array > 0: a__ : List[Any] = array[0] for i in range(1 , lowercase): a__ : List[str] = self.prefix_sum[i - 1] + array[i] def __lowercase ( self , lowercase , lowercase) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __lowercase ( self , lowercase) -> bool: '''simple docstring''' a__ : Union[str, Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase) return False if __name__ == "__main__": import doctest doctest.testmod()
99
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): def count_of_possible_combinations(UpperCamelCase_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): def count_of_possible_combinations_with_dp_array( UpperCamelCase_ , UpperCamelCase_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __SCREAMING_SNAKE_CASE = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase_ ) for item in array ) __SCREAMING_SNAKE_CASE = answer return answer __SCREAMING_SNAKE_CASE = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [0] * (target + 1) __SCREAMING_SNAKE_CASE = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = 3 __magic_name__ = 5 __magic_name__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
100
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
0