code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __A ( _a , unittest.TestCase ):
lowerCAmelCase_ : Dict = RobertaTokenizer
lowerCAmelCase_ : Any = RobertaTokenizerFast
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ : Optional[Any] = {"cls_token": "<s>"}
def lowercase__ ( self : Any ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase : List[str] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
lowerCAmelCase : List[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
lowerCAmelCase : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
lowerCAmelCase : List[Any] = {'unk_token': '<unk>'}
lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowercase__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(lowercase__ ) )
def lowercase__ ( self : Dict , **UpperCAmelCase_ : List[str] ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowercase__ ( self : Union[str, Any] , **UpperCAmelCase_ : Dict ):
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict ):
lowerCAmelCase : Optional[int] = 'lower newer'
lowerCAmelCase : List[Any] = 'lower newer'
return input_text, output_text
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase : Tuple = 'lower newer'
lowerCAmelCase : Any = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
lowerCAmelCase : Any = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True)
self.assertListEqual(lowercase__ , lowercase__ )
lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token]
lowerCAmelCase : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
def lowercase__ ( self : Any ):
lowerCAmelCase : Tuple = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase__ ) , [0, 31414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , )
@slow
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained('roberta-base' )
lowerCAmelCase : Any = tokenizer.encode('sequence builders' , add_special_tokens=lowercase__ )
lowerCAmelCase : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase__ )
lowerCAmelCase : Any = tokenizer.encode(
'sequence builders' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
lowerCAmelCase : str = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ )
lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowercase__ ( self : int ):
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : Optional[int] = 'Encode this sequence.'
lowerCAmelCase : List[Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
lowerCAmelCase : Dict = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
lowerCAmelCase : str = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(lowercase__ , lowercase__ )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
lowerCAmelCase : Union[str, Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
# Testing spaces after special tokens
lowerCAmelCase : List[str] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space
lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(lowercase__ )
lowerCAmelCase : Tuple = 'Encode <mask> sequence'
lowerCAmelCase : str = 'Encode <mask>sequence'
lowerCAmelCase : str = tokenizer.encode(lowercase__ )
lowerCAmelCase : Optional[int] = encoded.index(lowercase__ )
lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(lowercase__ , lowercase__ )
lowerCAmelCase : List[Any] = tokenizer.encode(lowercase__ )
lowerCAmelCase : Optional[Any] = encoded.index(lowercase__ )
lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
def lowercase__ ( self : int ):
pass
def lowercase__ ( self : str ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
lowerCAmelCase : Union[str, Any] = 'A, <mask> AllenNLP sentence.'
lowerCAmelCase : Dict = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
lowerCAmelCase : List[Any] = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
lowerCAmelCase : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
lowerCAmelCase : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
lowercase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
lowercase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def lowercase__ ( self : List[Any] ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowerCAmelCase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase__ )
self.assertEqual(post_processor_state['add_prefix_space'] , lowercase__ )
self.assertEqual(post_processor_state['trim_offsets'] , lowercase__ )
def lowercase__ ( self : Tuple ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCAmelCase : Dict = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
lowerCAmelCase : List[str] = f"{text_of_1_token} {text_of_1_token}"
lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : Dict = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : Optional[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : int = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : List[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
lowerCAmelCase : Optional[int] = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : str = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : Tuple = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
lowerCAmelCase : Optional[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
| 138 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
'''simple docstring'''
a__ = LongformerTokenizer
a__ = True
a__ = LongformerTokenizerFast
a__ = True
def lowerCAmelCase_ (self ) -> Any:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
__UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__UpperCAmelCase = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase__ ) )
def lowerCAmelCase_ (self , **lowercase__ ) -> int:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ ) -> Dict:
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = '''lower newer'''
return input_text, output_text
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True)
self.assertListEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokens + [tokenizer.unk_token]
__UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , )
@slow
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
__UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = '''Encode this sequence.'''
__UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(lowercase__ , lowercase__ )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
# Testing spaces after special tokens
__UpperCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ )
__UpperCAmelCase = '''Encode <mask> sequence'''
__UpperCAmelCase = '''Encode <mask>sequence'''
__UpperCAmelCase = tokenizer.encode(lowercase__ )
__UpperCAmelCase = encoded.index(lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokenizer.encode(lowercase__ )
__UpperCAmelCase = encoded.index(lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
pass
def lowerCAmelCase_ (self ) -> int:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__UpperCAmelCase = '''A, <mask> AllenNLP sentence.'''
__UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
__UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def lowerCAmelCase_ (self ) -> Optional[int]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}'''
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = F''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
| 333 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : str = logging.get_logger(__name__)
UpperCAmelCase : Any = {
'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json',
'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json',
'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json',
'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json',
'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json',
'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json',
'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json',
'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json',
'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json',
'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json',
}
class lowerCamelCase__ ( _a ):
"""simple docstring"""
__a = """rwkv"""
__a = {"""max_position_embeddings""": """context_length"""}
def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any]=50_277 , UpperCamelCase : List[str]=1_024 , UpperCamelCase : str=4_096 , UpperCamelCase : List[str]=32 , UpperCamelCase : Tuple=None , UpperCamelCase : List[str]=None , UpperCamelCase : Any=1e-5 , UpperCamelCase : int=0 , UpperCamelCase : str=0 , UpperCamelCase : Any=6 , UpperCamelCase : List[Any]=False , UpperCamelCase : Union[str, Any]=True , **UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : Dict = vocab_size
__UpperCAmelCase : Any = context_length
__UpperCAmelCase : List[str] = hidden_size
__UpperCAmelCase : int = num_hidden_layers
__UpperCAmelCase : Tuple = attention_hidden_size if attention_hidden_size is not None else hidden_size
__UpperCAmelCase : int = intermediate_size if intermediate_size is not None else 4 * hidden_size
__UpperCAmelCase : List[Any] = layer_norm_epsilon
__UpperCAmelCase : Any = rescale_every
__UpperCAmelCase : Union[str, Any] = use_cache
__UpperCAmelCase : Any = bos_token_id
__UpperCAmelCase : Dict = eos_token_id
super().__init__(
tie_word_embeddings=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
| 115 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
'''simple docstring'''
a__ = (IPNDMScheduler,)
a__ = (("num_inference_steps", 50),)
def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple:
__UpperCAmelCase = {'''num_train_timesteps''': 1_000}
config.update(**lowercase__ )
return config
def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config(**lowercase__ )
__UpperCAmelCase = scheduler_class(**lowercase__ )
scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__ )
__UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ )
new_scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ (self ) -> List[str]:
pass
def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**lowercase__ )
scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__ )
__UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase__ )
# copy over dummy past residual (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]:
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(**lowercase__ )
__UpperCAmelCase = scheduler_class(**lowercase__ )
__UpperCAmelCase = 10
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(lowercase__ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(lowercase__ , lowercase__ )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(lowercase__ , lowercase__ )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample
return sample
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ):
scheduler.set_timesteps(lowercase__ )
elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ):
__UpperCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.timesteps[5]
__UpperCAmelCase = scheduler.timesteps[6]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ (self ) -> List[Any]:
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ )
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = self.full_loop()
__UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 333 | 0 |
'''simple docstring'''
import sys
import turtle
def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Tuple ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase ) , get_mid(_lowerCamelCase , _lowerCamelCase ) , depth - 1 )
triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase ) , get_mid(_lowerCamelCase , _lowerCamelCase ) , depth - 1 )
triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase ) , get_mid(_lowerCamelCase , _lowerCamelCase ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
UpperCamelCase__ : Optional[Any] = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
UpperCamelCase__ : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1])) | 112 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
'''simple docstring'''
def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int:
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = num_labels
__UpperCAmelCase = image_size
__UpperCAmelCase = layer_depths
__UpperCAmelCase = embed_dims
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ (self ) -> Optional[Any]:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int:
__UpperCAmelCase = SwiftFormerModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = model(lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
__UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = model(lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ (self ) -> Optional[int]:
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs()
__UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
'''simple docstring'''
a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
a__ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def lowerCAmelCase_ (self ) -> List[str]:
__UpperCAmelCase = SwiftFormerModelTester(self )
__UpperCAmelCase = ConfigTester(
self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowerCAmelCase_ (self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' )
def lowerCAmelCase_ (self ) -> List[Any]:
pass
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(lowercase__ )
__UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(lowercase__ )
__UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase = [*signature.parameters.keys()]
__UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase__ )
@slow
def lowerCAmelCase_ (self ) -> Any:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@unittest.skip(reason='''SwiftFormer does not output attentions''' )
def lowerCAmelCase_ (self ) -> List[str]:
pass
def lowerCAmelCase_ (self ) -> Union[str, Any]:
def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ):
__UpperCAmelCase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) )
__UpperCAmelCase = outputs.hidden_states
__UpperCAmelCase = 8
self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowercase__ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
def _config_zero_init(lowercase__ ):
__UpperCAmelCase = copy.deepcopy(lowercase__ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowercase__ , lowercase__ , 1E-10 )
if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ):
__UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) )
setattr(lowercase__ , lowercase__ , lowercase__ )
return configs_no_init
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = _config_zero_init(lowercase__ )
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(config=lowercase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowerCAmelCase_ (self ) -> Optional[Any]:
pass
def __a ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ (self ) -> str:
return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None
@slow
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ )
__UpperCAmelCase = self.default_image_processor
__UpperCAmelCase = prepare_img()
__UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ )
# forward pass
with torch.no_grad():
__UpperCAmelCase = model(**lowercase__ )
# verify the logits
__UpperCAmelCase = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowercase__ )
__UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
| 333 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class snake_case_ ( _a ):
__A : int = "facebook/bart-large-mnli"
__A : str = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
__A : List[Any] = "text_classifier"
__A : str = AutoTokenizer
__A : Any = AutoModelForSequenceClassification
__A : Optional[Any] = ["text", ["text"]]
__A : str = ["text"]
def __UpperCamelCase ( self : Optional[int] ) -> str:
super().setup()
lowercase__ : Any = self.model.config
lowercase__ : Union[str, Any] = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
lowercase__ : str = int(lowercase__ )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : List[str] ) -> Any:
lowercase__ : List[Any] = labels
return self.pre_processor(
[text] * len(lowercase__ ) , [F'''This example is {label}''' for label in labels] , return_tensors="pt" , padding="max_length" , )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict ) -> Optional[int]:
lowercase__ : List[str] = outputs.logits
lowercase__ : Union[str, Any] = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 87 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
A_ : str = logging.get_logger(__name__)
A_ : str = OrderedDict(
[
# Base model mapping
('albert', 'FlaxAlbertModel'),
('bart', 'FlaxBartModel'),
('beit', 'FlaxBeitModel'),
('bert', 'FlaxBertModel'),
('big_bird', 'FlaxBigBirdModel'),
('blenderbot', 'FlaxBlenderbotModel'),
('blenderbot-small', 'FlaxBlenderbotSmallModel'),
('clip', 'FlaxCLIPModel'),
('distilbert', 'FlaxDistilBertModel'),
('electra', 'FlaxElectraModel'),
('gpt-sw3', 'FlaxGPT2Model'),
('gpt2', 'FlaxGPT2Model'),
('gpt_neo', 'FlaxGPTNeoModel'),
('gptj', 'FlaxGPTJModel'),
('longt5', 'FlaxLongT5Model'),
('marian', 'FlaxMarianModel'),
('mbart', 'FlaxMBartModel'),
('mt5', 'FlaxMT5Model'),
('opt', 'FlaxOPTModel'),
('pegasus', 'FlaxPegasusModel'),
('regnet', 'FlaxRegNetModel'),
('resnet', 'FlaxResNetModel'),
('roberta', 'FlaxRobertaModel'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'),
('roformer', 'FlaxRoFormerModel'),
('t5', 'FlaxT5Model'),
('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'),
('vit', 'FlaxViTModel'),
('wav2vec2', 'FlaxWav2Vec2Model'),
('whisper', 'FlaxWhisperModel'),
('xglm', 'FlaxXGLMModel'),
('xlm-roberta', 'FlaxXLMRobertaModel'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for pre-training mapping
('albert', 'FlaxAlbertForPreTraining'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForPreTraining'),
('big_bird', 'FlaxBigBirdForPreTraining'),
('electra', 'FlaxElectraForPreTraining'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('t5', 'FlaxT5ForConditionalGeneration'),
('wav2vec2', 'FlaxWav2Vec2ForPreTraining'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
A_ : Union[str, Any] = OrderedDict(
[
# Model for Masked LM mapping
('albert', 'FlaxAlbertForMaskedLM'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForMaskedLM'),
('big_bird', 'FlaxBigBirdForMaskedLM'),
('distilbert', 'FlaxDistilBertForMaskedLM'),
('electra', 'FlaxElectraForMaskedLM'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
A_ : Dict = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('bart', 'FlaxBartForConditionalGeneration'),
('blenderbot', 'FlaxBlenderbotForConditionalGeneration'),
('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'),
('encoder-decoder', 'FlaxEncoderDecoderModel'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('marian', 'FlaxMarianMTModel'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('pegasus', 'FlaxPegasusForConditionalGeneration'),
('t5', 'FlaxT5ForConditionalGeneration'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for Image-classsification
('beit', 'FlaxBeitForImageClassification'),
('regnet', 'FlaxRegNetForImageClassification'),
('resnet', 'FlaxResNetForImageClassification'),
('vit', 'FlaxViTForImageClassification'),
]
)
A_ : Dict = OrderedDict(
[
('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'),
]
)
A_ : List[str] = OrderedDict(
[
# Model for Causal LM mapping
('bart', 'FlaxBartForCausalLM'),
('bert', 'FlaxBertForCausalLM'),
('big_bird', 'FlaxBigBirdForCausalLM'),
('electra', 'FlaxElectraForCausalLM'),
('gpt-sw3', 'FlaxGPT2LMHeadModel'),
('gpt2', 'FlaxGPT2LMHeadModel'),
('gpt_neo', 'FlaxGPTNeoForCausalLM'),
('gptj', 'FlaxGPTJForCausalLM'),
('opt', 'FlaxOPTForCausalLM'),
('roberta', 'FlaxRobertaForCausalLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'),
('xglm', 'FlaxXGLMForCausalLM'),
('xlm-roberta', 'FlaxXLMRobertaForCausalLM'),
]
)
A_ : Tuple = OrderedDict(
[
# Model for Sequence Classification mapping
('albert', 'FlaxAlbertForSequenceClassification'),
('bart', 'FlaxBartForSequenceClassification'),
('bert', 'FlaxBertForSequenceClassification'),
('big_bird', 'FlaxBigBirdForSequenceClassification'),
('distilbert', 'FlaxDistilBertForSequenceClassification'),
('electra', 'FlaxElectraForSequenceClassification'),
('mbart', 'FlaxMBartForSequenceClassification'),
('roberta', 'FlaxRobertaForSequenceClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'),
('roformer', 'FlaxRoFormerForSequenceClassification'),
('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for Question Answering mapping
('albert', 'FlaxAlbertForQuestionAnswering'),
('bart', 'FlaxBartForQuestionAnswering'),
('bert', 'FlaxBertForQuestionAnswering'),
('big_bird', 'FlaxBigBirdForQuestionAnswering'),
('distilbert', 'FlaxDistilBertForQuestionAnswering'),
('electra', 'FlaxElectraForQuestionAnswering'),
('mbart', 'FlaxMBartForQuestionAnswering'),
('roberta', 'FlaxRobertaForQuestionAnswering'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'),
('roformer', 'FlaxRoFormerForQuestionAnswering'),
('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'),
]
)
A_ : int = OrderedDict(
[
# Model for Token Classification mapping
('albert', 'FlaxAlbertForTokenClassification'),
('bert', 'FlaxBertForTokenClassification'),
('big_bird', 'FlaxBigBirdForTokenClassification'),
('distilbert', 'FlaxDistilBertForTokenClassification'),
('electra', 'FlaxElectraForTokenClassification'),
('roberta', 'FlaxRobertaForTokenClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'),
('roformer', 'FlaxRoFormerForTokenClassification'),
('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'),
]
)
A_ : Tuple = OrderedDict(
[
# Model for Multiple Choice mapping
('albert', 'FlaxAlbertForMultipleChoice'),
('bert', 'FlaxBertForMultipleChoice'),
('big_bird', 'FlaxBigBirdForMultipleChoice'),
('distilbert', 'FlaxDistilBertForMultipleChoice'),
('electra', 'FlaxElectraForMultipleChoice'),
('roberta', 'FlaxRobertaForMultipleChoice'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'),
('roformer', 'FlaxRoFormerForMultipleChoice'),
('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'),
]
)
A_ : Tuple = OrderedDict(
[
('bert', 'FlaxBertForNextSentencePrediction'),
]
)
A_ : int = OrderedDict(
[
('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
]
)
A_ : Tuple = OrderedDict(
[
('whisper', 'FlaxWhisperForAudioClassification'),
]
)
A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
A_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
A_ : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
A_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
A_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
A_ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
A_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
A_ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
A_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
A_ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_MAPPING
A_ : Tuple = auto_class_update(FlaxAutoModel)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING
A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING
A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
A_ : Union[str, Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A_ : Tuple = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='sequence classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ : Dict = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='token classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
A_ : Tuple = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
A_ : int = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='image classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
A_ : Optional[int] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling'
)
| 333 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class UpperCAmelCase_ ( _a ):
'''simple docstring'''
def __init__( self , _A , _A ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = params
__SCREAMING_SNAKE_CASE = np.array(lowercase__ )
__SCREAMING_SNAKE_CASE = np.array([len(lowercase__ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , _A ):
'''simple docstring'''
return (self.token_ids[index], self.lengths[index])
def __len__( self ):
'''simple docstring'''
return len(self.lengths )
def _A ( self ):
'''simple docstring'''
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.params.max_model_input_size
__SCREAMING_SNAKE_CASE = self.lengths > max_len
logger.info(f"""Splitting {sum(lowercase__ )} too long sequences.""" )
def divide_chunks(_A , _A ):
return [l[i : i + n] for i in range(0 , len(lowercase__ ) , lowercase__ )]
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
if self.params.mlm:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
__SCREAMING_SNAKE_CASE = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
__SCREAMING_SNAKE_CASE = np.insert(lowercase__ , 0 , lowercase__ )
if sub_s[-1] != sep_id:
__SCREAMING_SNAKE_CASE = np.insert(lowercase__ , len(lowercase__ ) , lowercase__ )
assert len(lowercase__ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowercase__ )
new_tok_ids.extend(lowercase__ )
new_lengths.extend([len(lowercase__ ) for l in sub_seqs] )
__SCREAMING_SNAKE_CASE = np.array(lowercase__ )
__SCREAMING_SNAKE_CASE = np.array(lowercase__ )
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(self )
__SCREAMING_SNAKE_CASE = self.lengths > 11
__SCREAMING_SNAKE_CASE = self.token_ids[indices]
__SCREAMING_SNAKE_CASE = self.lengths[indices]
__SCREAMING_SNAKE_CASE = len(self )
logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def _A ( self ):
'''simple docstring'''
if "unk_token" not in self.params.special_tok_ids:
return
else:
__SCREAMING_SNAKE_CASE = self.params.special_tok_ids['unk_token']
__SCREAMING_SNAKE_CASE = len(self )
__SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
__SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5
__SCREAMING_SNAKE_CASE = self.token_ids[indices]
__SCREAMING_SNAKE_CASE = self.lengths[indices]
__SCREAMING_SNAKE_CASE = len(self )
logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def _A ( self ):
'''simple docstring'''
if not self.params.is_master:
return
logger.info(f"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def _A ( self , _A ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [t[0] for t in batch]
__SCREAMING_SNAKE_CASE = [t[1] for t in batch]
assert len(lowercase__ ) == len(lowercase__ )
# Max for paddings
__SCREAMING_SNAKE_CASE = max(lowercase__ )
# Pad token ids
if self.params.mlm:
__SCREAMING_SNAKE_CASE = self.params.special_tok_ids['pad_token']
else:
__SCREAMING_SNAKE_CASE = self.params.special_tok_ids['unk_token']
__SCREAMING_SNAKE_CASE = [list(t.astype(lowercase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase__ )) for t in token_ids]
assert len(tk_ ) == len(lowercase__ )
assert all(len(lowercase__ ) == max_seq_len_ for t in tk_ )
__SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_)
__SCREAMING_SNAKE_CASE = torch.tensor(lowercase__ ) # (bs)
return tk_t, lg_t
| 257 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
A_ : Tuple = logging.get_logger(__name__)
class A_ ( _a ):
'''simple docstring'''
a__ = "linear"
a__ = "cosine"
a__ = "cosine_with_restarts"
a__ = "polynomial"
a__ = "constant"
a__ = "constant_with_warmup"
a__ = "piecewise_constant"
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple:
'''simple docstring'''
return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) )
return 1.0
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = {}
__UpperCAmelCase = step_rules.split(''',''' )
for rule_str in rule_list[:-1]:
__UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' )
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = float(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = value
__UpperCAmelCase = float(rule_list[-1] )
def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
def rule_func(SCREAMING_SNAKE_CASE ) -> float:
__UpperCAmelCase = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = optimizer.defaults['''lr''']
if not (lr_init > lr_end):
raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' )
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__UpperCAmelCase = lr_init - lr_end
__UpperCAmelCase = num_training_steps - num_warmup_steps
__UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps
__UpperCAmelCase = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A_ : Optional[Any] = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , )
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
| 333 | 0 |
# Lint as: python3
import itertools
import os
import re
UpperCAmelCase : Optional[int] = re.compile(r"([A-Z]+)([A-Z][a-z])")
UpperCAmelCase : Union[str, Any] = re.compile(r"([a-z\d])([A-Z])")
UpperCAmelCase : Optional[Any] = re.compile(r"(?<!_)_(?!_)")
UpperCAmelCase : Optional[Any] = re.compile(r"(_{2,})")
UpperCAmelCase : List[Any] = R'^\w+(\.\w+)*$'
UpperCAmelCase : str = R'<>:/\|?*'
def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ):
'''simple docstring'''
lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , lowerCamelCase__ )
lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , lowerCamelCase__ )
return name.lower()
def __lowerCamelCase ( lowerCamelCase__ : List[str] ):
'''simple docstring'''
lowerCamelCase = _single_underscore_re.split(lowerCamelCase__ )
lowerCamelCase = [_multiple_underscores_re.split(lowerCamelCase__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCamelCase__ ) if n != """""" )
def __lowerCamelCase ( lowerCamelCase__ : Dict ):
'''simple docstring'''
if os.path.basename(lowerCamelCase__ ) != name:
raise ValueError(f'Should be a dataset name, not a path: {name}' )
return camelcase_to_snakecase(lowerCamelCase__ )
def __lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] ):
'''simple docstring'''
if os.path.basename(lowerCamelCase__ ) != name:
raise ValueError(f'Should be a dataset name, not a path: {name}' )
if not re.match(_split_re , lowerCamelCase__ ):
raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' )
return f'{filename_prefix_for_name(lowerCamelCase__ )}-{split}'
def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any]=None ):
'''simple docstring'''
lowerCamelCase = filename_prefix_for_split(lowerCamelCase__ , lowerCamelCase__ )
if filetype_suffix:
prefix += f'.{filetype_suffix}'
lowerCamelCase = os.path.join(lowerCamelCase__ , lowerCamelCase__ )
return f'{filepath}*'
def __lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Optional[int]=None ):
'''simple docstring'''
lowerCamelCase = filename_prefix_for_split(lowerCamelCase__ , lowerCamelCase__ )
lowerCamelCase = os.path.join(lowerCamelCase__ , lowerCamelCase__ )
if shard_lengths:
lowerCamelCase = len(lowerCamelCase__ )
lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(lowerCamelCase__ )]
if filetype_suffix:
lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames]
return filenames
else:
lowerCamelCase = prefix
if filetype_suffix:
filename += f'.{filetype_suffix}'
return [filename]
| 252 |
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
'''simple docstring'''
__UpperCAmelCase = len(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )]
for i in range(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = y_points[i]
for i in range(2 , SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
def snake_case_ ( lowerCAmelCase_ : int ):
__lowercase : List[Any] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def snake_case_ ( lowerCAmelCase_ : List[Any] = 100 ):
__lowercase : Optional[int] = 1
__lowercase : Dict = 2
for i in range(2 , max_n + 1 ):
__lowercase : List[str] = pre_numerator
__lowercase : List[str] = 2 * i // 3 if i % 3 == 0 else 1
__lowercase : Tuple = cur_numerator
__lowercase : List[Any] = e_cont * pre_numerator + temp
return sum_digits(lowerCAmelCase_ )
if __name__ == "__main__":
print(f'''{solution() = }''') | 233 |
def __a ( SCREAMING_SNAKE_CASE ) -> set:
'''simple docstring'''
__UpperCAmelCase = set()
# edges = list of graph's edges
__UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__UpperCAmelCase , __UpperCAmelCase = edges.pop()
chosen_vertices.add(SCREAMING_SNAKE_CASE )
chosen_vertices.add(SCREAMING_SNAKE_CASE )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(SCREAMING_SNAKE_CASE )
return chosen_vertices
def __a ( SCREAMING_SNAKE_CASE ) -> set:
'''simple docstring'''
__UpperCAmelCase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 333 | 0 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_A , _A )
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = emb.weight.shape
SCREAMING_SNAKE_CASE__ = nn.Linear(_A , _A , bias=_A )
SCREAMING_SNAKE_CASE__ = emb.weight.data
return lin_layer
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' )
SCREAMING_SNAKE_CASE__ = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model''']
SCREAMING_SNAKE_CASE__ = mam_aaa['''model''']
remove_ignore_keys_(_A )
SCREAMING_SNAKE_CASE__ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
SCREAMING_SNAKE_CASE__ = MaMaaaConfig(
vocab_size=_A , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , )
SCREAMING_SNAKE_CASE__ = state_dict['''decoder.embed_tokens.weight''']
SCREAMING_SNAKE_CASE__ = MaMaaaForConditionalGeneration(_A )
model.model.load_state_dict(_A , strict=_A )
SCREAMING_SNAKE_CASE__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
_SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
_SCREAMING_SNAKE_CASE : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 314 |
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []}
A_ : int = ['a', 'b', 'c', 'd', 'e']
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = start
# add current to visited
visited.append(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
__UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# if all neighbors visited add current to sort
sort.append(SCREAMING_SNAKE_CASE )
# if all vertices haven't been visited select a new one to visit
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
for vertice in vertices:
if vertice not in visited:
__UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# return sort
return sort
if __name__ == "__main__":
A_ : Tuple = topological_sort('a', [], [])
print(sort)
| 333 | 0 |
"""simple docstring"""
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = '▁'
A_ = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
A_ = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
A_ = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
A_ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
A_ = {'mustc': MUSTC_LANGS}
class lowercase( _a ):
'''simple docstring'''
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = MAX_MODEL_INPUT_SIZES
lowercase__ = ["input_ids", "attention_mask"]
lowercase__ = []
def __init__( self: List[Any], a_: int, a_: List[Any], a_: Tuple="<s>", a_: Union[str, Any]="</s>", a_: Union[str, Any]="<pad>", a_: Dict="<unk>", a_: str=False, a_: List[Any]=False, a_: List[Any]=None, a_: str=None, a_: Union[str, Any] = None, **a_: Tuple, ):
'''simple docstring'''
_snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase__, eos_token=lowercase__, unk_token=lowercase__, pad_token=lowercase__, do_upper_case=lowercase__, do_lower_case=lowercase__, tgt_lang=lowercase__, lang_codes=lowercase__, sp_model_kwargs=self.sp_model_kwargs, **lowercase__, )
_snake_case : List[str] = do_upper_case
_snake_case : Tuple = do_lower_case
_snake_case : Optional[Any] = load_json(lowercase__ )
_snake_case : str = {v: k for k, v in self.encoder.items()}
_snake_case : Any = spm_file
_snake_case : Optional[Any] = load_spm(lowercase__, self.sp_model_kwargs )
if lang_codes is not None:
_snake_case : List[str] = lang_codes
_snake_case : List[str] = LANGUAGES[lang_codes]
_snake_case : Tuple = [f"<lang:{lang}>" for lang in self.langs]
_snake_case : int = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs}
_snake_case : Tuple = self.lang_tokens
_snake_case : Tuple = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_snake_case : Dict = {}
@property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return len(self.encoder )
@property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase_ ( self: Optional[int], a_: str ):
'''simple docstring'''
_snake_case : List[Any] = new_tgt_lang
self.set_tgt_lang_special_tokens(lowercase__ )
def UpperCamelCase_ ( self: Dict, a_: Dict ):
'''simple docstring'''
_snake_case : List[Any] = self.lang_code_to_id[tgt_lang]
_snake_case : Optional[Any] = [lang_code_id]
def UpperCamelCase_ ( self: Any, a_: List[str] ):
'''simple docstring'''
return self.sp_model.encode(lowercase__, out_type=lowercase__ )
def UpperCamelCase_ ( self: Tuple, a_: Tuple ):
'''simple docstring'''
return self.encoder.get(lowercase__, self.encoder[self.unk_token] )
def UpperCamelCase_ ( self: Dict, a_: Tuple ):
'''simple docstring'''
return self.decoder.get(lowercase__, self.unk_token )
def UpperCamelCase_ ( self: Tuple, a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = []
_snake_case : Tuple = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_snake_case : str = self.sp_model.decode(lowercase__ )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_snake_case : Optional[Any] = []
else:
current_sub_tokens.append(lowercase__ )
_snake_case : Dict = self.sp_model.decode(lowercase__ )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase_ ( self: int, a_: Dict, a_: str=None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self: Any, a_: List[str], a_: List[Any] = None, a_: Dict = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__, token_ids_a=lowercase__, already_has_special_tokens=lowercase__ )
_snake_case : Optional[Any] = [1] * len(self.prefix_tokens )
_snake_case : Any = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Any = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self: List[str] ):
'''simple docstring'''
_snake_case : Any = self.__dict__.copy()
_snake_case : str = None
return state
def __setstate__( self: Dict, a_: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = d
# for backward compatibility
if not hasattr(self, """sp_model_kwargs""" ):
_snake_case : Tuple = {}
_snake_case : int = load_spm(self.spm_file, self.sp_model_kwargs )
def UpperCamelCase_ ( self: Any, a_: List[Any], a_: Optional[Any] = None ):
'''simple docstring'''
_snake_case : Optional[int] = Path(lowercase__ )
assert save_dir.is_dir(), f"{save_directory} should be a directory"
_snake_case : List[str] = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
_snake_case : str = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder, lowercase__ )
if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file, lowercase__ )
elif not os.path.isfile(self.spm_file ):
with open(lowercase__, """wb""" ) as fi:
_snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (str(lowercase__ ), str(lowercase__ ))
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ):
"""simple docstring"""
_snake_case : int = sentencepiece.SentencePieceProcessor(**snake_case__ )
spm.Load(str(snake_case__ ) )
return spm
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
with open(snake_case__ , """r""" ) as f:
return json.load(snake_case__ )
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any ):
"""simple docstring"""
with open(snake_case__ , """w""" ) as f:
json.dump(snake_case__ , snake_case__ , indent=2 )
| 64 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : int = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Dict = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 333 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['PoolFormerFeatureExtractor']
a_ = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 249 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
'''simple docstring'''
model.train()
__UpperCAmelCase = model(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]:
'''simple docstring'''
set_seed(4_2 )
__UpperCAmelCase = RegressionModel()
__UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = RegressionDataset(length=8_0 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 )
__UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 )
__UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 )
# Make a copy of `model`
if sched:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
__UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
# Test when on a single CPU or GPU that the context manager does nothing
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
# Use a single batch
__UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
def __a ( SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
# Test on distributed setup that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
# Use a single batch
__UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = Accelerator(
split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase , __UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = Accelerator(
split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase , __UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
__UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def __a ( ) -> str:
'''simple docstring'''
__UpperCAmelCase = Accelerator()
__UpperCAmelCase = RegressionDataset(length=8_0 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
__UpperCAmelCase = RegressionDataset(length=9_6 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
__UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE )
if iteration < len(SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE )
if batch_num < len(SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __a ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase = Accelerator()
__UpperCAmelCase = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 0 |
def __magic_name__ ( __a : Tuple , __a : Optional[int] ):
'''simple docstring'''
UpperCamelCase__ = len(__a )
UpperCamelCase__ = len(__a )
UpperCamelCase__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
UpperCamelCase__ = True
for i in range(__a ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
UpperCamelCase__ = True
if a[i].islower():
UpperCamelCase__ = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 244 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
A_ : Optional[Any] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
A_ : Optional[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
A_ : Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
A_ : str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
A_ : Optional[Any] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 333 | 0 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
__A : str = logging.get_logger(__name__)
__A : str = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
__A : Optional[int] = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
__A : Union[str, Any] = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
__A : Dict = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
__A : Optional[int] = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
__A : Dict = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
__A : List[str] = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
__A : Tuple = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
__A : Optional[int] = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
__A : int = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
__A : Tuple = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
__A : Tuple = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
__A : int = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
__A : Tuple = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
__A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
__A : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
__A : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
__A : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
__A : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
__A : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
__A : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
__A : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
__A : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
__A : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
__A : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
__A : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
__A : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
__A : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Union[str, Any] = FLAX_MODEL_MAPPING
__A : Tuple = auto_class_update(FlaxAutoModel)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
__A : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Any = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
__A : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
__A : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__A : Union[str, Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__A : Tuple = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
__A : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Dict = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__A : Dict = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
__A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Tuple = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
__A : Tuple = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__A : int = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
__A : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class __A ( _BaseAutoModelClass ):
lowerCAmelCase_ : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
__A : Optional[int] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 138 |
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )]
__UpperCAmelCase = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key:
return input_string
for position, character in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid]
__UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE )
return output_string
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__UpperCAmelCase = []
__UpperCAmelCase = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1:
return input_string
__UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template
for position in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append('''*''' )
__UpperCAmelCase = 0
for row in temp_grid: # fills in the characters
__UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )]
grid.append(list(SCREAMING_SNAKE_CASE ) )
counter += len(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = '''''' # reads as zigzag
for position in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]:
'''simple docstring'''
__UpperCAmelCase = {}
for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key
__UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = 3_8_4
if "tiny" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 9, 3]
__UpperCAmelCase : Optional[int] = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "small" in model_name:
__UpperCAmelCase : int = [3, 3, 2_7, 3]
__UpperCAmelCase : int = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "base" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 2_7, 3]
__UpperCAmelCase : Optional[int] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4]
__UpperCAmelCase : int = 5_1_2
if "large" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 2_7, 3]
__UpperCAmelCase : Tuple = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6]
__UpperCAmelCase : str = 7_6_8
if "xlarge" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 2_7, 3]
__UpperCAmelCase : Union[str, Any] = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8]
__UpperCAmelCase : Optional[Any] = 1_0_2_4
# set label information
__UpperCAmelCase : Union[str, Any] = 1_5_0
__UpperCAmelCase : int = """huggingface/label-files"""
__UpperCAmelCase : Union[str, Any] = """ade20k-id2label.json"""
__UpperCAmelCase : str = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : List[str] = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Any = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Optional[Any] = ConvNextConfig(
depths=_UpperCamelCase , hidden_sizes=_UpperCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
__UpperCAmelCase : List[str] = UperNetConfig(
backbone_config=_UpperCamelCase , auxiliary_in_channels=_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase , )
return config
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Tuple ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = dct.pop(_UpperCamelCase )
__UpperCAmelCase : str = val
def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
__UpperCAmelCase : List[str] = model_name_to_url[model_name]
__UpperCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" )["""state_dict"""]
__UpperCAmelCase : str = get_upernet_config(_UpperCamelCase )
__UpperCAmelCase : Tuple = UperNetForSemanticSegmentation(_UpperCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : Tuple = state_dict.pop(_UpperCamelCase )
if "bn" in key:
__UpperCAmelCase : Dict = key.replace("""bn""" , """batch_norm""" )
__UpperCAmelCase : int = val
# rename keys
__UpperCAmelCase : List[str] = create_rename_keys(_UpperCamelCase )
for src, dest in rename_keys:
rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
model.load_state_dict(_UpperCamelCase )
# verify on image
__UpperCAmelCase : Union[str, Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
__UpperCAmelCase : Union[str, Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert("""RGB""" )
__UpperCAmelCase : Union[str, Any] = SegformerImageProcessor()
__UpperCAmelCase : int = processor(_UpperCamelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(_UpperCamelCase )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Optional[int] = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_UpperCamelCase )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_UpperCamelCase )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
UpperCAmelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[F"upernet-convnext-{size}" for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCAmelCase : Tuple = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 115 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class A_ ( _a , _a , _a , unittest.TestCase ):
'''simple docstring'''
a__ = StableUnCLIPPipeline
a__ = TEXT_TO_IMAGE_PARAMS
a__ = TEXT_TO_IMAGE_BATCH_PARAMS
a__ = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ = False
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]:
if str(lowercase__ ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(lowercase__ )
else:
__UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ )
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=lowercase__ )
@slow
@require_torch_gpu
class A_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ (self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 0 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase__ : Dict = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase__ : str = 'cuda' if torch.cuda.is_available() else 'cpu'
def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: List[str]=1_00 , _lowerCamelCase: Any=" " ):
__SCREAMING_SNAKE_CASE : Optional[int] = text.split(_lowerCamelCase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase )]
def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = [], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(_lowerCamelCase ):
titles.append(title if title is not None else """""" )
texts.append(_lowerCamelCase )
return {"title": titles, "text": texts}
def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: int ):
__SCREAMING_SNAKE_CASE : List[Any] = ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""]
__SCREAMING_SNAKE_CASE : Optional[Any] = ctx_encoder(input_ids.to(device=_lowerCamelCase ) , return_dict=_lowerCamelCase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: Any , _lowerCamelCase: int , ):
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
__SCREAMING_SNAKE_CASE : Dict = load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
__SCREAMING_SNAKE_CASE : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc )
# And compute the embeddings
__SCREAMING_SNAKE_CASE : Dict = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowerCamelCase )
__SCREAMING_SNAKE_CASE : Optional[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
__SCREAMING_SNAKE_CASE : Union[str, Any] = Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
__SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase ) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
__SCREAMING_SNAKE_CASE : int = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(_lowerCamelCase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
__SCREAMING_SNAKE_CASE : List[str] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=_lowerCamelCase )
# And save the index
__SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(_lowerCamelCase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class _UpperCamelCase :
'''simple docstring'''
_A : Any = field(
default=str(Path(_a ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , )
_A : List[Any] = field(
default=_a , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , )
_A : Any = field(
default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , )
_A : Optional[Any] = field(
default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={
'''help''': (
'''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'''
''' \'facebook/dpr-ctx_encoder-multiset-base\''''
)
} , )
_A : List[str] = field(
default=str(Path(_a ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
_A : Any = field(
default=_a , metadata={
'''help''': '''The number of processes to use to split the documents into passages. Default is single process.'''
} , )
_A : Tuple = field(
default=16 , metadata={
'''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.'''
} , )
@dataclass
class _UpperCamelCase :
'''simple docstring'''
_A : Dict = field(
default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , )
_A : List[Any] = field(
default=128 , metadata={
'''help''': (
'''The number of bi-directional links created for every new element during the HNSW index construction.'''
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase__ : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase__ : Any = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase__ : Optional[Any] = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args) | 112 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A_ : int = logging.get_logger(__name__)
A_ : str = {'tokenizer_file': 'tokenizer.json'}
A_ : List[str] = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class A_ ( _a ):
'''simple docstring'''
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = ["input_ids", "attention_mask"]
a__ = None
def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict:
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
__UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
__UpperCAmelCase = add_prefix_space
__UpperCAmelCase = pre_tok_class(**lowercase__ )
__UpperCAmelCase = add_prefix_space
def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding:
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
''' pretokenized inputs.''' )
return super()._batch_encode_plus(*lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding:
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
''' pretokenized inputs.''' )
return super()._encode_plus(*lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
__UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def lowerCAmelCase_ (self , lowercase__ ) -> List[int]:
__UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
__UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : int):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : List[Any] = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : List[Any] = unsorted[j - 1], unsorted[j]
lowercase__ : Optional[Any] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Dict = unsorted[j + 1], unsorted[j]
lowercase__ : List[Any] = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 87 |
import math
import sys
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if number != int(SCREAMING_SNAKE_CASE ):
raise ValueError('''the value of input must be a natural number''' )
if number < 0:
raise ValueError('''the value of input must not be a negative number''' )
if number == 0:
return 1
__UpperCAmelCase = [-1] * (number + 1)
__UpperCAmelCase = 0
for i in range(1 , number + 1 ):
__UpperCAmelCase = sys.maxsize
__UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) )
for j in range(1 , root + 1 ):
__UpperCAmelCase = 1 + answers[i - (j**2)]
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCAmelCase = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
lowerCAmelCase__ : str ='bart'
lowerCAmelCase__ : List[str] =True
@st.cache(allow_output_mutation=a__ )
def __lowercase ( ) -> Union[str, Any]:
if LOAD_DENSE_INDEX:
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' )
__SCREAMING_SNAKE_CASE = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' )
__SCREAMING_SNAKE_CASE = qar_model.eval()
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (None, None)
if MODEL_TYPE == "bart":
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('yjernite/bart_eli5' )
__SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' )
__SCREAMING_SNAKE_CASE = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' )
sas_model.load_state_dict(save_dict['model'] )
__SCREAMING_SNAKE_CASE = sas_model.eval()
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = make_qa_sas_model(
model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=a__ )
def __lowercase ( ) -> Dict:
if LOAD_DENSE_INDEX:
__SCREAMING_SNAKE_CASE = faiss.StandardGpuResources()
__SCREAMING_SNAKE_CASE = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train']
__SCREAMING_SNAKE_CASE = np.memmap(
'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , )
__SCREAMING_SNAKE_CASE = faiss.IndexFlatIP(1_28 )
__SCREAMING_SNAKE_CASE = faiss.index_cpu_to_gpu(a__ , 1 , a__ )
wikiaab_gpu_index_flat.add(a__ ) # TODO fix for larger GPU
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (None, None)
__SCREAMING_SNAKE_CASE = Elasticsearch([{'host': 'localhost', 'port': '9200'}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=a__ )
def __lowercase ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = datasets.load_dataset('eli5' , name='LFQA_reddit' )
__SCREAMING_SNAKE_CASE = elia['train_eli5']
__SCREAMING_SNAKE_CASE = np.memmap(
'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) )
__SCREAMING_SNAKE_CASE = faiss.IndexFlatIP(1_28 )
eli5_train_q_index.add(a__ )
return (elia_train, eli5_train_q_index)
lowerCAmelCase__ : Any =load_indexes()
lowerCAmelCase__ : int =load_models()
lowerCAmelCase__ : Dict =load_train_data()
def __lowercase ( a__ , a__=10 ) -> Dict:
__SCREAMING_SNAKE_CASE = embed_questions_for_retrieval([question] , a__ , a__ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = eli5_train_q_index.search(a__ , a__ )
__SCREAMING_SNAKE_CASE = [elia_train[int(a__ )] for i in I[0]]
return nn_examples
def __lowercase ( a__ , a__="wiki40b" , a__="dense" , a__=10 ) -> Tuple:
if source == "none":
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (' <P> '.join(['' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = query_qa_dense_index(
a__ , a__ , a__ , a__ , a__ , a__ )
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = query_es_index(
a__ , a__ , index_name='english_wiki40b_snippets_100w' , n_results=a__ , )
__SCREAMING_SNAKE_CASE = [
(res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst
]
__SCREAMING_SNAKE_CASE = 'question: {} context: {}'.format(a__ , a__ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda a__ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a__ : None),
} )
def __lowercase ( a__ , a__ , a__ , a__=64 , a__=2_56 , a__=False , a__=2 , a__=0.95 , a__=0.8 ) -> str:
with torch.no_grad():
__SCREAMING_SNAKE_CASE = qa_sas_generate(
a__ , a__ , a__ , num_answers=1 , num_beams=a__ , min_len=a__ , max_len=a__ , do_sample=a__ , temp=a__ , top_p=a__ , top_k=a__ , max_input_length=10_24 , device='cuda:0' , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
lowerCAmelCase__ : Optional[Any] ='<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
lowerCAmelCase__ : Any ='\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
lowerCAmelCase__ : int ='\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
lowerCAmelCase__ : Dict =[
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
lowerCAmelCase__ : Tuple =st.sidebar.checkbox('''Demo options''')
if demo_options:
lowerCAmelCase__ : str =st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
lowerCAmelCase__ : List[str] =action_list.index(action_st)
lowerCAmelCase__ : int =st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
lowerCAmelCase__ : str =show_type == 'Show full text of passages'
else:
lowerCAmelCase__ : Union[str, Any] =3
lowerCAmelCase__ : str =True
lowerCAmelCase__ : Tuple =st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
lowerCAmelCase__ : Any ='\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
lowerCAmelCase__ : List[str] =st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
lowerCAmelCase__ : int =st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
lowerCAmelCase__ : Optional[int] ='wiki40b'
lowerCAmelCase__ : List[str] ='dense'
lowerCAmelCase__ : List[str] ='beam'
lowerCAmelCase__ : List[Any] =2
lowerCAmelCase__ : Union[str, Any] =64
lowerCAmelCase__ : Union[str, Any] =256
lowerCAmelCase__ : Optional[int] =None
lowerCAmelCase__ : int =None
lowerCAmelCase__ : Any =st.sidebar.checkbox('''Generation options''')
if generate_options:
lowerCAmelCase__ : int ='\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
lowerCAmelCase__ : Union[str, Any] =st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
lowerCAmelCase__ : List[str] =st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
lowerCAmelCase__ : int =st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
lowerCAmelCase__ : Union[str, Any] =st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
lowerCAmelCase__ : Dict =st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
lowerCAmelCase__ : Optional[Any] =st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
lowerCAmelCase__ : int =None
# start main text
lowerCAmelCase__ : str =[
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
lowerCAmelCase__ : Any =st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
lowerCAmelCase__ : Optional[Any] =st.text_input('''Enter your question here:''', '''''')
else:
lowerCAmelCase__ : Optional[Any] =question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
lowerCAmelCase__ : Tuple =make_support(question, source=wiki_source, method='''dense''', n_results=10)
lowerCAmelCase__ : Optional[Any] =make_support(question, source=wiki_source, method='''sparse''', n_results=10)
lowerCAmelCase__ : Optional[Any] =[]
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
lowerCAmelCase__ : Optional[int] =support_list[:10]
lowerCAmelCase__ : str ='<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
lowerCAmelCase__ : Union[str, Any] =make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
lowerCAmelCase__ : Dict =answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
lowerCAmelCase__ : Optional[Any] ='https://en.wikipedia.org/wiki/{}'.format(res[0].replace(''' ''', '''_'''))
lowerCAmelCase__ : Optional[int] =res[1].strip()
if sec_titles == "":
lowerCAmelCase__ : List[Any] ='[{}]({})'.format(res[0], wiki_url)
else:
lowerCAmelCase__ : List[str] =sec_titles.split(''' & ''')
lowerCAmelCase__ : List[str] =' & '.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
lowerCAmelCase__ : Any =find_nearest_training(question)
lowerCAmelCase__ : Any =nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
lowerCAmelCase__ : Tuple =[
'{}. {}'.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
lowerCAmelCase__ : Dict ='\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 257 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : Tuple = logging.get_logger(__name__)
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
__UpperCAmelCase = b.T
__UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 )
__UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 )
__UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :]
return d
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
__UpperCAmelCase = x.reshape(-1 , 3 )
__UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return np.argmin(SCREAMING_SNAKE_CASE , axis=1 )
class A_ ( _a ):
'''simple docstring'''
a__ = ["pixel_values"]
def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None:
super().__init__(**lowercase__ )
__UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256}
__UpperCAmelCase = get_size_dict(lowercase__ )
__UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = resample
__UpperCAmelCase = do_normalize
__UpperCAmelCase = do_color_quantize
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray:
__UpperCAmelCase = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray:
__UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ )
__UpperCAmelCase = image - 1
return image
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image:
__UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase = size if size is not None else self.size
__UpperCAmelCase = get_size_dict(lowercase__ )
__UpperCAmelCase = resample if resample is not None else self.resample
__UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
__UpperCAmelCase = clusters if clusters is not None else self.clusters
__UpperCAmelCase = np.array(lowercase__ )
__UpperCAmelCase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_color_quantize and clusters is None:
raise ValueError('''Clusters must be specified if do_color_quantize is True.''' )
# All transformations expect numpy arrays.
__UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
__UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images]
if do_normalize:
__UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images]
if do_color_quantize:
__UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
__UpperCAmelCase = np.array(lowercase__ )
__UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
__UpperCAmelCase = images.shape[0]
__UpperCAmelCase = images.reshape(lowercase__ , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
__UpperCAmelCase = list(lowercase__ )
else:
__UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
__UpperCAmelCase = {'''input_ids''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 333 | 0 |
import argparse
import struct
import unittest
class __lowercase :
"""simple docstring"""
def __init__( self , A ) -> None:
'''simple docstring'''
lowerCamelCase = data
# Initialize hash values
lowerCamelCase = [
0x6A_09E_667,
0xBB_67A_E85,
0x3C_6EF_372,
0xA5_4FF_53A,
0x51_0E5_27F,
0x9B_056_88C,
0x1F_83D_9AB,
0x5B_E0C_D19,
]
# Initialize round constants
lowerCamelCase = [
0x42_8A2_F98,
0x71_374_491,
0xB5_C0F_BCF,
0xE9_B5D_BA5,
0x39_56C_25B,
0x59_F11_1F1,
0x92_3F8_2A4,
0xAB_1C5_ED5,
0xD8_07A_A98,
0x12_835_B01,
0x24_318_5BE,
0x55_0C7_DC3,
0x72_BE5_D74,
0x80_DEB_1FE,
0x9B_DC0_6A7,
0xC1_9BF_174,
0xE4_9B6_9C1,
0xEF_BE4_786,
0x0F_C19_DC6,
0x24_0CA_1CC,
0x2D_E92_C6F,
0x4A_748_4AA,
0x5C_B0A_9DC,
0x76_F98_8DA,
0x98_3E5_152,
0xA8_31C_66D,
0xB0_032_7C8,
0xBF_597_FC7,
0xC6_E00_BF3,
0xD5_A79_147,
0x06_CA6_351,
0x14_292_967,
0x27_B70_A85,
0x2E_1B2_138,
0x4D_2C6_DFC,
0x53_380_D13,
0x65_0A7_354,
0x76_6A0_ABB,
0x81_C2C_92E,
0x92_722_C85,
0xA2_BFE_8A1,
0xA8_1A6_64B,
0xC2_4B8_B70,
0xC7_6C5_1A3,
0xD1_92E_819,
0xD6_990_624,
0xF4_0E3_585,
0x10_6AA_070,
0x19_A4C_116,
0x1E_376_C08,
0x27_487_74C,
0x34_B0B_CB5,
0x39_1C0_CB3,
0x4E_D8A_A4A,
0x5B_9CC_A4F,
0x68_2E6_FF3,
0x74_8F8_2EE,
0x78_A56_36F,
0x84_C87_814,
0x8C_C70_208,
0x90_BEF_FFA,
0xA4_506_CEB,
0xBE_F9A_3F7,
0xC6_717_8F2,
]
lowerCamelCase = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __A ( A ) -> bytes:
'''simple docstring'''
lowerCamelCase = B"""\x80""" + (B"""\x00""" * (63 - (len(lowercase__ ) + 8) % 64))
lowerCamelCase = struct.pack(""">Q""" , (len(lowercase__ ) * 8) )
return data + padding + big_endian_integer
def __A ( self ) -> None:
'''simple docstring'''
lowerCamelCase = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCamelCase = list(struct.unpack(""">16L""" , lowercase__ ) )
# add 48 0-ed integers
words += [0] * 48
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowerCamelCase = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
lowerCamelCase = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
lowerCamelCase = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x100_000_000
# Compression
lowerCamelCase = self.ror(lowercase__ , 6 ) ^ self.ror(lowercase__ , 11 ) ^ self.ror(lowercase__ , 25 )
lowerCamelCase = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g)
lowerCamelCase = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x100_000_000
lowerCamelCase = self.ror(lowercase__ , 2 ) ^ self.ror(lowercase__ , 13 ) ^ self.ror(lowercase__ , 22 )
lowerCamelCase = (a & b) ^ (a & c) ^ (b & c)
lowerCamelCase = (sa + maj) % 0x100_000_000
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = (
g,
f,
e,
((d + tempa) % 0x100_000_000),
c,
b,
a,
((tempa + tempa) % 0x100_000_000),
)
lowerCamelCase = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCamelCase = [
((element + mutated_hash_values[index]) % 0x100_000_000)
for index, element in enumerate(self.hashes )
]
lowerCamelCase = """""".join([hex(lowercase__ )[2:].zfill(8 ) for value in self.hashes] )
def __A ( self , A , A ) -> int:
'''simple docstring'''
return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations)
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> None:
'''simple docstring'''
import hashlib
lowerCamelCase = bytes("""Test String""" , """utf-8""" )
self.assertEqual(SHAaaa(lowercase__ ).hash , hashlib.shaaaa(lowercase__ ).hexdigest() )
def __lowerCamelCase ( ):
'''simple docstring'''
import doctest
doctest.testmod()
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
lowerCamelCase = parser.parse_args()
lowerCamelCase = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
lowerCamelCase = f.read()
else:
lowerCamelCase = bytes(lowerCamelCase__ , """utf-8""" )
print(SHAaaa(lowerCamelCase__ ).hash )
if __name__ == "__main__":
main()
| 252 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A_ : Optional[int] = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[str] = ['PoolFormerFeatureExtractor']
A_ : Dict = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 333 | 0 |
import os
def snake_case_ ( lowerCAmelCase_ : Union[str, Any] = "input.txt" ):
with open(os.path.join(os.path.dirname(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) as input_file:
__lowercase : List[Any] = [
[int(lowerCAmelCase_ ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
__lowercase : List[Any] = len(lowerCAmelCase_ )
__lowercase : Union[str, Any] = len(matrix[0] )
__lowercase : List[str] = [[-1 for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ )]
for i in range(lowerCAmelCase_ ):
__lowercase : int = matrix[i][0]
for j in range(1 , lowerCAmelCase_ ):
for i in range(lowerCAmelCase_ ):
__lowercase : Tuple = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , lowerCAmelCase_ ):
__lowercase : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
__lowercase : Union[str, Any] = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'''{solution() = }''') | 233 |
import math
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
'''simple docstring'''
if (
not isinstance(SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * power_factor
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
'''simple docstring'''
if (
not isinstance(SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
return (data["data"], data["target"])
def UpperCAmelCase_ ( _A , _A , _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(_A , _A )
# Predict target for test data
SCREAMING_SNAKE_CASE__ = xgb.predict(_A )
SCREAMING_SNAKE_CASE__ = predictions.reshape(len(_A ) , 1 )
return predictions
def UpperCAmelCase_ ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = fetch_california_housing()
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = data_handling(_A )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = train_test_split(
_A , _A , test_size=0.2_5 , random_state=1 )
SCREAMING_SNAKE_CASE__ = xgboost(_A , _A , _A )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(_A , _A )}''' )
print(F'''Mean Square Error : {mean_squared_error(_A , _A )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 314 |
def __a ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )]
A_ : Union[str, Any] = generate_large_matrix()
A_ : Union[str, Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __a ( SCREAMING_SNAKE_CASE ) -> None:
'''simple docstring'''
assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid )
assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) )
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
__UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCAmelCase = (left + right) // 2
__UpperCAmelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCAmelCase = mid + 1
else:
__UpperCAmelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
__UpperCAmelCase = len(grid[0] )
for i in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
for row in grid:
for i, number in enumerate(SCREAMING_SNAKE_CASE ):
if number < 0:
total += len(SCREAMING_SNAKE_CASE ) - i
break
return total
def __a ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCAmelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 )
print(f'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 333 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': (
'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class lowercase( _a ):
'''simple docstring'''
lowercase__ = "trajectory_transformer"
lowercase__ = ["past_key_values"]
lowercase__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self: int, a_: Dict=100, a_: List[Any]=5, a_: Any=1, a_: Optional[int]=1, a_: Any=249, a_: Union[str, Any]=6, a_: Dict=17, a_: Optional[int]=25, a_: Optional[Any]=4, a_: Optional[Any]=4, a_: Optional[Any]=128, a_: Any=0.1, a_: int=0.1, a_: List[str]=0.1, a_: Any=0.0_006, a_: str=512, a_: Any=0.02, a_: Any=1E-12, a_: int=1, a_: str=True, a_: Dict=1, a_: int=50_256, a_: List[str]=50_256, **a_: Tuple, ):
'''simple docstring'''
_snake_case : Any = vocab_size
_snake_case : Optional[int] = action_weight
_snake_case : str = reward_weight
_snake_case : List[Any] = value_weight
_snake_case : List[Any] = max_position_embeddings
_snake_case : str = block_size
_snake_case : Optional[Any] = action_dim
_snake_case : List[str] = observation_dim
_snake_case : int = transition_dim
_snake_case : List[str] = learning_rate
_snake_case : Union[str, Any] = n_layer
_snake_case : int = n_head
_snake_case : str = n_embd
_snake_case : Dict = embd_pdrop
_snake_case : Dict = attn_pdrop
_snake_case : List[Any] = resid_pdrop
_snake_case : int = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Any = kaiming_initializer_range
_snake_case : Optional[int] = use_cache
super().__init__(pad_token_id=lowercase__, bos_token_id=lowercase__, eos_token_id=lowercase__, **lowercase__ )
| 64 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
A_ : List[str] = sys.version_info >= (3, 10)
def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE )
@dataclass
class A_ :
'''simple docstring'''
a__ = 42
a__ = 42
a__ = 42
a__ = 42
@dataclass
class A_ :
'''simple docstring'''
a__ = 42
a__ = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class A_ :
'''simple docstring'''
a__ = False
a__ = True
a__ = None
class A_ ( _a ):
'''simple docstring'''
a__ = "titi"
a__ = "toto"
class A_ ( _a ):
'''simple docstring'''
a__ = "titi"
a__ = "toto"
a__ = 42
@dataclass
class A_ :
'''simple docstring'''
a__ = "toto"
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = BasicEnum(self.foo )
@dataclass
class A_ :
'''simple docstring'''
a__ = "toto"
def lowerCAmelCase_ (self ) -> Dict:
__UpperCAmelCase = MixedTypeEnum(self.foo )
@dataclass
class A_ :
'''simple docstring'''
a__ = None
a__ = field(default=_a , metadata={"help": "help message"} )
a__ = None
a__ = list_field(default=[] )
a__ = list_field(default=[] )
@dataclass
class A_ :
'''simple docstring'''
a__ = list_field(default=[] )
a__ = list_field(default=[1, 2, 3] )
a__ = list_field(default=["Hallo", "Bonjour", "Hello"] )
a__ = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A_ :
'''simple docstring'''
a__ = field()
a__ = field()
a__ = field()
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = BasicEnum(self.required_enum )
@dataclass
class A_ :
'''simple docstring'''
a__ = 42
a__ = field()
a__ = None
a__ = field(default="toto" , metadata={"help": "help message"} )
a__ = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class A_ :
'''simple docstring'''
a__ = False
a__ = True
a__ = None
@dataclass
class A_ :
'''simple docstring'''
a__ = None
a__ = field(default=_a , metadata={"help": "help message"} )
a__ = None
a__ = list_field(default=[] )
a__ = list_field(default=[] )
class A_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
__UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''}
__UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) )
del xx["type"], yy["type"]
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ )
self.assertFalse(example.flag )
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=42 , type=lowercase__ )
expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' )
self.argparsersEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' )
expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' )
expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ )
__UpperCAmelCase = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(lowercase__ )
for dataclass_type in dataclass_types:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
def lowerCAmelCase_ (self ) -> Dict:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
__UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
__UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 42 )
__UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def lowerCAmelCase_ (self ) -> str:
@dataclass
class A_ :
'''simple docstring'''
a__ = "toto"
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 42 )
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(
lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
__UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def lowerCAmelCase_ (self ) -> List[str]:
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ )
expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' )
expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ )
__UpperCAmelCase = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(lowercase__ )
for dataclass_type in dataclass_types:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) )
__UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , )
self.argparsersEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , )
expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ )
expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
__UpperCAmelCase = parser.parse_dict(lowercase__ )[0]
__UpperCAmelCase = BasicExample(**lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 42,
}
self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ )
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' )
os.mkdir(lowercase__ )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
__UpperCAmelCase = BasicExample(**lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> List[Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' )
os.mkdir(lowercase__ )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
__UpperCAmelCase = BasicExample(**lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
self.assertIsNotNone(lowercase__ )
| 333 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
while second != 0:
__lowercase : Tuple = first & second
first ^= second
__lowercase : Dict = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = int(input('Enter the first number: ').strip())
a_ = int(input('Enter the second number: ').strip())
print(F"{add(first, second) = }")
| 249 |
import doctest
from collections import deque
import numpy as np
class A_ :
'''simple docstring'''
def __init__(self ) -> None:
__UpperCAmelCase = [2, 1, 2, -1]
__UpperCAmelCase = [1, 2, 3, 4]
def lowerCAmelCase_ (self ) -> list[float]:
__UpperCAmelCase = len(self.first_signal )
__UpperCAmelCase = len(self.second_signal )
__UpperCAmelCase = max(lowercase__ , lowercase__ )
# create a zero matrix of max_length x max_length
__UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__UpperCAmelCase = deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 333 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class __A( _a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """pegasus"""
SCREAMING_SNAKE_CASE__ = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self , SCREAMING_SNAKE_CASE_=5_02_65 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase__ = vocab_size
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = d_model
UpperCamelCase__ = encoder_ffn_dim
UpperCamelCase__ = encoder_layers
UpperCamelCase__ = encoder_attention_heads
UpperCamelCase__ = decoder_ffn_dim
UpperCamelCase__ = decoder_layers
UpperCamelCase__ = decoder_attention_heads
UpperCamelCase__ = dropout
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = activation_dropout
UpperCamelCase__ = activation_function
UpperCamelCase__ = init_std
UpperCamelCase__ = encoder_layerdrop
UpperCamelCase__ = decoder_layerdrop
UpperCamelCase__ = use_cache
UpperCamelCase__ = encoder_layers
UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , )
@property
def UpperCAmelCase_ (self ):
return self.encoder_attention_heads
@property
def UpperCAmelCase_ (self ):
return self.d_model
| 244 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : Any = logging.get_logger(__name__)
A_ : Optional[Any] = {
'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class A_ ( _a ):
'''simple docstring'''
a__ = "pegasus"
a__ = ["past_key_values"]
a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str:
__UpperCAmelCase = vocab_size
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = d_model
__UpperCAmelCase = encoder_ffn_dim
__UpperCAmelCase = encoder_layers
__UpperCAmelCase = encoder_attention_heads
__UpperCAmelCase = decoder_ffn_dim
__UpperCAmelCase = decoder_layers
__UpperCAmelCase = decoder_attention_heads
__UpperCAmelCase = dropout
__UpperCAmelCase = attention_dropout
__UpperCAmelCase = activation_dropout
__UpperCAmelCase = activation_function
__UpperCAmelCase = init_std
__UpperCAmelCase = encoder_layerdrop
__UpperCAmelCase = decoder_layerdrop
__UpperCAmelCase = use_cache
__UpperCAmelCase = encoder_layers
__UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , )
@property
def lowerCAmelCase_ (self ) -> int:
return self.encoder_attention_heads
@property
def lowerCAmelCase_ (self ) -> int:
return self.d_model
| 333 | 0 |
from torch import nn
class __A ( nn.Module ):
def __init__( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ):
super().__init__()
lowerCAmelCase : str = class_size
lowerCAmelCase : Any = embed_size
# self.mlp1 = nn.Linear(embed_size, embed_size)
# self.mlp2 = (nn.Linear(embed_size, class_size))
lowerCAmelCase : Union[str, Any] = nn.Linear(lowercase__ , lowercase__ )
def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any] ):
# hidden_state = nn.functional.relu(self.mlp1(hidden_state))
# hidden_state = self.mlp2(hidden_state)
lowerCAmelCase : Union[str, Any] = self.mlp(lowercase__ )
return logits
| 138 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
'''simple docstring'''
a__ = LongformerTokenizer
a__ = True
a__ = LongformerTokenizerFast
a__ = True
def lowerCAmelCase_ (self ) -> Any:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
__UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__UpperCAmelCase = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase__ ) )
def lowerCAmelCase_ (self , **lowercase__ ) -> int:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ ) -> Dict:
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = '''lower newer'''
return input_text, output_text
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True)
self.assertListEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokens + [tokenizer.unk_token]
__UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , )
@slow
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
__UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = '''Encode this sequence.'''
__UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(lowercase__ , lowercase__ )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
# Testing spaces after special tokens
__UpperCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ )
__UpperCAmelCase = '''Encode <mask> sequence'''
__UpperCAmelCase = '''Encode <mask>sequence'''
__UpperCAmelCase = tokenizer.encode(lowercase__ )
__UpperCAmelCase = encoded.index(lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokenizer.encode(lowercase__ )
__UpperCAmelCase = encoded.index(lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
pass
def lowerCAmelCase_ (self ) -> int:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__UpperCAmelCase = '''A, <mask> AllenNLP sentence.'''
__UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
__UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def lowerCAmelCase_ (self ) -> Optional[int]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}'''
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = F''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
| 333 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class lowerCamelCase__ ( _a ):
"""simple docstring"""
__a = """open-llama"""
def __init__( self : str , UpperCamelCase : List[Any]=100_000 , UpperCamelCase : List[Any]=4_096 , UpperCamelCase : Tuple=11_008 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : int=32 , UpperCamelCase : str="silu" , UpperCamelCase : List[Any]=2_048 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Optional[int]=1e-6 , UpperCamelCase : Dict=True , UpperCamelCase : Dict=0 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Any=False , UpperCamelCase : Tuple=True , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Dict=True , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Tuple , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : Optional[int] = rms_norm_eps
__UpperCAmelCase : Any = use_cache
__UpperCAmelCase : Optional[Any] = kwargs.pop(
"""use_memorry_efficient_attention""" , lowercase__ )
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_dropout_prob
__UpperCAmelCase : List[str] = use_stable_embedding
__UpperCAmelCase : List[str] = shared_input_output_embedding
__UpperCAmelCase : Union[str, Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
__UpperCAmelCase : Optional[int] = self.rope_scaling.get("""type""" , lowercase__ )
__UpperCAmelCase : Any = self.rope_scaling.get("""factor""" , lowercase__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 115 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
'''simple docstring'''
a__ = (IPNDMScheduler,)
a__ = (("num_inference_steps", 50),)
def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple:
__UpperCAmelCase = {'''num_train_timesteps''': 1_000}
config.update(**lowercase__ )
return config
def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config(**lowercase__ )
__UpperCAmelCase = scheduler_class(**lowercase__ )
scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__ )
__UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ )
new_scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ (self ) -> List[str]:
pass
def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**lowercase__ )
scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__ )
__UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase__ )
# copy over dummy past residual (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]:
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(**lowercase__ )
__UpperCAmelCase = scheduler_class(**lowercase__ )
__UpperCAmelCase = 10
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(lowercase__ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(lowercase__ , lowercase__ )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(lowercase__ , lowercase__ )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample
return sample
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ):
scheduler.set_timesteps(lowercase__ )
elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ):
__UpperCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.timesteps[5]
__UpperCAmelCase = scheduler.timesteps[6]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ (self ) -> List[Any]:
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ )
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = self.full_loop()
__UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 333 | 0 |
'''simple docstring'''
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Tuple ):
if "xprophetnet" in prophetnet_checkpoint_path:
__SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowerCamelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = XLMProphetNetForConditionalGeneration.from_pretrained(
_lowerCamelCase , output_loading_info=_lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE : str = ProphetNetForConditionalGenerationOld.from_pretrained(_lowerCamelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = ProphetNetForConditionalGeneration.from_pretrained(
_lowerCamelCase , output_loading_info=_lowerCamelCase )
__SCREAMING_SNAKE_CASE : str = ["""key_proj""", """value_proj""", """query_proj"""]
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
"""self_attn""": """ngram_self_attn""",
"""cross_attn""": """encoder_attn""",
"""cross_attn_layer_norm""": """encoder_attn_layer_norm""",
"""feed_forward_layer_norm""": """final_layer_norm""",
"""feed_forward""": """""",
"""intermediate""": """fc1""",
"""output""": """fc2""",
"""key_proj""": """k_proj""",
"""query_proj""": """q_proj""",
"""value_proj""": """v_proj""",
"""word_embeddings""": """embed_tokens""",
"""embeddings_layer_norm""": """emb_layer_norm""",
"""relative_pos_embeddings""": """relative_linear""",
"""ngram_embeddings""": """ngram_input_embed""",
"""position_embeddings""": """embed_positions""",
}
for key in loading_info["missing_keys"]:
__SCREAMING_SNAKE_CASE : Any = key.split(""".""" )
if attributes[0] == "lm_head":
__SCREAMING_SNAKE_CASE : Tuple = prophet
__SCREAMING_SNAKE_CASE : Optional[Any] = prophet_old
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = prophet.prophetnet
__SCREAMING_SNAKE_CASE : List[Any] = prophet_old.model
__SCREAMING_SNAKE_CASE : List[Any] = False
for attribute in attributes:
if attribute in mapping:
__SCREAMING_SNAKE_CASE : str = mapping[attribute]
if not hasattr(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0:
__SCREAMING_SNAKE_CASE : Optional[int] = attribute
elif hasattr(_lowerCamelCase , _lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[str] = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
__SCREAMING_SNAKE_CASE : Optional[Any] = old_model.weight
logger.info(F"{attribute} is initialized." )
__SCREAMING_SNAKE_CASE : Optional[int] = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
__SCREAMING_SNAKE_CASE : List[str] = old_model.bias
logger.info(F"{attribute} is initialized" )
__SCREAMING_SNAKE_CASE : List[str] = True
break
elif attribute in special_keys and hasattr(_lowerCamelCase , """in_proj_weight""" ):
__SCREAMING_SNAKE_CASE : Dict = old_model.in_proj_weight.shape[0] // 3
__SCREAMING_SNAKE_CASE : Any = getattr(_lowerCamelCase , _lowerCamelCase )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
__SCREAMING_SNAKE_CASE : Any = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
__SCREAMING_SNAKE_CASE : Any = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
__SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
__SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
__SCREAMING_SNAKE_CASE : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
__SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
__SCREAMING_SNAKE_CASE : Optional[Any] = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings."
__SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] )
__SCREAMING_SNAKE_CASE : Any = True
break
if attribute.isdigit():
__SCREAMING_SNAKE_CASE : List[str] = model[int(_lowerCamelCase )]
__SCREAMING_SNAKE_CASE : str = old_model[int(_lowerCamelCase )]
else:
__SCREAMING_SNAKE_CASE : Tuple = getattr(_lowerCamelCase , _lowerCamelCase )
if old_attribute == "":
__SCREAMING_SNAKE_CASE : Optional[int] = old_model
else:
if not hasattr(_lowerCamelCase , _lowerCamelCase ):
raise ValueError(F"{old_model} does not have {old_attribute}" )
__SCREAMING_SNAKE_CASE : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase )
if not is_key_init:
raise ValueError(F"{key} was not correctly initialized!" )
print(F"Saving model to {pytorch_dump_folder_path}" )
prophet.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
UpperCamelCase__ : int = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path) | 112 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
'''simple docstring'''
def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int:
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = num_labels
__UpperCAmelCase = image_size
__UpperCAmelCase = layer_depths
__UpperCAmelCase = embed_dims
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ (self ) -> Optional[Any]:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int:
__UpperCAmelCase = SwiftFormerModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = model(lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
__UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = model(lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ (self ) -> Optional[int]:
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs()
__UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
'''simple docstring'''
a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
a__ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def lowerCAmelCase_ (self ) -> List[str]:
__UpperCAmelCase = SwiftFormerModelTester(self )
__UpperCAmelCase = ConfigTester(
self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowerCAmelCase_ (self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' )
def lowerCAmelCase_ (self ) -> List[Any]:
pass
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(lowercase__ )
__UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(lowercase__ )
__UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase = [*signature.parameters.keys()]
__UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase__ )
@slow
def lowerCAmelCase_ (self ) -> Any:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@unittest.skip(reason='''SwiftFormer does not output attentions''' )
def lowerCAmelCase_ (self ) -> List[str]:
pass
def lowerCAmelCase_ (self ) -> Union[str, Any]:
def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ):
__UpperCAmelCase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) )
__UpperCAmelCase = outputs.hidden_states
__UpperCAmelCase = 8
self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowercase__ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
def _config_zero_init(lowercase__ ):
__UpperCAmelCase = copy.deepcopy(lowercase__ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowercase__ , lowercase__ , 1E-10 )
if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ):
__UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) )
setattr(lowercase__ , lowercase__ , lowercase__ )
return configs_no_init
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = _config_zero_init(lowercase__ )
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(config=lowercase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowerCAmelCase_ (self ) -> Optional[Any]:
pass
def __a ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ (self ) -> str:
return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None
@slow
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ )
__UpperCAmelCase = self.default_image_processor
__UpperCAmelCase = prepare_img()
__UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ )
# forward pass
with torch.no_grad():
__UpperCAmelCase = model(**lowercase__ )
# verify the logits
__UpperCAmelCase = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowercase__ )
__UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
| 333 | 0 |
import math
import sys
def lowercase_ ( _lowerCamelCase : str):
if number != int(_lowerCamelCase):
raise ValueError("the value of input must be a natural number")
if number < 0:
raise ValueError("the value of input must not be a negative number")
if number == 0:
return 1
lowercase__ : Union[str, Any] = [-1] * (number + 1)
lowercase__ : Union[str, Any] = 0
for i in range(1 , number + 1):
lowercase__ : Optional[int] = sys.maxsize
lowercase__ : Any = int(math.sqrt(_lowerCamelCase))
for j in range(1 , root + 1):
lowercase__ : Optional[int] = 1 + answers[i - (j**2)]
lowercase__ : Any = min(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Dict = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 87 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
A_ : str = logging.get_logger(__name__)
A_ : str = OrderedDict(
[
# Base model mapping
('albert', 'FlaxAlbertModel'),
('bart', 'FlaxBartModel'),
('beit', 'FlaxBeitModel'),
('bert', 'FlaxBertModel'),
('big_bird', 'FlaxBigBirdModel'),
('blenderbot', 'FlaxBlenderbotModel'),
('blenderbot-small', 'FlaxBlenderbotSmallModel'),
('clip', 'FlaxCLIPModel'),
('distilbert', 'FlaxDistilBertModel'),
('electra', 'FlaxElectraModel'),
('gpt-sw3', 'FlaxGPT2Model'),
('gpt2', 'FlaxGPT2Model'),
('gpt_neo', 'FlaxGPTNeoModel'),
('gptj', 'FlaxGPTJModel'),
('longt5', 'FlaxLongT5Model'),
('marian', 'FlaxMarianModel'),
('mbart', 'FlaxMBartModel'),
('mt5', 'FlaxMT5Model'),
('opt', 'FlaxOPTModel'),
('pegasus', 'FlaxPegasusModel'),
('regnet', 'FlaxRegNetModel'),
('resnet', 'FlaxResNetModel'),
('roberta', 'FlaxRobertaModel'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'),
('roformer', 'FlaxRoFormerModel'),
('t5', 'FlaxT5Model'),
('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'),
('vit', 'FlaxViTModel'),
('wav2vec2', 'FlaxWav2Vec2Model'),
('whisper', 'FlaxWhisperModel'),
('xglm', 'FlaxXGLMModel'),
('xlm-roberta', 'FlaxXLMRobertaModel'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for pre-training mapping
('albert', 'FlaxAlbertForPreTraining'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForPreTraining'),
('big_bird', 'FlaxBigBirdForPreTraining'),
('electra', 'FlaxElectraForPreTraining'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('t5', 'FlaxT5ForConditionalGeneration'),
('wav2vec2', 'FlaxWav2Vec2ForPreTraining'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
A_ : Union[str, Any] = OrderedDict(
[
# Model for Masked LM mapping
('albert', 'FlaxAlbertForMaskedLM'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForMaskedLM'),
('big_bird', 'FlaxBigBirdForMaskedLM'),
('distilbert', 'FlaxDistilBertForMaskedLM'),
('electra', 'FlaxElectraForMaskedLM'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
A_ : Dict = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('bart', 'FlaxBartForConditionalGeneration'),
('blenderbot', 'FlaxBlenderbotForConditionalGeneration'),
('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'),
('encoder-decoder', 'FlaxEncoderDecoderModel'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('marian', 'FlaxMarianMTModel'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('pegasus', 'FlaxPegasusForConditionalGeneration'),
('t5', 'FlaxT5ForConditionalGeneration'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for Image-classsification
('beit', 'FlaxBeitForImageClassification'),
('regnet', 'FlaxRegNetForImageClassification'),
('resnet', 'FlaxResNetForImageClassification'),
('vit', 'FlaxViTForImageClassification'),
]
)
A_ : Dict = OrderedDict(
[
('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'),
]
)
A_ : List[str] = OrderedDict(
[
# Model for Causal LM mapping
('bart', 'FlaxBartForCausalLM'),
('bert', 'FlaxBertForCausalLM'),
('big_bird', 'FlaxBigBirdForCausalLM'),
('electra', 'FlaxElectraForCausalLM'),
('gpt-sw3', 'FlaxGPT2LMHeadModel'),
('gpt2', 'FlaxGPT2LMHeadModel'),
('gpt_neo', 'FlaxGPTNeoForCausalLM'),
('gptj', 'FlaxGPTJForCausalLM'),
('opt', 'FlaxOPTForCausalLM'),
('roberta', 'FlaxRobertaForCausalLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'),
('xglm', 'FlaxXGLMForCausalLM'),
('xlm-roberta', 'FlaxXLMRobertaForCausalLM'),
]
)
A_ : Tuple = OrderedDict(
[
# Model for Sequence Classification mapping
('albert', 'FlaxAlbertForSequenceClassification'),
('bart', 'FlaxBartForSequenceClassification'),
('bert', 'FlaxBertForSequenceClassification'),
('big_bird', 'FlaxBigBirdForSequenceClassification'),
('distilbert', 'FlaxDistilBertForSequenceClassification'),
('electra', 'FlaxElectraForSequenceClassification'),
('mbart', 'FlaxMBartForSequenceClassification'),
('roberta', 'FlaxRobertaForSequenceClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'),
('roformer', 'FlaxRoFormerForSequenceClassification'),
('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for Question Answering mapping
('albert', 'FlaxAlbertForQuestionAnswering'),
('bart', 'FlaxBartForQuestionAnswering'),
('bert', 'FlaxBertForQuestionAnswering'),
('big_bird', 'FlaxBigBirdForQuestionAnswering'),
('distilbert', 'FlaxDistilBertForQuestionAnswering'),
('electra', 'FlaxElectraForQuestionAnswering'),
('mbart', 'FlaxMBartForQuestionAnswering'),
('roberta', 'FlaxRobertaForQuestionAnswering'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'),
('roformer', 'FlaxRoFormerForQuestionAnswering'),
('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'),
]
)
A_ : int = OrderedDict(
[
# Model for Token Classification mapping
('albert', 'FlaxAlbertForTokenClassification'),
('bert', 'FlaxBertForTokenClassification'),
('big_bird', 'FlaxBigBirdForTokenClassification'),
('distilbert', 'FlaxDistilBertForTokenClassification'),
('electra', 'FlaxElectraForTokenClassification'),
('roberta', 'FlaxRobertaForTokenClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'),
('roformer', 'FlaxRoFormerForTokenClassification'),
('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'),
]
)
A_ : Tuple = OrderedDict(
[
# Model for Multiple Choice mapping
('albert', 'FlaxAlbertForMultipleChoice'),
('bert', 'FlaxBertForMultipleChoice'),
('big_bird', 'FlaxBigBirdForMultipleChoice'),
('distilbert', 'FlaxDistilBertForMultipleChoice'),
('electra', 'FlaxElectraForMultipleChoice'),
('roberta', 'FlaxRobertaForMultipleChoice'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'),
('roformer', 'FlaxRoFormerForMultipleChoice'),
('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'),
]
)
A_ : Tuple = OrderedDict(
[
('bert', 'FlaxBertForNextSentencePrediction'),
]
)
A_ : int = OrderedDict(
[
('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
]
)
A_ : Tuple = OrderedDict(
[
('whisper', 'FlaxWhisperForAudioClassification'),
]
)
A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
A_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
A_ : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
A_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
A_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
A_ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
A_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
A_ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
A_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
A_ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_MAPPING
A_ : Tuple = auto_class_update(FlaxAutoModel)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING
A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING
A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
A_ : Union[str, Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A_ : Tuple = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='sequence classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ : Dict = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='token classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
A_ : Tuple = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
A_ : int = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='image classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
A_ : Optional[int] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling'
)
| 333 | 0 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def __lowercase ( a__ , a__ , a__ ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = MobileBertConfig.from_json_file(a__ )
print(f"""Building PyTorch model from configuration: {config}""" )
__SCREAMING_SNAKE_CASE = MobileBertForPreTraining(a__ )
# Load weights from tf checkpoint
__SCREAMING_SNAKE_CASE = load_tf_weights_in_mobilebert(a__ , a__ , a__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , a__ )
if __name__ == "__main__":
lowerCAmelCase__ : Tuple =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--mobilebert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained MobileBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase__ : str =parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 257 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
A_ : Tuple = logging.get_logger(__name__)
class A_ ( _a ):
'''simple docstring'''
a__ = "linear"
a__ = "cosine"
a__ = "cosine_with_restarts"
a__ = "polynomial"
a__ = "constant"
a__ = "constant_with_warmup"
a__ = "piecewise_constant"
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple:
'''simple docstring'''
return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) )
return 1.0
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = {}
__UpperCAmelCase = step_rules.split(''',''' )
for rule_str in rule_list[:-1]:
__UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' )
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = float(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = value
__UpperCAmelCase = float(rule_list[-1] )
def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
def rule_func(SCREAMING_SNAKE_CASE ) -> float:
__UpperCAmelCase = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = optimizer.defaults['''lr''']
if not (lr_init > lr_end):
raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' )
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__UpperCAmelCase = lr_init - lr_end
__UpperCAmelCase = num_training_steps - num_warmup_steps
__UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps
__UpperCAmelCase = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A_ : Optional[Any] = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , )
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
| 333 | 0 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ )
lowerCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase__ )
lowerCamelCase = checkpoints.load_tax_checkpoint(lowerCamelCase__ )
lowerCamelCase = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""]
if config.model_type == "t5":
lowerCamelCase = """SelfAttention"""
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowerCamelCase = """LocalSelfAttention"""
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowerCamelCase = """TransientGlobalSelfAttention"""
else:
raise ValueError(
"""Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`"""
""" attribute with a value from [\'local\', \'transient-global].""" )
# Encoder
for layer_index in range(config.num_layers ):
lowerCamelCase = f'layers_{str(lowerCamelCase__ )}'
# Self-Attention
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""]
# Layer Normalization
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""]
if split_mlp_wi:
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""]
else:
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""]
# Layer Normalization
lowerCamelCase = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""]
# Assigning
lowerCamelCase = flax_model.params["""encoder"""]["""block"""][str(lowerCamelCase__ )]["""layer"""]
lowerCamelCase = tax_attention_key
lowerCamelCase = tax_attention_out
lowerCamelCase = tax_attention_query
lowerCamelCase = tax_attention_value
lowerCamelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowerCamelCase = tax_global_layer_norm
if split_mlp_wi:
lowerCamelCase = tax_mlp_wi_a
lowerCamelCase = tax_mlp_wi_a
else:
lowerCamelCase = tax_mlp_wi
lowerCamelCase = tax_mlp_wo
lowerCamelCase = tax_mlp_layer_norm
lowerCamelCase = flax_model_encoder_layer_block
# Only for layer 0:
lowerCamelCase = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T
lowerCamelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowerCamelCase = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T
lowerCamelCase = tax_encoder_global_rel_embedding
# Assigning
lowerCamelCase = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""]
lowerCamelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
lowerCamelCase = f'layers_{str(lowerCamelCase__ )}'
# Self-Attention
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""]
# Layer Normalization
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][
"""scale"""
]
# Encoder-Decoder-Attention
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""]
lowerCamelCase = tax_enc_dec_attention_module["""key"""]["""kernel"""]
lowerCamelCase = tax_enc_dec_attention_module["""out"""]["""kernel"""]
lowerCamelCase = tax_enc_dec_attention_module["""query"""]["""kernel"""]
lowerCamelCase = tax_enc_dec_attention_module["""value"""]["""kernel"""]
# Layer Normalization
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""]
# MLP
if split_mlp_wi:
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""]
else:
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""]
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""]
# Layer Normalization
lowerCamelCase = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""]
# Assigning
lowerCamelCase = flax_model.params["""decoder"""]["""block"""][str(lowerCamelCase__ )]["""layer"""]
lowerCamelCase = tax_attention_key
lowerCamelCase = tax_attention_out
lowerCamelCase = tax_attention_query
lowerCamelCase = tax_attention_value
lowerCamelCase = tax_pre_attention_layer_norm
lowerCamelCase = tax_enc_dec_attention_key
lowerCamelCase = tax_enc_dec_attention_out
lowerCamelCase = tax_enc_dec_attention_query
lowerCamelCase = tax_enc_dec_attention_value
lowerCamelCase = tax_cross_layer_norm
if split_mlp_wi:
lowerCamelCase = tax_mlp_wi_a
lowerCamelCase = tax_mlp_wi_a
else:
lowerCamelCase = tax_mlp_wi
lowerCamelCase = tax_mlp_wo
lowerCamelCase = txa_mlp_layer_norm
lowerCamelCase = flax_model_decoder_layer_block
# Decoder Normalization
lowerCamelCase = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""]
lowerCamelCase = txa_decoder_norm
# Only for layer 0:
lowerCamelCase = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T
lowerCamelCase = tax_decoder_rel_embedding
# Token Embeddings
lowerCamelCase = tax_model["""target"""]["""token_embedder"""]["""embedding"""]
lowerCamelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowerCamelCase = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""]
flax_model.save_pretrained(lowerCamelCase__ )
print("""T5X Model was sucessfully converted!""" )
if __name__ == "__main__":
UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint."
)
parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.")
parser.add_argument(
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
)
UpperCAmelCase : int = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 252 |
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
'''simple docstring'''
__UpperCAmelCase = len(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )]
for i in range(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = y_points[i]
for i in range(2 , SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCamelCase : Tuple = logging.get_logger(__name__)
lowerCamelCase : int = {
'microsoft/table-transformer-detection': (
'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'
),
}
class lowerCAmelCase ( _a ):
'''simple docstring'''
_A : Any = '''table-transformer'''
_A : Optional[Any] = ['''past_key_values''']
_A : Optional[int] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : int , __a : List[str]=True , __a : Union[str, Any]=None , __a : Union[str, Any]=3 , __a : Union[str, Any]=100 , __a : int=6 , __a : Tuple=2048 , __a : Dict=8 , __a : Dict=6 , __a : Optional[int]=2048 , __a : List[str]=8 , __a : Optional[Any]=0.0 , __a : List[Any]=0.0 , __a : List[Any]=True , __a : Union[str, Any]="relu" , __a : Union[str, Any]=256 , __a : Dict=0.1 , __a : Optional[Any]=0.0 , __a : Union[str, Any]=0.0 , __a : str=0.02 , __a : Union[str, Any]=1.0 , __a : Dict=False , __a : Dict="sine" , __a : Any="resnet50" , __a : Dict=True , __a : List[str]=False , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : List[Any]=1 , __a : Any=1 , __a : Optional[int]=5 , __a : Optional[int]=2 , __a : Tuple=0.1 , **__a : str , ) -> Optional[Any]:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
__lowercase : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase__ , lowercase__ ):
__lowercase : Optional[int] = backbone_config.get("""model_type""" )
__lowercase : Optional[Any] = CONFIG_MAPPING[backbone_model_type]
__lowercase : List[str] = config_class.from_dict(lowercase__ )
# set timm attributes to None
__lowercase , __lowercase , __lowercase : Union[str, Any] = None, None, None
__lowercase : List[Any] = use_timm_backbone
__lowercase : Optional[int] = backbone_config
__lowercase : str = num_channels
__lowercase : List[Any] = num_queries
__lowercase : List[str] = d_model
__lowercase : int = encoder_ffn_dim
__lowercase : str = encoder_layers
__lowercase : str = encoder_attention_heads
__lowercase : Union[str, Any] = decoder_ffn_dim
__lowercase : str = decoder_layers
__lowercase : Union[str, Any] = decoder_attention_heads
__lowercase : str = dropout
__lowercase : Union[str, Any] = attention_dropout
__lowercase : List[str] = activation_dropout
__lowercase : List[Any] = activation_function
__lowercase : str = init_std
__lowercase : Optional[int] = init_xavier_std
__lowercase : Tuple = encoder_layerdrop
__lowercase : int = decoder_layerdrop
__lowercase : Optional[Any] = encoder_layers
__lowercase : Dict = auxiliary_loss
__lowercase : int = position_embedding_type
__lowercase : List[Any] = backbone
__lowercase : Optional[int] = use_pretrained_backbone
__lowercase : List[str] = dilation
# Hungarian matcher
__lowercase : Union[str, Any] = class_cost
__lowercase : str = bbox_cost
__lowercase : int = giou_cost
# Loss coefficients
__lowercase : Dict = mask_loss_coefficient
__lowercase : Optional[int] = dice_loss_coefficient
__lowercase : Dict = bbox_loss_coefficient
__lowercase : Any = giou_loss_coefficient
__lowercase : Optional[int] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ )
@property
def lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return self.d_model
class lowerCAmelCase ( _a ):
'''simple docstring'''
_A : Dict = version.parse('''1.11''' )
@property
def lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def lowerCAmelCase ( self : Any ) -> float:
"""simple docstring"""
return 1E-5
@property
def lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return 12 | 233 |
def __a ( SCREAMING_SNAKE_CASE ) -> set:
'''simple docstring'''
__UpperCAmelCase = set()
# edges = list of graph's edges
__UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__UpperCAmelCase , __UpperCAmelCase = edges.pop()
chosen_vertices.add(SCREAMING_SNAKE_CASE )
chosen_vertices.add(SCREAMING_SNAKE_CASE )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(SCREAMING_SNAKE_CASE )
return chosen_vertices
def __a ( SCREAMING_SNAKE_CASE ) -> set:
'''simple docstring'''
__UpperCAmelCase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 333 | 0 |
from __future__ import annotations
def UpperCAmelCase_ ( _A , _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_failure_array(_A )
# 2) Step through text searching for pattern
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 0, 0 # index into text, pattern
while i < len(_A ):
if pattern[j] == text[i]:
if j == (len(_A ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
SCREAMING_SNAKE_CASE__ = failure[j - 1]
continue
i += 1
return False
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [0]
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 1
while j < len(_A ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
SCREAMING_SNAKE_CASE__ = failure[i - 1]
continue
j += 1
failure.append(_A )
return failure
if __name__ == "__main__":
# Test 1)
_SCREAMING_SNAKE_CASE : int = 'abc1abc12'
_SCREAMING_SNAKE_CASE : str = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
_SCREAMING_SNAKE_CASE : int = 'alskfjaldsk23adsfabcabc'
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
_SCREAMING_SNAKE_CASE : List[str] = 'ABABX'
_SCREAMING_SNAKE_CASE : Any = 'ABABZABABYABABX'
assert kmp(pattern, text)
# Test 3)
_SCREAMING_SNAKE_CASE : Union[str, Any] = 'AAAB'
_SCREAMING_SNAKE_CASE : str = 'ABAAAAAB'
assert kmp(pattern, text)
# Test 4)
_SCREAMING_SNAKE_CASE : Dict = 'abcdabcy'
_SCREAMING_SNAKE_CASE : Union[str, Any] = 'abcxabcdabxabcdabcdabcy'
assert kmp(pattern, text)
# Test 5)
_SCREAMING_SNAKE_CASE : Optional[int] = 'aabaabaaa'
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 314 |
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []}
A_ : int = ['a', 'b', 'c', 'd', 'e']
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = start
# add current to visited
visited.append(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
__UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# if all neighbors visited add current to sort
sort.append(SCREAMING_SNAKE_CASE )
# if all vertices haven't been visited select a new one to visit
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
for vertice in vertices:
if vertice not in visited:
__UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# return sort
return sort
if __name__ == "__main__":
A_ : Tuple = topological_sort('a', [], [])
print(sort)
| 333 | 0 |
"""simple docstring"""
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
A_ = logging.get_logger(__name__)
# General docstring
A_ = 'PoolFormerConfig'
# Base docstring
A_ = 'sail/poolformer_s12'
A_ = [1, 5_12, 7, 7]
# Image classification docstring
A_ = 'sail/poolformer_s12'
A_ = 'tabby, tabby cat'
A_ = [
'sail/poolformer_s12',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : List[str] = 0.0 , snake_case__ : Tuple = False ):
"""simple docstring"""
if drop_prob == 0.0 or not training:
return input
_snake_case : Optional[Any] = 1 - drop_prob
_snake_case : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
_snake_case : int = keep_prob + torch.rand(snake_case__ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
_snake_case : Optional[Any] = input.div(snake_case__ ) * random_tensor
return output
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: Dict, a_: List[str] = None ):
'''simple docstring'''
super().__init__()
_snake_case : List[str] = drop_prob
def UpperCamelCase_ ( self: Optional[int], a_: List[Any] ):
'''simple docstring'''
return drop_path(lowercase__, self.drop_prob, self.training )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
return "p={}".format(self.drop_prob )
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[str], a_: str, a_: str, a_: Any, a_: Dict, a_: List[Any], a_: Optional[Any]=None ):
'''simple docstring'''
super().__init__()
_snake_case : Dict = patch_size if isinstance(lowercase__, collections.abc.Iterable ) else (patch_size, patch_size)
_snake_case : Any = stride if isinstance(lowercase__, collections.abc.Iterable ) else (stride, stride)
_snake_case : int = padding if isinstance(lowercase__, collections.abc.Iterable ) else (padding, padding)
_snake_case : Dict = nn.Convad(lowercase__, lowercase__, kernel_size=lowercase__, stride=lowercase__, padding=lowercase__ )
_snake_case : int = norm_layer(lowercase__ ) if norm_layer else nn.Identity()
def UpperCamelCase_ ( self: Optional[Any], a_: Any ):
'''simple docstring'''
_snake_case : Dict = self.projection(lowercase__ )
_snake_case : Any = self.norm(lowercase__ )
return embeddings
class lowercase( nn.GroupNorm ):
'''simple docstring'''
def __init__( self: Dict, a_: Optional[Any], **a_: Any ):
'''simple docstring'''
super().__init__(1, lowercase__, **lowercase__ )
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: int, a_: Dict ):
'''simple docstring'''
super().__init__()
_snake_case : Dict = nn.AvgPoolad(lowercase__, stride=1, padding=pool_size // 2, count_include_pad=lowercase__ )
def UpperCamelCase_ ( self: int, a_: Optional[Any] ):
'''simple docstring'''
return self.pool(lowercase__ ) - hidden_states
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: Union[str, Any], a_: Optional[Any], a_: List[str], a_: List[str], a_: List[str] ):
'''simple docstring'''
super().__init__()
_snake_case : Optional[Any] = nn.Convad(lowercase__, lowercase__, 1 )
_snake_case : List[str] = nn.Convad(lowercase__, lowercase__, 1 )
_snake_case : Any = PoolFormerDropPath(lowercase__ )
if isinstance(config.hidden_act, lowercase__ ):
_snake_case : int = ACTaFN[config.hidden_act]
else:
_snake_case : Tuple = config.hidden_act
def UpperCamelCase_ ( self: List[str], a_: Tuple ):
'''simple docstring'''
_snake_case : Dict = self.conva(lowercase__ )
_snake_case : List[str] = self.act_fn(lowercase__ )
_snake_case : Dict = self.drop(lowercase__ )
_snake_case : List[str] = self.conva(lowercase__ )
_snake_case : Optional[int] = self.drop(lowercase__ )
return hidden_states
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: Dict, a_: List[str], a_: str, a_: Tuple, a_: List[Any], a_: Any, a_: Tuple ):
'''simple docstring'''
super().__init__()
_snake_case : str = PoolFormerPooling(lowercase__ )
_snake_case : Union[str, Any] = PoolFormerOutput(lowercase__, lowercase__, lowercase__, lowercase__ )
_snake_case : Any = PoolFormerGroupNorm(lowercase__ )
_snake_case : Tuple = PoolFormerGroupNorm(lowercase__ )
# Useful for training neural nets
_snake_case : Dict = PoolFormerDropPath(lowercase__ ) if drop_path > 0.0 else nn.Identity()
_snake_case : List[str] = config.use_layer_scale
if config.use_layer_scale:
_snake_case : Union[str, Any] = nn.Parameter(
config.layer_scale_init_value * torch.ones((lowercase__) ), requires_grad=lowercase__ )
_snake_case : Dict = nn.Parameter(
config.layer_scale_init_value * torch.ones((lowercase__) ), requires_grad=lowercase__ )
def UpperCamelCase_ ( self: List[Any], a_: int ):
'''simple docstring'''
if self.use_layer_scale:
_snake_case : Dict = self.pooling(self.before_norm(lowercase__ ) )
_snake_case : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
_snake_case : Union[str, Any] = hidden_states + self.drop_path(lowercase__ )
_snake_case : Dict = ()
_snake_case : Any = self.output(self.after_norm(lowercase__ ) )
_snake_case : Tuple = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
_snake_case : Union[str, Any] = hidden_states + self.drop_path(lowercase__ )
_snake_case : int = (output,) + outputs
return outputs
else:
_snake_case : List[Any] = self.drop_path(self.pooling(self.before_norm(lowercase__ ) ) )
# First residual connection
_snake_case : Any = pooling_output + hidden_states
_snake_case : Dict = ()
# Second residual connection inside the PoolFormerOutput block
_snake_case : Optional[int] = self.drop_path(self.output(self.after_norm(lowercase__ ) ) )
_snake_case : Any = hidden_states + layer_output
_snake_case : int = (output,) + outputs
return outputs
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[str], a_: List[Any] ):
'''simple docstring'''
super().__init__()
_snake_case : str = config
# stochastic depth decay rule
_snake_case : Union[str, Any] = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths ) )]
# patch embeddings
_snake_case : List[str] = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i], stride=config.strides[i], padding=config.padding[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) )
_snake_case : List[Any] = nn.ModuleList(lowercase__ )
# Transformer blocks
_snake_case : Union[str, Any] = []
_snake_case : Any = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
_snake_case : Tuple = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
lowercase__, num_channels=config.hidden_sizes[i], pool_size=config.pool_size, hidden_size=config.hidden_sizes[i], intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ), drop_path=dpr[cur + j], ) )
blocks.append(nn.ModuleList(lowercase__ ) )
_snake_case : Dict = nn.ModuleList(lowercase__ )
def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: List[Any]=False, a_: List[Any]=True ):
'''simple docstring'''
_snake_case : List[str] = () if output_hidden_states else None
_snake_case : List[str] = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings, self.block ) ):
_snake_case , _snake_case : int = layers
# Get patch embeddings from hidden_states
_snake_case : List[str] = embedding_layer(lowercase__ )
# Send the embeddings through the blocks
for _, blk in enumerate(lowercase__ ):
_snake_case : Optional[Any] = blk(lowercase__ )
_snake_case : str = layer_outputs[0]
if output_hidden_states:
_snake_case : str = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=lowercase__, hidden_states=lowercase__ )
class lowercase( _a ):
'''simple docstring'''
lowercase__ = PoolFormerConfig
lowercase__ = "poolformer"
lowercase__ = "pixel_values"
lowercase__ = True
def UpperCamelCase_ ( self: Tuple, a_: Tuple ):
'''simple docstring'''
if isinstance(lowercase__, (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(lowercase__, nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def UpperCamelCase_ ( self: Any, a_: Union[str, Any], a_: Tuple=False ):
'''simple docstring'''
if isinstance(lowercase__, lowercase__ ):
_snake_case : Tuple = value
A_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
A_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n'
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , _a , )
class lowercase( _a ):
'''simple docstring'''
def __init__( self: Optional[Any], a_: Optional[int] ):
'''simple docstring'''
super().__init__(lowercase__ )
_snake_case : Optional[Any] = config
_snake_case : Tuple = PoolFormerEncoder(lowercase__ )
# Initialize weights and apply final processing
self.post_init()
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(lowercase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC, output_type=lowercase__, config_class=_CONFIG_FOR_DOC, modality="""vision""", expected_output=_EXPECTED_OUTPUT_SHAPE, )
def UpperCamelCase_ ( self: List[Any], a_: List[Any] = None, a_: Dict = None, a_: List[str] = None, ):
'''simple docstring'''
_snake_case : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
_snake_case : Union[str, Any] = self.encoder(
lowercase__, output_hidden_states=lowercase__, return_dict=lowercase__, )
_snake_case : Union[str, Any] = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=lowercase__, hidden_states=encoder_outputs.hidden_states, )
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: Any, a_: int ):
'''simple docstring'''
super().__init__()
_snake_case : Optional[Any] = nn.Linear(config.hidden_size, config.hidden_size )
def UpperCamelCase_ ( self: Any, a_: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[int] = self.dense(lowercase__ )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , _a , )
class lowercase( _a ):
'''simple docstring'''
def __init__( self: int, a_: str ):
'''simple docstring'''
super().__init__(lowercase__ )
_snake_case : Optional[int] = config.num_labels
_snake_case : int = PoolFormerModel(lowercase__ )
# Final norm
_snake_case : Dict = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
_snake_case : Any = (
nn.Linear(config.hidden_sizes[-1], config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=lowercase__, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, )
def UpperCamelCase_ ( self: str, a_: int = None, a_: Union[str, Any] = None, a_: Dict = None, a_: Optional[Any] = None, ):
'''simple docstring'''
_snake_case : Any = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Optional[Any] = self.poolformer(
lowercase__, output_hidden_states=lowercase__, return_dict=lowercase__, )
_snake_case : Dict = outputs[0]
_snake_case : Union[str, Any] = self.classifier(self.norm(lowercase__ ).mean([-2, -1] ) )
_snake_case : Union[str, Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_snake_case : Optional[int] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_snake_case : List[str] = """single_label_classification"""
else:
_snake_case : Optional[Any] = """multi_label_classification"""
if self.config.problem_type == "regression":
_snake_case : int = MSELoss()
if self.num_labels == 1:
_snake_case : Tuple = loss_fct(logits.squeeze(), labels.squeeze() )
else:
_snake_case : Tuple = loss_fct(lowercase__, lowercase__ )
elif self.config.problem_type == "single_label_classification":
_snake_case : List[str] = CrossEntropyLoss()
_snake_case : Dict = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_snake_case : Dict = BCEWithLogitsLoss()
_snake_case : Dict = loss_fct(lowercase__, lowercase__ )
if not return_dict:
_snake_case : Optional[int] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowercase__, logits=lowercase__, hidden_states=outputs.hidden_states )
| 64 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : int = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Dict = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 333 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'microsoft/unispeech-large-1500h-cv': (
'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class UpperCAmelCase_ ( _a ):
UpperCamelCase ="unispeech"
def __init__( self , UpperCamelCase_=32 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_="group" , UpperCamelCase_="gelu" , UpperCamelCase_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_=False , UpperCamelCase_=1_28 , UpperCamelCase_=16 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0.0_5 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_=3_20 , UpperCamelCase_=2 , UpperCamelCase_=0.1 , UpperCamelCase_=1_00 , UpperCamelCase_=2_56 , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_="mean" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2_56 , UpperCamelCase_=80 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=0.5 , **UpperCamelCase_ , ) -> str:
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
__lowercase : str = hidden_size
__lowercase : str = feat_extract_norm
__lowercase : Optional[Any] = feat_extract_activation
__lowercase : Union[str, Any] = list(lowercase__ )
__lowercase : Dict = list(lowercase__ )
__lowercase : Optional[Any] = list(lowercase__ )
__lowercase : Union[str, Any] = conv_bias
__lowercase : Any = num_conv_pos_embeddings
__lowercase : List[Any] = num_conv_pos_embedding_groups
__lowercase : int = len(self.conv_dim )
__lowercase : Any = num_hidden_layers
__lowercase : Optional[Any] = intermediate_size
__lowercase : List[str] = hidden_act
__lowercase : str = num_attention_heads
__lowercase : List[Any] = hidden_dropout
__lowercase : Union[str, Any] = attention_dropout
__lowercase : Any = activation_dropout
__lowercase : Optional[int] = feat_proj_dropout
__lowercase : int = final_dropout
__lowercase : Any = layerdrop
__lowercase : List[str] = layer_norm_eps
__lowercase : Dict = initializer_range
__lowercase : int = num_ctc_classes
__lowercase : Union[str, Any] = vocab_size
__lowercase : Optional[Any] = do_stable_layer_norm
__lowercase : List[Any] = use_weighted_layer_sum
__lowercase : List[Any] = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowercase : Optional[Any] = apply_spec_augment
__lowercase : int = mask_time_prob
__lowercase : Optional[Any] = mask_time_length
__lowercase : Tuple = mask_time_min_masks
__lowercase : str = mask_feature_prob
__lowercase : Union[str, Any] = mask_feature_length
__lowercase : Tuple = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__lowercase : Dict = num_codevectors_per_group
__lowercase : int = num_codevector_groups
__lowercase : Dict = contrastive_logits_temperature
__lowercase : int = feat_quantizer_dropout
__lowercase : Dict = num_negatives
__lowercase : Tuple = codevector_dim
__lowercase : Tuple = proj_codevector_dim
__lowercase : Tuple = diversity_loss_weight
# ctc loss
__lowercase : Tuple = ctc_loss_reduction
__lowercase : Any = ctc_zero_infinity
# pretraining loss
__lowercase : Union[str, Any] = replace_prob
@property
def _lowerCamelCase ( self ) -> int:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 249 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
'''simple docstring'''
model.train()
__UpperCAmelCase = model(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]:
'''simple docstring'''
set_seed(4_2 )
__UpperCAmelCase = RegressionModel()
__UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = RegressionDataset(length=8_0 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 )
__UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 )
__UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 )
# Make a copy of `model`
if sched:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
__UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
# Test when on a single CPU or GPU that the context manager does nothing
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
# Use a single batch
__UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
def __a ( SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
# Test on distributed setup that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
# Use a single batch
__UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = Accelerator(
split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase , __UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = Accelerator(
split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase , __UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
__UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def __a ( ) -> str:
'''simple docstring'''
__UpperCAmelCase = Accelerator()
__UpperCAmelCase = RegressionDataset(length=8_0 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
__UpperCAmelCase = RegressionDataset(length=9_6 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
__UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE )
if iteration < len(SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE )
if batch_num < len(SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __a ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase = Accelerator()
__UpperCAmelCase = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 0 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __A( _a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """marian"""
SCREAMING_SNAKE_CASE__ = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self , SCREAMING_SNAKE_CASE_=5_81_01 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=5_81_00 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=5_81_00 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase__ = vocab_size
UpperCamelCase__ = decoder_vocab_size or vocab_size
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = d_model
UpperCamelCase__ = encoder_ffn_dim
UpperCamelCase__ = encoder_layers
UpperCamelCase__ = encoder_attention_heads
UpperCamelCase__ = decoder_ffn_dim
UpperCamelCase__ = decoder_layers
UpperCamelCase__ = decoder_attention_heads
UpperCamelCase__ = dropout
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = activation_dropout
UpperCamelCase__ = activation_function
UpperCamelCase__ = init_std
UpperCamelCase__ = encoder_layerdrop
UpperCamelCase__ = decoder_layerdrop
UpperCamelCase__ = use_cache
UpperCamelCase__ = encoder_layers
UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase__ = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , )
class __A( _a ):
"""simple docstring"""
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def UpperCAmelCase_ (self ):
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
UpperCamelCase__ = {0: """batch"""}
UpperCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
UpperCamelCase__ = {0: """batch""", 1: """decoder_sequence"""}
UpperCamelCase__ = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
for i in range(lowercase__ ):
UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
else:
UpperCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def UpperCAmelCase_ (self ):
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = super().outputs
else:
UpperCamelCase__ = super(lowercase__ , self ).outputs
if self.use_past:
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
for i in range(lowercase__ ):
UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
UpperCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ):
UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Generate decoder inputs
UpperCamelCase__ = seq_length if not self.use_past else 1
UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
UpperCamelCase__ = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
UpperCamelCase__ = dict(**lowercase__ , **lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
UpperCamelCase__ , UpperCamelCase__ = common_inputs["""input_ids"""].shape
UpperCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1]
UpperCamelCase__ , UpperCamelCase__ = self.num_attention_heads
UpperCamelCase__ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCamelCase__ = decoder_seq_length + 3
UpperCamelCase__ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCamelCase__ = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(lowercase__ , lowercase__ )] , dim=1 )
UpperCamelCase__ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
UpperCamelCase__ = min(lowercase__ , lowercase__ )
UpperCamelCase__ = max(lowercase__ , lowercase__ ) - min_num_layers
UpperCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(lowercase__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
) )
# TODO: test this.
UpperCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(lowercase__ , lowercase__ ):
common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) )
return common_inputs
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ):
UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
UpperCamelCase__ , UpperCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
UpperCamelCase__ = seqlen + 2
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
UpperCamelCase__ , UpperCamelCase__ = self.num_attention_heads
UpperCamelCase__ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCamelCase__ = common_inputs["""attention_mask"""].dtype
UpperCamelCase__ = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 )
UpperCamelCase__ = [
(torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ )
]
return common_inputs
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase__ = compute_effective_axis_dimension(
lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = tokenizer.num_special_tokens_to_add(lowercase__ )
UpperCamelCase__ = compute_effective_axis_dimension(
lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCamelCase__ = dict(tokenizer(lowercase__ , return_tensors=lowercase__ ) )
return common_inputs
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ):
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ )
else:
UpperCamelCase__ = self._generate_dummy_inputs_for_causal_lm(
lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ )
return common_inputs
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
else:
UpperCamelCase__ = super(lowercase__ , self )._flatten_past_key_values_(
lowercase__ , lowercase__ , lowercase__ , lowercase__ )
@property
def UpperCAmelCase_ (self ):
return 1E-4
| 244 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
A_ : Optional[Any] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
A_ : Optional[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
A_ : Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
A_ : str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
A_ : Optional[Any] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 333 | 0 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Any:
'''simple docstring'''
lowerCAmelCase : Any = None
if token is not None:
lowerCAmelCase : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"}
lowerCAmelCase : str = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
lowerCAmelCase : int = requests.get(_UpperCAmelCase, headers=_UpperCAmelCase ).json()
lowerCAmelCase : Union[str, Any] = {}
try:
job_links.update({job['name']: job['html_url'] for job in result['jobs']} )
lowerCAmelCase : Optional[int] = math.ceil((result['total_count'] - 100) / 100 )
for i in range(_UpperCAmelCase ):
lowerCAmelCase : List[str] = requests.get(url + f"&page={i + 2}", headers=_UpperCAmelCase ).json()
job_links.update({job['name']: job['html_url'] for job in result['jobs']} )
return job_links
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = None
if token is not None:
lowerCAmelCase : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"}
lowerCAmelCase : Any = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
lowerCAmelCase : Optional[int] = requests.get(_UpperCAmelCase, headers=_UpperCAmelCase ).json()
lowerCAmelCase : Optional[Any] = {}
try:
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} )
lowerCAmelCase : int = math.ceil((result['total_count'] - 100) / 100 )
for i in range(_UpperCAmelCase ):
lowerCAmelCase : int = requests.get(url + f"&page={i + 2}", headers=_UpperCAmelCase ).json()
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} )
return artifacts
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = None
if token is not None:
lowerCAmelCase : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"}
lowerCAmelCase : Any = requests.get(_UpperCAmelCase, headers=_UpperCAmelCase, allow_redirects=_UpperCAmelCase )
lowerCAmelCase : List[Any] = result.headers['Location']
lowerCAmelCase : List[Any] = requests.get(_UpperCAmelCase, allow_redirects=_UpperCAmelCase )
lowerCAmelCase : Any = os.path.join(_UpperCAmelCase, f"{artifact_name}.zip" )
with open(_UpperCAmelCase, 'wb' ) as fp:
fp.write(response.content )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : List[Any] = []
lowerCAmelCase : Any = []
lowerCAmelCase : Optional[int] = None
with zipfile.ZipFile(_UpperCAmelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(_UpperCAmelCase ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_UpperCAmelCase ) as f:
for line in f:
lowerCAmelCase : str = line.decode('UTF-8' ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase : str = line[: line.index(': ' )]
lowerCAmelCase : List[Any] = line[line.index(': ' ) + len(': ' ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('FAILED ' ):
# `test` is the test method that failed
lowerCAmelCase : Any = line[len('FAILED ' ) :]
failed_tests.append(_UpperCAmelCase )
elif filename == "job_name.txt":
lowerCAmelCase : List[Any] = line
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
f"`errors` and `failed_tests` should have the same number of elements. Got {len(_UpperCAmelCase )} for `errors` "
f"and {len(_UpperCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
' problem.' )
lowerCAmelCase : Optional[int] = None
if job_name and job_links:
lowerCAmelCase : Tuple = job_links.get(_UpperCAmelCase, _UpperCAmelCase )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase : Any = [x + [y] + [job_link] for x, y in zip(_UpperCAmelCase, _UpperCAmelCase )]
return result
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Dict:
'''simple docstring'''
lowerCAmelCase : Tuple = []
lowerCAmelCase : int = [os.path.join(_UpperCAmelCase, _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if p.endswith('.zip' )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_UpperCAmelCase, job_links=_UpperCAmelCase ) )
return errors
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : Tuple = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase : Dict = counter.most_common()
lowerCAmelCase : Any = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase : List[Any] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase : Tuple = dict(sorted(r.items(), key=lambda _UpperCAmelCase : item[1]["count"], reverse=_UpperCAmelCase ) )
return r
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase : Optional[Any] = test.split('::' )[0]
if test.startswith('tests/models/' ):
lowerCAmelCase : Dict = test.split('/' )[2]
else:
lowerCAmelCase : Optional[int] = None
return test
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : Dict = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase : int = [x for x in logs if x[2] is not None]
lowerCAmelCase : List[str] = {x[2] for x in logs}
lowerCAmelCase : Optional[int] = {}
for test in tests:
lowerCAmelCase : Tuple = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase : str = counter.most_common()
lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase : List[str] = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase : Optional[int] = {'count': n_errors, 'errors': error_counts}
lowerCAmelCase : Tuple = dict(sorted(r.items(), key=lambda _UpperCAmelCase : item[1]["count"], reverse=_UpperCAmelCase ) )
return r
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase : int = '| no. | error | status |'
lowerCAmelCase : List[Any] = '|-:|:-|:-|'
lowerCAmelCase : Optional[Any] = [header, sep]
for error in reduced_by_error:
lowerCAmelCase : str = reduced_by_error[error]['count']
lowerCAmelCase : Any = f"| {count} | {error[:100]} | |"
lines.append(_UpperCAmelCase )
return "\n".join(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowerCAmelCase : Optional[int] = '| model | no. of errors | major error | count |'
lowerCAmelCase : Tuple = '|-:|-:|-:|-:|'
lowerCAmelCase : Dict = [header, sep]
for model in reduced_by_model:
lowerCAmelCase : Optional[int] = reduced_by_model[model]['count']
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = list(reduced_by_model[model]['errors'].items() )[0]
lowerCAmelCase : Optional[Any] = f"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(_UpperCAmelCase )
return "\n".join(_UpperCAmelCase )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
__A : str = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
__A : Optional[Any] = get_job_links(args.workflow_run_id, token=args.token)
__A : int = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
__A : Dict = k.find(''' / ''')
__A : Any = k[index + len(''' / ''') :]
__A : Dict = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
__A : Any = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
__A : int = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
__A : str = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
__A : List[Any] = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
__A : List[Any] = reduce_by_error(errors)
__A : Tuple = reduce_by_model(errors)
__A : int = make_github_table(reduced_by_error)
__A : Union[str, Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
| 138 |
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )]
__UpperCAmelCase = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key:
return input_string
for position, character in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid]
__UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE )
return output_string
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__UpperCAmelCase = []
__UpperCAmelCase = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1:
return input_string
__UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template
for position in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append('''*''' )
__UpperCAmelCase = 0
for row in temp_grid: # fills in the characters
__UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )]
grid.append(list(SCREAMING_SNAKE_CASE ) )
counter += len(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = '''''' # reads as zigzag
for position in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]:
'''simple docstring'''
__UpperCAmelCase = {}
for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key
__UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
UpperCAmelCase : Optional[int] = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class lowerCamelCase__ ( _a ):
"""simple docstring"""
__a = """tapas"""
def __init__( self : Tuple , UpperCamelCase : List[str]=30_522 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : Optional[Any]=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : Any=3_072 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : List[str]=1_024 , UpperCamelCase : List[Any]=[3, 256, 256, 2, 256, 256, 10] , UpperCamelCase : str=0.02 , UpperCamelCase : List[str]=1e-1_2 , UpperCamelCase : List[Any]=0 , UpperCamelCase : List[Any]=10.0 , UpperCamelCase : List[Any]=0 , UpperCamelCase : Union[str, Any]=1.0 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : int=1.0 , UpperCamelCase : int=False , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=1.0 , UpperCamelCase : Union[str, Any]=1.0 , UpperCamelCase : Any=False , UpperCamelCase : str=False , UpperCamelCase : Optional[int]="ratio" , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=64 , UpperCamelCase : Tuple=32 , UpperCamelCase : Tuple=False , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Dict=False , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Any=True , UpperCamelCase : Dict=False , UpperCamelCase : str=None , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase__ , **lowercase__ )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = num_hidden_layers
__UpperCAmelCase : Optional[int] = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : Any = type_vocab_sizes
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
__UpperCAmelCase : int = positive_label_weight
__UpperCAmelCase : Optional[Any] = num_aggregation_labels
__UpperCAmelCase : int = aggregation_loss_weight
__UpperCAmelCase : Optional[int] = use_answer_as_supervision
__UpperCAmelCase : int = answer_loss_importance
__UpperCAmelCase : List[Any] = use_normalized_answer_loss
__UpperCAmelCase : Optional[int] = huber_loss_delta
__UpperCAmelCase : Optional[Any] = temperature
__UpperCAmelCase : Tuple = aggregation_temperature
__UpperCAmelCase : Union[str, Any] = use_gumbel_for_cells
__UpperCAmelCase : Dict = use_gumbel_for_aggregation
__UpperCAmelCase : Union[str, Any] = average_approximation_function
__UpperCAmelCase : Dict = cell_selection_preference
__UpperCAmelCase : Optional[int] = answer_loss_cutoff
__UpperCAmelCase : Tuple = max_num_rows
__UpperCAmelCase : str = max_num_columns
__UpperCAmelCase : Optional[int] = average_logits_per_cell
__UpperCAmelCase : List[str] = select_one_column
__UpperCAmelCase : Dict = allow_empty_column_selection
__UpperCAmelCase : List[Any] = init_cell_selection_weights_to_zero
__UpperCAmelCase : Union[str, Any] = reset_position_index_per_cell
__UpperCAmelCase : List[str] = disable_per_token_loss
# Aggregation hyperparameters
__UpperCAmelCase : List[str] = aggregation_labels
__UpperCAmelCase : List[Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowercase__ ):
__UpperCAmelCase : Dict = {int(lowercase__ ): v for k, v in aggregation_labels.items()}
| 115 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class A_ ( _a , _a , _a , unittest.TestCase ):
'''simple docstring'''
a__ = StableUnCLIPPipeline
a__ = TEXT_TO_IMAGE_PARAMS
a__ = TEXT_TO_IMAGE_BATCH_PARAMS
a__ = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ = False
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]:
if str(lowercase__ ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(lowercase__ )
else:
__UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ )
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=lowercase__ )
@slow
@require_torch_gpu
class A_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ (self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 0 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__ : Tuple = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class _UpperCamelCase ( _a ):
'''simple docstring'''
_A : Optional[Any] = '''mctct'''
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any]=8_0_6_5 , lowerCAmelCase__ : Any=1_5_3_6 , lowerCAmelCase__ : Any=3_6 , lowerCAmelCase__ : Optional[Any]=6_1_4_4 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Optional[Any]=3_8_4 , lowerCAmelCase__ : Dict=9_2_0 , lowerCAmelCase__ : List[str]=1E-5 , lowerCAmelCase__ : Optional[int]=0.3 , lowerCAmelCase__ : str="relu" , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : List[str]=0.3 , lowerCAmelCase__ : Optional[Any]=0.3 , lowerCAmelCase__ : Union[str, Any]=1 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Optional[int]=0.3 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : str=(7,) , lowerCAmelCase__ : Union[str, Any]=(3,) , lowerCAmelCase__ : Any=8_0 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict="sum" , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str , ):
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
__SCREAMING_SNAKE_CASE : Dict = vocab_size
__SCREAMING_SNAKE_CASE : Any = hidden_size
__SCREAMING_SNAKE_CASE : int = num_hidden_layers
__SCREAMING_SNAKE_CASE : int = intermediate_size
__SCREAMING_SNAKE_CASE : Tuple = num_attention_heads
__SCREAMING_SNAKE_CASE : Optional[int] = attention_head_dim
__SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
__SCREAMING_SNAKE_CASE : int = layer_norm_eps
__SCREAMING_SNAKE_CASE : str = layerdrop
__SCREAMING_SNAKE_CASE : Any = hidden_act
__SCREAMING_SNAKE_CASE : Dict = initializer_range
__SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : int = pad_token_id
__SCREAMING_SNAKE_CASE : str = bos_token_id
__SCREAMING_SNAKE_CASE : Union[str, Any] = eos_token_id
__SCREAMING_SNAKE_CASE : Optional[int] = conv_glu_dim
__SCREAMING_SNAKE_CASE : Optional[Any] = conv_dropout
__SCREAMING_SNAKE_CASE : int = num_conv_layers
__SCREAMING_SNAKE_CASE : Any = input_feat_per_channel
__SCREAMING_SNAKE_CASE : List[str] = input_channels
__SCREAMING_SNAKE_CASE : str = conv_channels
__SCREAMING_SNAKE_CASE : Dict = ctc_loss_reduction
__SCREAMING_SNAKE_CASE : Optional[int] = ctc_zero_infinity
# prevents config testing fail with exporting to json
__SCREAMING_SNAKE_CASE : Optional[int] = list(lowercase__ )
__SCREAMING_SNAKE_CASE : str = list(lowercase__ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, "
F"`config.num_conv_layers = {self.num_conv_layers}`." ) | 112 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A_ : int = logging.get_logger(__name__)
A_ : str = {'tokenizer_file': 'tokenizer.json'}
A_ : List[str] = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class A_ ( _a ):
'''simple docstring'''
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = ["input_ids", "attention_mask"]
a__ = None
def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict:
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
__UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
__UpperCAmelCase = add_prefix_space
__UpperCAmelCase = pre_tok_class(**lowercase__ )
__UpperCAmelCase = add_prefix_space
def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding:
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
''' pretokenized inputs.''' )
return super()._batch_encode_plus(*lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding:
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
''' pretokenized inputs.''' )
return super()._encode_plus(*lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
__UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def lowerCAmelCase_ (self , lowercase__ ) -> List[int]:
__UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
__UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 333 | 0 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Dict):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : int):
lowercase__ : Optional[Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int]=7_0000):
lowercase__ : Any = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Optional[int] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : List[Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : str = np.dot(x.T , h - y) / y.size
lowercase__ : str = theta - alpha * gradient # updating the weights
lowercase__ : Dict = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : str = sigmoid_function(_lowerCamelCase)
lowercase__ : str = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
(UpperCamelCase) = (x[:, 0].min(), x[:, 0].max())
(UpperCamelCase) = (x[:, 1].min(), x[:, 1].max())
(UpperCamelCase) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 87 |
import math
import sys
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if number != int(SCREAMING_SNAKE_CASE ):
raise ValueError('''the value of input must be a natural number''' )
if number < 0:
raise ValueError('''the value of input must not be a negative number''' )
if number == 0:
return 1
__UpperCAmelCase = [-1] * (number + 1)
__UpperCAmelCase = 0
for i in range(1 , number + 1 ):
__UpperCAmelCase = sys.maxsize
__UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) )
for j in range(1 , root + 1 ):
__UpperCAmelCase = 1 + answers[i - (j**2)]
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCAmelCase = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
lowerCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase__ : Any =256
class UpperCAmelCase_ ( _a ):
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = ['''melgan''']
def __init__( self , _A , _A , _A , _A , _A , ):
'''simple docstring'''
super().__init__()
# From MELGAN
__SCREAMING_SNAKE_CASE = math.log(1e-5 ) # Matches MelGAN training.
__SCREAMING_SNAKE_CASE = 4.0 # Largest value for most examples
__SCREAMING_SNAKE_CASE = 128
self.register_modules(
notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , )
def _A ( self , _A , _A=(-1.0, 1.0) , _A=False ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output_range
if clip:
__SCREAMING_SNAKE_CASE = torch.clip(lowercase__ , self.min_value , self.max_value )
# Scale to [0, 1].
__SCREAMING_SNAKE_CASE = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def _A ( self , _A , _A=(-1.0, 1.0) , _A=False ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = input_range
__SCREAMING_SNAKE_CASE = torch.clip(lowercase__ , lowercase__ , lowercase__ ) if clip else outputs
# Scale to [0, 1].
__SCREAMING_SNAKE_CASE = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def _A ( self , _A , _A , _A ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = input_tokens > 0
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.notes_encoder(
encoder_input_tokens=lowercase__ , encoder_inputs_mask=lowercase__ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.continuous_encoder(
encoder_inputs=lowercase__ , encoder_inputs_mask=lowercase__ )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def _A ( self , _A , _A , _A ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = noise_time
if not torch.is_tensor(lowercase__ ):
__SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(lowercase__ ) and len(timesteps.shape ) == 0:
__SCREAMING_SNAKE_CASE = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__SCREAMING_SNAKE_CASE = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__SCREAMING_SNAKE_CASE = self.decoder(
encodings_and_masks=lowercase__ , decoder_input_tokens=lowercase__ , decoder_noise_time=lowercase__ )
return logits
@torch.no_grad()
def __call__( self , _A , _A = None , _A = 100 , _A = True , _A = "numpy" , _A = None , _A = 1 , ):
'''simple docstring'''
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(lowercase__ )}.""" )
__SCREAMING_SNAKE_CASE = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__SCREAMING_SNAKE_CASE = np.zeros([1, 0, self.n_dims] , np.floataa )
__SCREAMING_SNAKE_CASE = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase__ , device=self.device )
for i, encoder_input_tokens in enumerate(lowercase__ ):
if i == 0:
__SCREAMING_SNAKE_CASE = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__SCREAMING_SNAKE_CASE = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase__ , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__SCREAMING_SNAKE_CASE = ones
__SCREAMING_SNAKE_CASE = self.scale_features(
lowercase__ , output_range=[-1.0, 1.0] , clip=lowercase__ )
__SCREAMING_SNAKE_CASE = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase__ , continuous_mask=lowercase__ , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__SCREAMING_SNAKE_CASE = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=lowercase__ , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(lowercase__ )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__SCREAMING_SNAKE_CASE = self.decode(
encodings_and_masks=lowercase__ , input_tokens=lowercase__ , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__SCREAMING_SNAKE_CASE = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample
__SCREAMING_SNAKE_CASE = self.scale_to_features(lowercase__ , input_range=[-1.0, 1.0] )
__SCREAMING_SNAKE_CASE = mel[:1]
__SCREAMING_SNAKE_CASE = mel.cpu().float().numpy()
__SCREAMING_SNAKE_CASE = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowercase__ , lowercase__ )
logger.info('Generated segment' , lowercase__ )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
__SCREAMING_SNAKE_CASE = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__SCREAMING_SNAKE_CASE = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=lowercase__ )
| 257 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : Tuple = logging.get_logger(__name__)
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
__UpperCAmelCase = b.T
__UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 )
__UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 )
__UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :]
return d
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
__UpperCAmelCase = x.reshape(-1 , 3 )
__UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return np.argmin(SCREAMING_SNAKE_CASE , axis=1 )
class A_ ( _a ):
'''simple docstring'''
a__ = ["pixel_values"]
def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None:
super().__init__(**lowercase__ )
__UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256}
__UpperCAmelCase = get_size_dict(lowercase__ )
__UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = resample
__UpperCAmelCase = do_normalize
__UpperCAmelCase = do_color_quantize
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray:
__UpperCAmelCase = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray:
__UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ )
__UpperCAmelCase = image - 1
return image
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image:
__UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase = size if size is not None else self.size
__UpperCAmelCase = get_size_dict(lowercase__ )
__UpperCAmelCase = resample if resample is not None else self.resample
__UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
__UpperCAmelCase = clusters if clusters is not None else self.clusters
__UpperCAmelCase = np.array(lowercase__ )
__UpperCAmelCase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_color_quantize and clusters is None:
raise ValueError('''Clusters must be specified if do_color_quantize is True.''' )
# All transformations expect numpy arrays.
__UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
__UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images]
if do_normalize:
__UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images]
if do_color_quantize:
__UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
__UpperCAmelCase = np.array(lowercase__ )
__UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
__UpperCAmelCase = images.shape[0]
__UpperCAmelCase = images.reshape(lowercase__ , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
__UpperCAmelCase = list(lowercase__ )
else:
__UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
__UpperCAmelCase = {'''input_ids''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 333 | 0 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
UpperCAmelCase : Union[str, Any] = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
UpperCAmelCase : int = {'facebook/blenderbot_small-90M': 5_12}
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = set()
lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase = char
lowerCamelCase = set(lowerCamelCase__ )
return pairs
class __lowercase ( _a ):
"""simple docstring"""
UpperCamelCase : str = VOCAB_FILES_NAMES
UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : List[str] = ["input_ids", "attention_mask"]
def __init__( self , A , A , A="__start__" , A="__end__" , A="__unk__" , A="__null__" , **A , ) -> int:
'''simple docstring'''
super().__init__(unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__ )
with open(lowercase__ , encoding="""utf-8""" ) as vocab_handle:
lowerCamelCase = json.load(lowercase__ )
lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(lowercase__ , encoding="""utf-8""" ) as merges_handle:
lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1]
lowerCamelCase = [tuple(merge.split() ) for merge in merges]
lowerCamelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
lowerCamelCase = {}
@property
def __A ( self ) -> int:
'''simple docstring'''
return len(self.encoder )
def __A ( self ) -> Dict:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self , A ) -> str:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase = re.sub("""([.,!?()])""" , r""" \1""" , lowercase__ )
lowerCamelCase = re.sub("""(\')""" , r""" \1 """ , lowercase__ )
lowerCamelCase = re.sub(r"""\s{2,}""" , """ """ , lowercase__ )
if "\n" in token:
lowerCamelCase = token.replace("""\n""" , """ __newln__""" )
lowerCamelCase = token.split(""" """ )
lowerCamelCase = []
for token in tokens:
if not len(lowercase__ ):
continue
lowerCamelCase = token.lower()
lowerCamelCase = tuple(lowercase__ )
lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
lowerCamelCase = get_pairs(lowercase__ )
if not pairs:
words.append(lowercase__ )
continue
while True:
lowerCamelCase = min(lowercase__ , key=lambda A : self.bpe_ranks.get(lowercase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase , lowerCamelCase = bigram
lowerCamelCase = []
lowerCamelCase = 0
while i < len(lowercase__ ):
try:
lowerCamelCase = word.index(lowercase__ , lowercase__ )
new_word.extend(word[i:j] )
lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase = tuple(lowercase__ )
lowerCamelCase = new_word
if len(lowercase__ ) == 1:
break
else:
lowerCamelCase = get_pairs(lowercase__ )
lowerCamelCase = """@@ """.join(lowercase__ )
lowerCamelCase = word[:-4]
lowerCamelCase = word
words.append(lowercase__ )
return " ".join(lowercase__ )
def __A ( self , A ) -> List[str]:
'''simple docstring'''
lowerCamelCase = []
lowerCamelCase = re.findall(r"""\S+\n?""" , lowercase__ )
for token in words:
split_tokens.extend(list(self.bpe(lowercase__ ).split(""" """ ) ) )
return split_tokens
def __A ( self , A ) -> int:
'''simple docstring'''
lowerCamelCase = token.lower()
return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) )
def __A ( self , A ) -> str:
'''simple docstring'''
return self.decoder.get(lowercase__ , self.unk_token )
def __A ( self , A ) -> str:
'''simple docstring'''
lowerCamelCase = """ """.join(lowercase__ ).replace("""@@ """ , """""" ).strip()
return out_string
def __A ( self , A , A = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowercase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCamelCase = os.path.join(
lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase = os.path.join(
lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + """\n""" )
lowerCamelCase = 0
with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
lowerCamelCase = token_index
writer.write(""" """.join(lowercase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
| 252 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A_ : Optional[int] = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[str] = ['PoolFormerFeatureExtractor']
A_ : Dict = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 333 | 0 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase : Dict = logging.get_logger(__name__)
def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ):
__lowercase : Any = RobertaPreLayerNormConfig.from_pretrained(
lowerCAmelCase_ , architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
__lowercase : Union[str, Any] = torch.load(hf_hub_download(repo_id=lowerCAmelCase_ , filename="""pytorch_model.bin""" ) )
__lowercase : Optional[int] = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
__lowercase : List[Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
__lowercase : Optional[int] = tensor_value
__lowercase : Dict = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowerCAmelCase_ , config=lowerCAmelCase_ , state_dict=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
# convert tokenizer
__lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ )
tokenizer.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
lowerCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCamelCase : Optional[int] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 233 |
import math
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
'''simple docstring'''
if (
not isinstance(SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * power_factor
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
'''simple docstring'''
if (
not isinstance(SCREAMING_SNAKE_CASE , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_SCREAMING_SNAKE_CASE : Optional[Any] = random.Random()
def UpperCAmelCase_ ( _A , _A=1.0 , _A=None , _A=None ):
'''simple docstring'''
if rng is None:
SCREAMING_SNAKE_CASE__ = global_rng
SCREAMING_SNAKE_CASE__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int=7 , __lowerCamelCase : List[Any]=400 , __lowerCamelCase : Any=2000 , __lowerCamelCase : Union[str, Any]=24 , __lowerCamelCase : List[Any]=24 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : int=1_6000 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=True , ) -> int:
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = min_seq_length
SCREAMING_SNAKE_CASE__ = max_seq_length
SCREAMING_SNAKE_CASE__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE__ = feature_size
SCREAMING_SNAKE_CASE__ = num_mel_bins
SCREAMING_SNAKE_CASE__ = padding_value
SCREAMING_SNAKE_CASE__ = sampling_rate
SCREAMING_SNAKE_CASE__ = return_attention_mask
SCREAMING_SNAKE_CASE__ = do_normalize
def lowercase_ ( self : Any ) -> List[Any]:
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[str]=False , __lowerCamelCase : int=False ) -> int:
def _flatten(__lowerCamelCase : List[Any] ):
return list(itertools.chain(*lowercase__ ) )
if equal_length:
SCREAMING_SNAKE_CASE__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE__ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE__ = [np.asarray(lowercase__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCAmelCase__ ( _a , unittest.TestCase ):
"""simple docstring"""
a = SpeechaTextFeatureExtractor if is_speech_available() else None
def lowercase_ ( self : Union[str, Any] ) -> Any:
SCREAMING_SNAKE_CASE__ = SpeechaTextFeatureExtractionTester(self )
def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> List[str]:
self.assertTrue(np.all(np.mean(lowercase__ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowercase__ , axis=0 ) - 1 ) < 1e-3 ) )
def lowercase_ ( self : str ) -> Any:
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = [np.asarray(lowercase__ ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE__ = feature_extractor(lowercase__ , padding=lowercase__ , return_tensors='''np''' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
SCREAMING_SNAKE_CASE__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features
SCREAMING_SNAKE_CASE__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features
self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) )
# Test batched
SCREAMING_SNAKE_CASE__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features
SCREAMING_SNAKE_CASE__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ):
self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE__ = np.asarray(lowercase__ )
SCREAMING_SNAKE_CASE__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features
SCREAMING_SNAKE_CASE__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ):
self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) )
def lowercase_ ( self : Any ) -> Tuple:
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = ['''longest''', '''max_length''', '''do_not_pad''']
SCREAMING_SNAKE_CASE__ = [None, 16, None]
for max_length, padding in zip(lowercase__ , lowercase__ ):
SCREAMING_SNAKE_CASE__ = feature_extractor(
lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_attention_mask=lowercase__ )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = [np.sum(lowercase__ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def lowercase_ ( self : Any ) -> Any:
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = ['''longest''', '''max_length''', '''do_not_pad''']
SCREAMING_SNAKE_CASE__ = [None, 16, None]
for max_length, padding in zip(lowercase__ , lowercase__ ):
SCREAMING_SNAKE_CASE__ = feature_extractor(
lowercase__ , max_length=lowercase__ , padding=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = [np.sum(lowercase__ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def lowercase_ ( self : Optional[Any] ) -> Dict:
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = feature_extractor(
lowercase__ , padding='''max_length''' , max_length=4 , truncation=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ , )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def lowercase_ ( self : Optional[Any] ) -> int:
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = feature_extractor(
lowercase__ , padding='''longest''' , max_length=4 , truncation=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ , )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = feature_extractor(
lowercase__ , padding='''longest''' , max_length=16 , truncation=lowercase__ , return_tensors='''np''' , return_attention_mask=lowercase__ , )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def lowercase_ ( self : Union[str, Any] ) -> Optional[int]:
import torch
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = np.random.rand(100 , 32 ).astype(np.floataa )
SCREAMING_SNAKE_CASE__ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def lowercase_ ( self : int , __lowerCamelCase : Union[str, Any] ) -> List[Any]:
from datasets import load_dataset
SCREAMING_SNAKE_CASE__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE__ = ds.sort('''id''' ).select(range(lowercase__ ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def lowercase_ ( self : Union[str, Any] ) -> Tuple:
# fmt: off
SCREAMING_SNAKE_CASE__ = np.array([
-1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241,
-1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128,
-1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625,
] )
# fmt: on
SCREAMING_SNAKE_CASE__ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = feature_extractor(lowercase__ , return_tensors='''pt''' ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase__ , atol=1e-4 ) )
| 314 |
def __a ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )]
A_ : Union[str, Any] = generate_large_matrix()
A_ : Union[str, Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __a ( SCREAMING_SNAKE_CASE ) -> None:
'''simple docstring'''
assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid )
assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) )
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
__UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCAmelCase = (left + right) // 2
__UpperCAmelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCAmelCase = mid + 1
else:
__UpperCAmelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
__UpperCAmelCase = len(grid[0] )
for i in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
for row in grid:
for i, number in enumerate(SCREAMING_SNAKE_CASE ):
if number < 0:
total += len(SCREAMING_SNAKE_CASE ) - i
break
return total
def __a ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCAmelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 )
print(f'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 333 | 0 |
"""simple docstring"""
import os
import numpy
import onnx
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Optional[Any] ):
"""simple docstring"""
_snake_case : List[str] = a.name
_snake_case : str = b.name
_snake_case : Optional[int] = """"""
_snake_case : List[Any] = """"""
_snake_case : List[str] = a == b
_snake_case : Optional[Any] = name_a
_snake_case : Tuple = name_b
return res
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(snake_case__ , snake_case__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , snake_case__ , snake_case__ )
_graph_replace_input_with(node_proto.attribute[1].g , snake_case__ , snake_case__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(snake_case__ , snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : str = list(model.graph.initializer )
_snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_snake_case : str = inits[i].name
_snake_case : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : str = os.path.dirname(snake_case__ )
_snake_case : Union[str, Any] = os.path.basename(snake_case__ )
_snake_case : Dict = onnx.load(os.path.join(snake_case__ , snake_case__ ) )
_snake_case : str = list(model.graph.initializer )
_snake_case : Tuple = set()
_snake_case : int = {}
_snake_case : Optional[Any] = []
_snake_case : str = 0
for i in range(len(snake_case__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(snake_case__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(snake_case__ )
dup_set.add(snake_case__ )
_snake_case : Optional[Any] = inits[j].data_type
_snake_case : Any = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , snake_case__ )
total_reduced_size += mem_size
_snake_case : Dict = inits[i].name
_snake_case : List[Any] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(snake_case__ )
else:
_snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 10_24 / 10_24 / 10_24 , """GB""" )
_snake_case : List[Any] = sorted(snake_case__ )
_remove_dup_initializers_from_model(snake_case__ , snake_case__ , snake_case__ )
_snake_case : Any = """optimized_""" + model_file_name
_snake_case : Optional[int] = os.path.join(snake_case__ , snake_case__ )
onnx.save(snake_case__ , snake_case__ )
return new_model
| 64 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
A_ : List[str] = sys.version_info >= (3, 10)
def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE )
@dataclass
class A_ :
'''simple docstring'''
a__ = 42
a__ = 42
a__ = 42
a__ = 42
@dataclass
class A_ :
'''simple docstring'''
a__ = 42
a__ = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class A_ :
'''simple docstring'''
a__ = False
a__ = True
a__ = None
class A_ ( _a ):
'''simple docstring'''
a__ = "titi"
a__ = "toto"
class A_ ( _a ):
'''simple docstring'''
a__ = "titi"
a__ = "toto"
a__ = 42
@dataclass
class A_ :
'''simple docstring'''
a__ = "toto"
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = BasicEnum(self.foo )
@dataclass
class A_ :
'''simple docstring'''
a__ = "toto"
def lowerCAmelCase_ (self ) -> Dict:
__UpperCAmelCase = MixedTypeEnum(self.foo )
@dataclass
class A_ :
'''simple docstring'''
a__ = None
a__ = field(default=_a , metadata={"help": "help message"} )
a__ = None
a__ = list_field(default=[] )
a__ = list_field(default=[] )
@dataclass
class A_ :
'''simple docstring'''
a__ = list_field(default=[] )
a__ = list_field(default=[1, 2, 3] )
a__ = list_field(default=["Hallo", "Bonjour", "Hello"] )
a__ = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A_ :
'''simple docstring'''
a__ = field()
a__ = field()
a__ = field()
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = BasicEnum(self.required_enum )
@dataclass
class A_ :
'''simple docstring'''
a__ = 42
a__ = field()
a__ = None
a__ = field(default="toto" , metadata={"help": "help message"} )
a__ = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class A_ :
'''simple docstring'''
a__ = False
a__ = True
a__ = None
@dataclass
class A_ :
'''simple docstring'''
a__ = None
a__ = field(default=_a , metadata={"help": "help message"} )
a__ = None
a__ = list_field(default=[] )
a__ = list_field(default=[] )
class A_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
__UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''}
__UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) )
del xx["type"], yy["type"]
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ )
self.assertFalse(example.flag )
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=42 , type=lowercase__ )
expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' )
self.argparsersEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' )
expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' )
expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ )
__UpperCAmelCase = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(lowercase__ )
for dataclass_type in dataclass_types:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) )
def lowerCAmelCase_ (self ) -> Dict:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
__UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
__UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 42 )
__UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def lowerCAmelCase_ (self ) -> str:
@dataclass
class A_ :
'''simple docstring'''
a__ = "toto"
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
__UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 42 )
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(
lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
__UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def lowerCAmelCase_ (self ) -> List[str]:
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ )
expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' )
expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ )
__UpperCAmelCase = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(lowercase__ )
for dataclass_type in dataclass_types:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_args([] )
self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) )
__UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ )
expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , )
self.argparsersEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , )
expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ )
expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ )
self.argparsersEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
__UpperCAmelCase = parser.parse_dict(lowercase__ )[0]
__UpperCAmelCase = BasicExample(**lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 42,
}
self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ )
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' )
os.mkdir(lowercase__ )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
__UpperCAmelCase = BasicExample(**lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> List[Any]:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
__UpperCAmelCase = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' )
os.mkdir(lowercase__ )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(lowercase__ , lowercase__ )
__UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
__UpperCAmelCase = BasicExample(**lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = HfArgumentParser(lowercase__ )
self.assertIsNotNone(lowercase__ )
| 333 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
__lowercase : Dict = [[] for _ in range(__UpperCamelCase )]
__lowercase : Optional[Any] = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1 or len(__UpperCamelCase ) <= key:
return input_string
for position, character in enumerate(__UpperCamelCase ):
__lowercase : Optional[Any] = position % (lowest * 2) # puts it in bounds
__lowercase : Dict = min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(__UpperCamelCase )
__lowercase : Dict = [''''''.join(__UpperCamelCase ) for row in temp_grid]
__lowercase : int = ''''''.join(__UpperCamelCase )
return output_string
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
__lowercase : int = []
__lowercase : Dict = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1:
return input_string
__lowercase : Tuple = [[] for _ in range(__UpperCamelCase )] # generates template
for position in range(len(__UpperCamelCase ) ):
__lowercase : Any = position % (lowest * 2) # puts it in bounds
__lowercase : List[str] = min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append('''*''' )
__lowercase : Dict = 0
for row in temp_grid: # fills in the characters
__lowercase : Tuple = input_string[counter : counter + len(__UpperCamelCase )]
grid.append(list(__UpperCamelCase ) )
counter += len(__UpperCamelCase )
__lowercase : str = '''''' # reads as zigzag
for position in range(len(__UpperCamelCase ) ):
__lowercase : Any = position % (lowest * 2) # puts it in bounds
__lowercase : Optional[Any] = min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Any = {}
for key_guess in range(1 , len(__UpperCamelCase ) ): # tries every key
__lowercase : Tuple = decrypt(__UpperCamelCase , __UpperCamelCase )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 249 |
import doctest
from collections import deque
import numpy as np
class A_ :
'''simple docstring'''
def __init__(self ) -> None:
__UpperCAmelCase = [2, 1, 2, -1]
__UpperCAmelCase = [1, 2, 3, 4]
def lowerCAmelCase_ (self ) -> list[float]:
__UpperCAmelCase = len(self.first_signal )
__UpperCAmelCase = len(self.second_signal )
__UpperCAmelCase = max(lowercase__ , lowercase__ )
# create a zero matrix of max_length x max_length
__UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__UpperCAmelCase = deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 333 | 0 |
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __A( _a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (KDPMaDiscreteScheduler,)
SCREAMING_SNAKE_CASE__ = 10
def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = {
"""num_train_timesteps""": 11_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**lowercase__ )
return config
def UpperCAmelCase_ (self ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowercase__ )
def UpperCAmelCase_ (self ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ )
def UpperCAmelCase_ (self ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowercase__ )
def UpperCAmelCase_ (self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase__ )
def UpperCAmelCase_ (self ):
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config(prediction_type="""v_prediction""" )
UpperCamelCase__ = scheduler_class(**lowercase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCamelCase__ = self.dummy_model()
UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCamelCase__ = sample.to(lowercase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCamelCase__ = scheduler.scale_model_input(lowercase__ , lowercase__ )
UpperCamelCase__ = model(lowercase__ , lowercase__ )
UpperCamelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ )
UpperCamelCase__ = output.prev_sample
UpperCamelCase__ = torch.sum(torch.abs(lowercase__ ) )
UpperCamelCase__ = torch.mean(torch.abs(lowercase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def UpperCAmelCase_ (self ):
if torch_device == "mps":
return
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config()
UpperCamelCase__ = scheduler_class(**lowercase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCamelCase__ = self.dummy_model()
UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCamelCase__ = sample.to(lowercase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCamelCase__ = scheduler.scale_model_input(lowercase__ , lowercase__ )
UpperCamelCase__ = model(lowercase__ , lowercase__ )
UpperCamelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ )
UpperCamelCase__ = output.prev_sample
UpperCamelCase__ = torch.sum(torch.abs(lowercase__ ) )
UpperCamelCase__ = torch.mean(torch.abs(lowercase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def UpperCAmelCase_ (self ):
if torch_device == "mps":
return
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config()
UpperCamelCase__ = scheduler_class(**lowercase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowercase__ )
UpperCamelCase__ = self.dummy_model()
UpperCamelCase__ = self.dummy_sample_deter.to(lowercase__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCamelCase__ = scheduler.scale_model_input(lowercase__ , lowercase__ )
UpperCamelCase__ = model(lowercase__ , lowercase__ )
UpperCamelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ )
UpperCamelCase__ = output.prev_sample
UpperCamelCase__ = torch.sum(torch.abs(lowercase__ ) )
UpperCamelCase__ = torch.mean(torch.abs(lowercase__ ) )
if str(lowercase__ ).startswith("""cpu""" ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 244 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : Any = logging.get_logger(__name__)
A_ : Optional[Any] = {
'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class A_ ( _a ):
'''simple docstring'''
a__ = "pegasus"
a__ = ["past_key_values"]
a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str:
__UpperCAmelCase = vocab_size
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = d_model
__UpperCAmelCase = encoder_ffn_dim
__UpperCAmelCase = encoder_layers
__UpperCAmelCase = encoder_attention_heads
__UpperCAmelCase = decoder_ffn_dim
__UpperCAmelCase = decoder_layers
__UpperCAmelCase = decoder_attention_heads
__UpperCAmelCase = dropout
__UpperCAmelCase = attention_dropout
__UpperCAmelCase = activation_dropout
__UpperCAmelCase = activation_function
__UpperCAmelCase = init_std
__UpperCAmelCase = encoder_layerdrop
__UpperCAmelCase = decoder_layerdrop
__UpperCAmelCase = use_cache
__UpperCAmelCase = encoder_layers
__UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , )
@property
def lowerCAmelCase_ (self ) -> int:
return self.encoder_attention_heads
@property
def lowerCAmelCase_ (self ) -> int:
return self.d_model
| 333 | 0 |
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool:
'''simple docstring'''
lowerCAmelCase : Tuple = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 138 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
'''simple docstring'''
a__ = LongformerTokenizer
a__ = True
a__ = LongformerTokenizerFast
a__ = True
def lowerCAmelCase_ (self ) -> Any:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
__UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__UpperCAmelCase = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase__ ) )
def lowerCAmelCase_ (self , **lowercase__ ) -> int:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ ) -> Dict:
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = '''lower newer'''
return input_text, output_text
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True)
self.assertListEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokens + [tokenizer.unk_token]
__UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , )
@slow
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
__UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = '''Encode this sequence.'''
__UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(lowercase__ , lowercase__ )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
# Testing spaces after special tokens
__UpperCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ )
__UpperCAmelCase = '''Encode <mask> sequence'''
__UpperCAmelCase = '''Encode <mask>sequence'''
__UpperCAmelCase = tokenizer.encode(lowercase__ )
__UpperCAmelCase = encoded.index(lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(lowercase__ , lowercase__ )
__UpperCAmelCase = tokenizer.encode(lowercase__ )
__UpperCAmelCase = encoded.index(lowercase__ )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
pass
def lowerCAmelCase_ (self ) -> int:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__UpperCAmelCase = '''A, <mask> AllenNLP sentence.'''
__UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
__UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def lowerCAmelCase_ (self ) -> Optional[int]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}'''
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = F''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
| 333 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class lowerCamelCase__ :
"""simple docstring"""
__a = 42
__a = 42
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = [[] for _ in range(lowercase__ )]
__UpperCAmelCase : int = size
def __getitem__( self : Union[str, Any] , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self._size
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : str ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(lowercase__ , lowercase__ ) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : int = deque([start_vertex] )
__UpperCAmelCase : Any = [None] * self.size
__UpperCAmelCase : Any = 0
while queue:
__UpperCAmelCase : str = queue.popleft()
__UpperCAmelCase : Optional[Any] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__UpperCAmelCase : int = current_distance + edge.weight
__UpperCAmelCase : int = distances[edge.destination_vertex]
if (
isinstance(lowercase__ , lowercase__ )
and new_distance >= dest_vertex_distance
):
continue
__UpperCAmelCase : Any = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 115 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A_ ( _a ):
'''simple docstring'''
a__ = (IPNDMScheduler,)
a__ = (("num_inference_steps", 50),)
def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple:
__UpperCAmelCase = {'''num_train_timesteps''': 1_000}
config.update(**lowercase__ )
return config
def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config(**lowercase__ )
__UpperCAmelCase = scheduler_class(**lowercase__ )
scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__ )
__UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ )
new_scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ (self ) -> List[str]:
pass
def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**lowercase__ )
scheduler.set_timesteps(lowercase__ )
# copy over dummy past residuals (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__ )
__UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase__ )
# copy over dummy past residual (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]:
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(**lowercase__ )
__UpperCAmelCase = scheduler_class(**lowercase__ )
__UpperCAmelCase = 10
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(lowercase__ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(lowercase__ , lowercase__ )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(lowercase__ , lowercase__ )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample
return sample
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ )
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**lowercase__ )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ):
scheduler.set_timesteps(lowercase__ )
elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ):
__UpperCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__UpperCAmelCase = dummy_past_residuals[:]
__UpperCAmelCase = scheduler.timesteps[5]
__UpperCAmelCase = scheduler.timesteps[6]
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
__UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ (self ) -> List[Any]:
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ )
def lowerCAmelCase_ (self ) -> Union[str, Any]:
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ )
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = self.full_loop()
__UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 333 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCamelCase__ : Tuple = logging.get_logger(__name__)
def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Union[str, Any] ):
__SCREAMING_SNAKE_CASE : Dict = b.T
__SCREAMING_SNAKE_CASE : Any = np.sum(np.square(_lowerCamelCase ) , axis=1 )
__SCREAMING_SNAKE_CASE : List[Any] = np.sum(np.square(_lowerCamelCase ) , axis=0 )
__SCREAMING_SNAKE_CASE : Optional[Any] = np.matmul(_lowerCamelCase , _lowerCamelCase )
__SCREAMING_SNAKE_CASE : str = aa[:, None] - 2 * ab + ba[None, :]
return d
def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: str ):
__SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(-1 , 3 )
__SCREAMING_SNAKE_CASE : Union[str, Any] = squared_euclidean_distance(_lowerCamelCase , _lowerCamelCase )
return np.argmin(_lowerCamelCase , axis=1 )
class _UpperCamelCase ( _a ):
'''simple docstring'''
_A : Tuple = ['''pixel_values''']
def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] = None , lowerCAmelCase__ : List[str] = True , lowerCAmelCase__ : Union[str, Any] = None , lowerCAmelCase__ : str = PILImageResampling.BILINEAR , lowerCAmelCase__ : List[str] = True , lowerCAmelCase__ : Any = True , **lowerCAmelCase__ : Optional[int] , ):
"""simple docstring"""
super().__init__(**lowercase__ )
__SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6}
__SCREAMING_SNAKE_CASE : List[str] = get_size_dict(lowercase__ )
__SCREAMING_SNAKE_CASE : int = np.array(lowercase__ ) if clusters is not None else None
__SCREAMING_SNAKE_CASE : List[Any] = do_resize
__SCREAMING_SNAKE_CASE : Optional[int] = size
__SCREAMING_SNAKE_CASE : Optional[Any] = resample
__SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize
__SCREAMING_SNAKE_CASE : List[str] = do_color_quantize
def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[int] = None , **lowerCAmelCase__ : Tuple , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}" )
return resize(
lowercase__ , size=(size["""height"""], size["""width"""]) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] = None , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = rescale(image=lowercase__ , scale=1 / 1_27.5 , data_format=lowercase__ )
__SCREAMING_SNAKE_CASE : List[Any] = image - 1
return image
def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : Union[str, Any] = None , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : Union[str, Any] = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__SCREAMING_SNAKE_CASE : str = size if size is not None else self.size
__SCREAMING_SNAKE_CASE : int = get_size_dict(lowercase__ )
__SCREAMING_SNAKE_CASE : str = resample if resample is not None else self.resample
__SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__SCREAMING_SNAKE_CASE : List[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
__SCREAMING_SNAKE_CASE : List[Any] = clusters if clusters is not None else self.clusters
__SCREAMING_SNAKE_CASE : int = np.array(lowercase__ )
__SCREAMING_SNAKE_CASE : Any = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_color_quantize and clusters is None:
raise ValueError("""Clusters must be specified if do_color_quantize is True.""" )
# All transformations expect numpy arrays.
__SCREAMING_SNAKE_CASE : Any = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
__SCREAMING_SNAKE_CASE : Any = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images]
if do_normalize:
__SCREAMING_SNAKE_CASE : List[str] = [self.normalize(image=lowercase__ ) for image in images]
if do_color_quantize:
__SCREAMING_SNAKE_CASE : Union[str, Any] = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
__SCREAMING_SNAKE_CASE : Dict = np.array(lowercase__ )
__SCREAMING_SNAKE_CASE : List[str] = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
__SCREAMING_SNAKE_CASE : List[Any] = images.shape[0]
__SCREAMING_SNAKE_CASE : Dict = images.reshape(lowercase__ , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
__SCREAMING_SNAKE_CASE : Optional[Any] = list(lowercase__ )
else:
__SCREAMING_SNAKE_CASE : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
__SCREAMING_SNAKE_CASE : int = {"""input_ids""": images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) | 112 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A_ :
'''simple docstring'''
def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int:
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = num_labels
__UpperCAmelCase = image_size
__UpperCAmelCase = layer_depths
__UpperCAmelCase = embed_dims
def lowerCAmelCase_ (self ) -> str:
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ (self ) -> Optional[Any]:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int:
__UpperCAmelCase = SwiftFormerModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = model(lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
__UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = model(lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ (self ) -> Optional[int]:
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs()
__UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
'''simple docstring'''
a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
a__ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def lowerCAmelCase_ (self ) -> List[str]:
__UpperCAmelCase = SwiftFormerModelTester(self )
__UpperCAmelCase = ConfigTester(
self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowerCAmelCase_ (self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' )
def lowerCAmelCase_ (self ) -> List[Any]:
pass
def lowerCAmelCase_ (self ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(lowercase__ )
__UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(lowercase__ )
__UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase = [*signature.parameters.keys()]
__UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def lowerCAmelCase_ (self ) -> Optional[int]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase__ )
@slow
def lowerCAmelCase_ (self ) -> Any:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@unittest.skip(reason='''SwiftFormer does not output attentions''' )
def lowerCAmelCase_ (self ) -> List[str]:
pass
def lowerCAmelCase_ (self ) -> Union[str, Any]:
def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ):
__UpperCAmelCase = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) )
__UpperCAmelCase = outputs.hidden_states
__UpperCAmelCase = 8
self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowercase__ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
def _config_zero_init(lowercase__ ):
__UpperCAmelCase = copy.deepcopy(lowercase__ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowercase__ , lowercase__ , 1E-10 )
if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ):
__UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) )
setattr(lowercase__ , lowercase__ , lowercase__ )
return configs_no_init
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = _config_zero_init(lowercase__ )
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(config=lowercase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowerCAmelCase_ (self ) -> Optional[Any]:
pass
def __a ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ (self ) -> str:
return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None
@slow
def lowerCAmelCase_ (self ) -> Tuple:
__UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ )
__UpperCAmelCase = self.default_image_processor
__UpperCAmelCase = prepare_img()
__UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ )
# forward pass
with torch.no_grad():
__UpperCAmelCase = model(**lowercase__ )
# verify the logits
__UpperCAmelCase = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowercase__ )
__UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
| 333 | 0 |
from __future__ import annotations
import math
class snake_case_ :
def __init__( self : Optional[int] , lowercase_ : Optional[int] ) -> None:
lowercase__ : int = size
# approximate the overall size of segment tree with given value
lowercase__ : Optional[int] = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
lowercase__ : Optional[int] = [0 for i in range(0 , 4 * size )]
lowercase__ : str = [0 for i in range(0 , 4 * size )] # flag for lazy update
def __UpperCamelCase ( self : Dict , lowercase_ : Tuple ) -> int:
return idx * 2
def __UpperCamelCase ( self : int , lowercase_ : Optional[int] ) -> int:
return idx * 2 + 1
def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Optional[int] ) -> None:
if left_element == right_element:
lowercase__ : List[Any] = a[left_element - 1]
else:
lowercase__ : Dict = (left_element + right_element) // 2
self.build(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ )
self.build(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ )
lowercase__ : Tuple = max(
self.segment_tree[self.left(lowercase__ )] , self.segment_tree[self.right(lowercase__ )] )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Any ) -> bool:
if self.flag[idx] is True:
lowercase__ : List[Any] = self.lazy[idx]
lowercase__ : str = False
if left_element != right_element:
lowercase__ : Optional[int] = self.lazy[idx]
lowercase__ : str = self.lazy[idx]
lowercase__ : Optional[int] = True
lowercase__ : Union[str, Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
lowercase__ : Any = val
if left_element != right_element:
lowercase__ : List[Any] = val
lowercase__ : List[Any] = val
lowercase__ : Union[str, Any] = True
lowercase__ : str = True
return True
lowercase__ : Optional[Any] = (left_element + right_element) // 2
self.update(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
self.update(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
lowercase__ : Optional[int] = max(
self.segment_tree[self.left(lowercase__ )] , self.segment_tree[self.right(lowercase__ )] )
return True
def __UpperCamelCase ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Tuple ) -> int | float:
if self.flag[idx] is True:
lowercase__ : Dict = self.lazy[idx]
lowercase__ : List[str] = False
if left_element != right_element:
lowercase__ : Any = self.lazy[idx]
lowercase__ : Any = self.lazy[idx]
lowercase__ : Optional[Any] = True
lowercase__ : List[Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
lowercase__ : List[Any] = (left_element + right_element) // 2
lowercase__ : Dict = self.query(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
lowercase__ : Union[str, Any] = self.query(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ , lowercase__ )
return max(lowercase__ , lowercase__ )
def __str__( self : Any ) -> str:
return str([self.query(1 , 1 , self.size , lowercase__ , lowercase__ ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
UpperCamelCase = 15
UpperCamelCase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 87 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
A_ : str = logging.get_logger(__name__)
A_ : str = OrderedDict(
[
# Base model mapping
('albert', 'FlaxAlbertModel'),
('bart', 'FlaxBartModel'),
('beit', 'FlaxBeitModel'),
('bert', 'FlaxBertModel'),
('big_bird', 'FlaxBigBirdModel'),
('blenderbot', 'FlaxBlenderbotModel'),
('blenderbot-small', 'FlaxBlenderbotSmallModel'),
('clip', 'FlaxCLIPModel'),
('distilbert', 'FlaxDistilBertModel'),
('electra', 'FlaxElectraModel'),
('gpt-sw3', 'FlaxGPT2Model'),
('gpt2', 'FlaxGPT2Model'),
('gpt_neo', 'FlaxGPTNeoModel'),
('gptj', 'FlaxGPTJModel'),
('longt5', 'FlaxLongT5Model'),
('marian', 'FlaxMarianModel'),
('mbart', 'FlaxMBartModel'),
('mt5', 'FlaxMT5Model'),
('opt', 'FlaxOPTModel'),
('pegasus', 'FlaxPegasusModel'),
('regnet', 'FlaxRegNetModel'),
('resnet', 'FlaxResNetModel'),
('roberta', 'FlaxRobertaModel'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'),
('roformer', 'FlaxRoFormerModel'),
('t5', 'FlaxT5Model'),
('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'),
('vit', 'FlaxViTModel'),
('wav2vec2', 'FlaxWav2Vec2Model'),
('whisper', 'FlaxWhisperModel'),
('xglm', 'FlaxXGLMModel'),
('xlm-roberta', 'FlaxXLMRobertaModel'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for pre-training mapping
('albert', 'FlaxAlbertForPreTraining'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForPreTraining'),
('big_bird', 'FlaxBigBirdForPreTraining'),
('electra', 'FlaxElectraForPreTraining'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('t5', 'FlaxT5ForConditionalGeneration'),
('wav2vec2', 'FlaxWav2Vec2ForPreTraining'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
A_ : Union[str, Any] = OrderedDict(
[
# Model for Masked LM mapping
('albert', 'FlaxAlbertForMaskedLM'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForMaskedLM'),
('big_bird', 'FlaxBigBirdForMaskedLM'),
('distilbert', 'FlaxDistilBertForMaskedLM'),
('electra', 'FlaxElectraForMaskedLM'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
A_ : Dict = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('bart', 'FlaxBartForConditionalGeneration'),
('blenderbot', 'FlaxBlenderbotForConditionalGeneration'),
('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'),
('encoder-decoder', 'FlaxEncoderDecoderModel'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('marian', 'FlaxMarianMTModel'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('pegasus', 'FlaxPegasusForConditionalGeneration'),
('t5', 'FlaxT5ForConditionalGeneration'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for Image-classsification
('beit', 'FlaxBeitForImageClassification'),
('regnet', 'FlaxRegNetForImageClassification'),
('resnet', 'FlaxResNetForImageClassification'),
('vit', 'FlaxViTForImageClassification'),
]
)
A_ : Dict = OrderedDict(
[
('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'),
]
)
A_ : List[str] = OrderedDict(
[
# Model for Causal LM mapping
('bart', 'FlaxBartForCausalLM'),
('bert', 'FlaxBertForCausalLM'),
('big_bird', 'FlaxBigBirdForCausalLM'),
('electra', 'FlaxElectraForCausalLM'),
('gpt-sw3', 'FlaxGPT2LMHeadModel'),
('gpt2', 'FlaxGPT2LMHeadModel'),
('gpt_neo', 'FlaxGPTNeoForCausalLM'),
('gptj', 'FlaxGPTJForCausalLM'),
('opt', 'FlaxOPTForCausalLM'),
('roberta', 'FlaxRobertaForCausalLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'),
('xglm', 'FlaxXGLMForCausalLM'),
('xlm-roberta', 'FlaxXLMRobertaForCausalLM'),
]
)
A_ : Tuple = OrderedDict(
[
# Model for Sequence Classification mapping
('albert', 'FlaxAlbertForSequenceClassification'),
('bart', 'FlaxBartForSequenceClassification'),
('bert', 'FlaxBertForSequenceClassification'),
('big_bird', 'FlaxBigBirdForSequenceClassification'),
('distilbert', 'FlaxDistilBertForSequenceClassification'),
('electra', 'FlaxElectraForSequenceClassification'),
('mbart', 'FlaxMBartForSequenceClassification'),
('roberta', 'FlaxRobertaForSequenceClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'),
('roformer', 'FlaxRoFormerForSequenceClassification'),
('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'),
]
)
A_ : Optional[int] = OrderedDict(
[
# Model for Question Answering mapping
('albert', 'FlaxAlbertForQuestionAnswering'),
('bart', 'FlaxBartForQuestionAnswering'),
('bert', 'FlaxBertForQuestionAnswering'),
('big_bird', 'FlaxBigBirdForQuestionAnswering'),
('distilbert', 'FlaxDistilBertForQuestionAnswering'),
('electra', 'FlaxElectraForQuestionAnswering'),
('mbart', 'FlaxMBartForQuestionAnswering'),
('roberta', 'FlaxRobertaForQuestionAnswering'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'),
('roformer', 'FlaxRoFormerForQuestionAnswering'),
('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'),
]
)
A_ : int = OrderedDict(
[
# Model for Token Classification mapping
('albert', 'FlaxAlbertForTokenClassification'),
('bert', 'FlaxBertForTokenClassification'),
('big_bird', 'FlaxBigBirdForTokenClassification'),
('distilbert', 'FlaxDistilBertForTokenClassification'),
('electra', 'FlaxElectraForTokenClassification'),
('roberta', 'FlaxRobertaForTokenClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'),
('roformer', 'FlaxRoFormerForTokenClassification'),
('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'),
]
)
A_ : Tuple = OrderedDict(
[
# Model for Multiple Choice mapping
('albert', 'FlaxAlbertForMultipleChoice'),
('bert', 'FlaxBertForMultipleChoice'),
('big_bird', 'FlaxBigBirdForMultipleChoice'),
('distilbert', 'FlaxDistilBertForMultipleChoice'),
('electra', 'FlaxElectraForMultipleChoice'),
('roberta', 'FlaxRobertaForMultipleChoice'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'),
('roformer', 'FlaxRoFormerForMultipleChoice'),
('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'),
]
)
A_ : Tuple = OrderedDict(
[
('bert', 'FlaxBertForNextSentencePrediction'),
]
)
A_ : int = OrderedDict(
[
('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
]
)
A_ : Tuple = OrderedDict(
[
('whisper', 'FlaxWhisperForAudioClassification'),
]
)
A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
A_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
A_ : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
A_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
A_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
A_ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
A_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
A_ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
A_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
A_ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_MAPPING
A_ : Tuple = auto_class_update(FlaxAutoModel)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING
A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING
A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
A_ : Union[str, Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A_ : Tuple = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='sequence classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ : Dict = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='token classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
A_ : Tuple = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
A_ : int = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='image classification'
)
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling')
class A_ ( _BaseAutoModelClass ):
'''simple docstring'''
a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
A_ : Optional[int] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling'
)
| 333 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase__ : Dict ={
'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'],
'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : int =['BertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : List[Any] =[
'BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BertForMaskedLM',
'BertForMultipleChoice',
'BertForNextSentencePrediction',
'BertForPreTraining',
'BertForQuestionAnswering',
'BertForSequenceClassification',
'BertForTokenClassification',
'BertLayer',
'BertLMHeadModel',
'BertModel',
'BertPreTrainedModel',
'load_tf_weights_in_bert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : List[Any] =[
'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBertEmbeddings',
'TFBertForMaskedLM',
'TFBertForMultipleChoice',
'TFBertForNextSentencePrediction',
'TFBertForPreTraining',
'TFBertForQuestionAnswering',
'TFBertForSequenceClassification',
'TFBertForTokenClassification',
'TFBertLMHeadModel',
'TFBertMainLayer',
'TFBertModel',
'TFBertPreTrainedModel',
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : int =['TFBertTokenizer']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Optional[int] =[
'FlaxBertForCausalLM',
'FlaxBertForMaskedLM',
'FlaxBertForMultipleChoice',
'FlaxBertForNextSentencePrediction',
'FlaxBertForPreTraining',
'FlaxBertForQuestionAnswering',
'FlaxBertForSequenceClassification',
'FlaxBertForTokenClassification',
'FlaxBertModel',
'FlaxBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 257 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
A_ : Tuple = logging.get_logger(__name__)
class A_ ( _a ):
'''simple docstring'''
a__ = "linear"
a__ = "cosine"
a__ = "cosine_with_restarts"
a__ = "polynomial"
a__ = "constant"
a__ = "constant_with_warmup"
a__ = "piecewise_constant"
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple:
'''simple docstring'''
return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) )
return 1.0
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = {}
__UpperCAmelCase = step_rules.split(''',''' )
for rule_str in rule_list[:-1]:
__UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' )
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = float(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = value
__UpperCAmelCase = float(rule_list[-1] )
def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
def rule_func(SCREAMING_SNAKE_CASE ) -> float:
__UpperCAmelCase = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict:
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) )
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = optimizer.defaults['''lr''']
if not (lr_init > lr_end):
raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' )
def lr_lambda(SCREAMING_SNAKE_CASE ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__UpperCAmelCase = lr_init - lr_end
__UpperCAmelCase = num_training_steps - num_warmup_steps
__UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps
__UpperCAmelCase = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A_ : Optional[Any] = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , )
return schedule_func(
SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
| 333 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def __A ( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase = """ZinengTang/tvlt-base"""
lowerCamelCase = tempfile.mkdtemp()
def __A ( self , **A ) -> Optional[int]:
'''simple docstring'''
return TvltImageProcessor.from_pretrained(self.checkpoint , **lowercase__ )
def __A ( self , **A ) -> List[str]:
'''simple docstring'''
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowercase__ )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase = self.get_image_processor()
lowerCamelCase = self.get_feature_extractor()
lowerCamelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , lowercase__ )
self.assertIsInstance(processor.image_processor , lowercase__ )
def __A ( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase = self.get_image_processor()
lowerCamelCase = self.get_feature_extractor()
lowerCamelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ )
lowerCamelCase = np.ones([1_20_00] )
lowerCamelCase = feature_extractor(lowercase__ , return_tensors="""np""" )
lowerCamelCase = processor(audio=lowercase__ , return_tensors="""np""" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self ) -> Any:
'''simple docstring'''
lowerCamelCase = self.get_image_processor()
lowerCamelCase = self.get_feature_extractor()
lowerCamelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ )
lowerCamelCase = np.ones([3, 2_24, 2_24] )
lowerCamelCase = image_processor(lowercase__ , return_tensors="""np""" )
lowerCamelCase = processor(images=lowercase__ , return_tensors="""np""" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase = self.get_image_processor()
lowerCamelCase = self.get_feature_extractor()
lowerCamelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ )
lowerCamelCase = np.ones([1_20_00] )
lowerCamelCase = np.ones([3, 2_24, 2_24] )
lowerCamelCase = processor(audio=lowercase__ , images=lowercase__ )
self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] )
# test if it raises when no input is passed
with pytest.raises(lowercase__ ):
processor()
def __A ( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase = self.get_image_processor()
lowerCamelCase = self.get_feature_extractor()
lowerCamelCase = TvltProcessor(image_processor=lowercase__ , feature_extractor=lowercase__ )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
| 252 |
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
'''simple docstring'''
__UpperCAmelCase = len(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )]
for i in range(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = y_points[i]
for i in range(2 , SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase : int = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Union[str, Any] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : str = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 233 |
def __a ( SCREAMING_SNAKE_CASE ) -> set:
'''simple docstring'''
__UpperCAmelCase = set()
# edges = list of graph's edges
__UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__UpperCAmelCase , __UpperCAmelCase = edges.pop()
chosen_vertices.add(SCREAMING_SNAKE_CASE )
chosen_vertices.add(SCREAMING_SNAKE_CASE )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(SCREAMING_SNAKE_CASE )
return chosen_vertices
def __a ( SCREAMING_SNAKE_CASE ) -> set:
'''simple docstring'''
__UpperCAmelCase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 333 | 0 |
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCAmelCase__ ( _a ):
"""simple docstring"""
a = 42
class UpperCAmelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[str]=("DownEncoderBlock2D",) , __lowerCamelCase : Optional[Any]=(64,) , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : List[str]="silu" , __lowerCamelCase : Union[str, Any]=True , ) -> Optional[Any]:
super().__init__()
SCREAMING_SNAKE_CASE__ = layers_per_block
SCREAMING_SNAKE_CASE__ = torch.nn.Convad(
lowercase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE__ = block_out_channels[0]
for i, down_block_type in enumerate(lowercase__ ):
SCREAMING_SNAKE_CASE__ = output_channel
SCREAMING_SNAKE_CASE__ = block_out_channels[i]
SCREAMING_SNAKE_CASE__ = i == len(lowercase__ ) - 1
SCREAMING_SNAKE_CASE__ = get_down_block(
lowercase__ , num_layers=self.layers_per_block , in_channels=lowercase__ , out_channels=lowercase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowercase__ , resnet_groups=lowercase__ , attention_head_dim=lowercase__ , temb_channels=lowercase__ , )
self.down_blocks.append(lowercase__ )
# mid
SCREAMING_SNAKE_CASE__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase__ , temb_channels=lowercase__ , )
# out
SCREAMING_SNAKE_CASE__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase__ , eps=1e-6 )
SCREAMING_SNAKE_CASE__ = nn.SiLU()
SCREAMING_SNAKE_CASE__ = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(block_out_channels[-1] , lowercase__ , 3 , padding=1 )
SCREAMING_SNAKE_CASE__ = False
def lowercase_ ( self : Any , __lowerCamelCase : int ) -> Any:
SCREAMING_SNAKE_CASE__ = x
SCREAMING_SNAKE_CASE__ = self.conv_in(lowercase__ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__lowerCamelCase : Dict ):
def custom_forward(*__lowerCamelCase : Dict ):
return module(*lowercase__ )
return custom_forward
# down
if is_torch_version('''>=''' , '''1.11.0''' ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase__ ) , lowercase__ , use_reentrant=lowercase__ )
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase__ , use_reentrant=lowercase__ )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase__ ) , lowercase__ )
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase__ )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE__ = down_block(lowercase__ )
# middle
SCREAMING_SNAKE_CASE__ = self.mid_block(lowercase__ )
# post-process
SCREAMING_SNAKE_CASE__ = self.conv_norm_out(lowercase__ )
SCREAMING_SNAKE_CASE__ = self.conv_act(lowercase__ )
SCREAMING_SNAKE_CASE__ = self.conv_out(lowercase__ )
return sample
class UpperCAmelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __lowerCamelCase : int=3 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Any=("UpDecoderBlock2D",) , __lowerCamelCase : Any=(64,) , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : List[str]="silu" , __lowerCamelCase : Optional[int]="group" , ) -> Optional[Any]:
super().__init__()
SCREAMING_SNAKE_CASE__ = layers_per_block
SCREAMING_SNAKE_CASE__ = nn.Convad(
lowercase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = nn.ModuleList([] )
SCREAMING_SNAKE_CASE__ = in_channels if norm_type == '''spatial''' else None
# mid
SCREAMING_SNAKE_CASE__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase__ , temb_channels=lowercase__ , )
# up
SCREAMING_SNAKE_CASE__ = list(reversed(lowercase__ ) )
SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowercase__ ):
SCREAMING_SNAKE_CASE__ = output_channel
SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE__ = i == len(lowercase__ ) - 1
SCREAMING_SNAKE_CASE__ = get_up_block(
lowercase__ , num_layers=self.layers_per_block + 1 , in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowercase__ , resnet_groups=lowercase__ , attention_head_dim=lowercase__ , temb_channels=lowercase__ , resnet_time_scale_shift=lowercase__ , )
self.up_blocks.append(lowercase__ )
SCREAMING_SNAKE_CASE__ = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE__ = SpatialNorm(block_out_channels[0] , lowercase__ )
else:
SCREAMING_SNAKE_CASE__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase__ , eps=1e-6 )
SCREAMING_SNAKE_CASE__ = nn.SiLU()
SCREAMING_SNAKE_CASE__ = nn.Convad(block_out_channels[0] , lowercase__ , 3 , padding=1 )
SCREAMING_SNAKE_CASE__ = False
def lowercase_ ( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any]=None ) -> int:
SCREAMING_SNAKE_CASE__ = z
SCREAMING_SNAKE_CASE__ = self.conv_in(lowercase__ )
SCREAMING_SNAKE_CASE__ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__lowerCamelCase : Any ):
def custom_forward(*__lowerCamelCase : List[Any] ):
return module(*lowercase__ )
return custom_forward
if is_torch_version('''>=''' , '''1.11.0''' ):
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase__ , lowercase__ , use_reentrant=lowercase__ )
SCREAMING_SNAKE_CASE__ = sample.to(lowercase__ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase__ ) , lowercase__ , lowercase__ , use_reentrant=lowercase__ )
else:
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE__ = sample.to(lowercase__ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase__ ) , lowercase__ , lowercase__ )
else:
# middle
SCREAMING_SNAKE_CASE__ = self.mid_block(lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE__ = sample.to(lowercase__ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE__ = up_block(lowercase__ , lowercase__ )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE__ = self.conv_norm_out(lowercase__ )
else:
SCREAMING_SNAKE_CASE__ = self.conv_norm_out(lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE__ = self.conv_act(lowercase__ )
SCREAMING_SNAKE_CASE__ = self.conv_out(lowercase__ )
return sample
class UpperCAmelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , __lowerCamelCase : str="random" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=True ) -> Tuple:
super().__init__()
SCREAMING_SNAKE_CASE__ = n_e
SCREAMING_SNAKE_CASE__ = vq_embed_dim
SCREAMING_SNAKE_CASE__ = beta
SCREAMING_SNAKE_CASE__ = legacy
SCREAMING_SNAKE_CASE__ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE__ = remap
if self.remap is not None:
self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE__ = self.used.shape[0]
SCREAMING_SNAKE_CASE__ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE__ = self.re_embed
SCREAMING_SNAKE_CASE__ = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE__ = n_e
SCREAMING_SNAKE_CASE__ = sane_index_shape
def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[int] ) -> Dict:
SCREAMING_SNAKE_CASE__ = inds.shape
assert len(lowercase__ ) > 1
SCREAMING_SNAKE_CASE__ = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE__ = self.used.to(lowercase__ )
SCREAMING_SNAKE_CASE__ = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE__ = match.argmax(-1 )
SCREAMING_SNAKE_CASE__ = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE__ = self.unknown_index
return new.reshape(lowercase__ )
def lowercase_ ( self : Dict , __lowerCamelCase : Tuple ) -> Any:
SCREAMING_SNAKE_CASE__ = inds.shape
assert len(lowercase__ ) > 1
SCREAMING_SNAKE_CASE__ = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE__ = self.used.to(lowercase__ )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE__ = 0 # simply set to zero
SCREAMING_SNAKE_CASE__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase__ )
return back.reshape(lowercase__ )
def lowercase_ ( self : List[Any] , __lowerCamelCase : str ) -> Any:
# reshape z -> (batch, height, width, channel) and flatten
SCREAMING_SNAKE_CASE__ = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE__ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE__ = torch.argmin(torch.cdist(lowercase__ , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE__ = self.embedding(lowercase__ ).view(z.shape )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE__ = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE__ = self.remap_to_used(lowercase__ )
SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowercase_ ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ) -> Dict:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
SCREAMING_SNAKE_CASE__ = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE__ = self.unmap_to_all(lowercase__ )
SCREAMING_SNAKE_CASE__ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE__ = self.embedding(lowercase__ )
if shape is not None:
SCREAMING_SNAKE_CASE__ = z_q.view(lowercase__ )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCAmelCase__ ( _a ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple=False ) -> Tuple:
SCREAMING_SNAKE_CASE__ = parameters
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = torch.chunk(lowercase__ , 2 , dim=1 )
SCREAMING_SNAKE_CASE__ = torch.clamp(self.logvar , -30.0 , 20.0 )
SCREAMING_SNAKE_CASE__ = deterministic
SCREAMING_SNAKE_CASE__ = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE__ = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowercase_ ( self : List[str] , __lowerCamelCase : Union[str, Any] = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
SCREAMING_SNAKE_CASE__ = randn_tensor(
self.mean.shape , generator=lowercase__ , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE__ = self.mean + self.std * sample
return x
def lowercase_ ( self : List[str] , __lowerCamelCase : Dict=None ) -> Any:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple=[1, 2, 3] ) -> Optional[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE__ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase__ )
def lowercase_ ( self : Optional[Any] ) -> List[str]:
return self.mean
| 314 |
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []}
A_ : int = ['a', 'b', 'c', 'd', 'e']
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = start
# add current to visited
visited.append(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
__UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# if all neighbors visited add current to sort
sort.append(SCREAMING_SNAKE_CASE )
# if all vertices haven't been visited select a new one to visit
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
for vertice in vertices:
if vertice not in visited:
__UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# return sort
return sort
if __name__ == "__main__":
A_ : Tuple = topological_sort('a', [], [])
print(sort)
| 333 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
A_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = _ask_options(
"""In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_snake_case : Dict = get_sagemaker_input()
else:
_snake_case : Optional[Any] = get_cluster_input()
return config
def UpperCAmelCase__ (snake_case__ : Optional[Any]=None ):
"""simple docstring"""
if subparsers is not None:
_snake_case : Dict = subparsers.add_parser("""config""" , description=snake_case__ )
else:
_snake_case : Tuple = argparse.ArgumentParser("""Accelerate config command""" , description=snake_case__ )
parser.add_argument(
"""--config_file""" , default=snake_case__ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """
"""such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """
"""with \'huggingface\'."""
) , )
if subparsers is not None:
parser.set_defaults(func=snake_case__ )
return parser
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
_snake_case : List[Any] = get_user_input()
if args.config_file is not None:
_snake_case : str = args.config_file
else:
if not os.path.isdir(snake_case__ ):
os.makedirs(snake_case__ )
_snake_case : Union[str, Any] = default_yaml_config_file
if config_file.endswith(""".json""" ):
config.to_json_file(snake_case__ )
else:
config.to_yaml_file(snake_case__ )
print(F"accelerate configuration saved at {config_file}" )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : int = config_command_parser()
_snake_case : Tuple = parser.parse_args()
config_command(snake_case__ )
if __name__ == "__main__":
main()
| 64 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : int = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Dict = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 333 | 0 |
"""simple docstring"""
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase_ ( _a , unittest.TestCase ):
UpperCamelCase =LongformerTokenizer
UpperCamelCase =True
UpperCamelCase =LongformerTokenizerFast
UpperCamelCase =True
def _lowerCamelCase ( self ) -> Any:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowercase : List[Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__lowercase : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
__lowercase : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowercase : Optional[Any] = {'''unk_token''': '''<unk>'''}
__lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase__ ) )
def _lowerCamelCase ( self , **UpperCamelCase_ ) -> int:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Tuple:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict:
__lowercase : str = '''lower newer'''
__lowercase : int = '''lower newer'''
return input_text, output_text
def _lowerCamelCase ( self ) -> Optional[Any]:
__lowercase : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowercase : Optional[int] = '''lower newer'''
__lowercase : List[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowercase : Any = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True)
self.assertListEqual(lowercase__ , lowercase__ )
__lowercase : Any = tokens + [tokenizer.unk_token]
__lowercase : List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
def _lowerCamelCase ( self ) -> int:
__lowercase : Dict = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def _lowerCamelCase ( self ) -> int:
__lowercase : List[Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
__lowercase : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ )
__lowercase : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ )
__lowercase : int = tokenizer.encode(
'''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__lowercase : Any = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ )
__lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _lowerCamelCase ( self ) -> Any:
__lowercase : List[str] = self.get_tokenizer()
__lowercase : Optional[int] = '''Encode this sequence.'''
__lowercase : Any = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__lowercase : int = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__lowercase : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
__lowercase : Optional[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ )
__lowercase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(lowercase__ , lowercase__ )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__lowercase : str = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowercase : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
# Testing spaces after special tokens
__lowercase : Optional[Any] = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space
__lowercase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase__ )
__lowercase : Tuple = '''Encode <mask> sequence'''
__lowercase : int = '''Encode <mask>sequence'''
__lowercase : Dict = tokenizer.encode(lowercase__ )
__lowercase : List[Any] = encoded.index(lowercase__ )
__lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(lowercase__ , lowercase__ )
__lowercase : Any = tokenizer.encode(lowercase__ )
__lowercase : int = encoded.index(lowercase__ )
__lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(lowercase__ , lowercase__ )
def _lowerCamelCase ( self ) -> Tuple:
pass
def _lowerCamelCase ( self ) -> int:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowercase : int = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowercase : Any = '''A, <mask> AllenNLP sentence.'''
__lowercase : int = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
__lowercase : Union[str, Any] = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__lowercase : int = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__lowercase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def _lowerCamelCase ( self ) -> Optional[int]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__lowercase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ )
self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ )
def _lowerCamelCase ( self ) -> Union[str, Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase : str = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__lowercase : List[Any] = F"""{text_of_1_token} {text_of_1_token}"""
__lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : Tuple = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__lowercase : Dict = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : List[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , )
__lowercase : str = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : Any = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : Any = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , )
__lowercase : List[Any] = F""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__lowercase : Tuple = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : Tuple = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : List[str] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
__lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ )
__lowercase : Optional[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
| 249 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict:
'''simple docstring'''
model.train()
__UpperCAmelCase = model(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]:
'''simple docstring'''
set_seed(4_2 )
__UpperCAmelCase = RegressionModel()
__UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = RegressionDataset(length=8_0 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 )
__UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 )
__UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 )
# Make a copy of `model`
if sched:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
__UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
# Test when on a single CPU or GPU that the context manager does nothing
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
# Use a single batch
__UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
def __a ( SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
# Test on distributed setup that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
# Use a single batch
__UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase = Accelerator(
split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase , __UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase = Accelerator(
split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase , __UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
__UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def __a ( ) -> str:
'''simple docstring'''
__UpperCAmelCase = Accelerator()
__UpperCAmelCase = RegressionDataset(length=8_0 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
__UpperCAmelCase = RegressionDataset(length=9_6 )
__UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 )
__UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE )
if iteration < len(SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE )
if batch_num < len(SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __a ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase = Accelerator()
__UpperCAmelCase = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def __magic_name__ ( __a : Tuple ):
'''simple docstring'''
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def __magic_name__ ( __a : List[str] ):
'''simple docstring'''
UpperCamelCase__ = create_tensor(__a )
UpperCamelCase__ = gather(__a )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def __magic_name__ ( __a : Any ):
'''simple docstring'''
UpperCamelCase__ = [state.process_index]
UpperCamelCase__ = gather_object(__a )
assert len(__a ) == state.num_processes, f"{gathered_obj}, {len(__a )} != {state.num_processes}"
assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}"
def __magic_name__ ( __a : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase__ = create_tensor(__a )
UpperCamelCase__ = broadcast(__a )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def __magic_name__ ( __a : Tuple ):
'''simple docstring'''
if state.is_main_process:
UpperCamelCase__ = torch.arange(state.num_processes + 1 ).to(state.device )
else:
UpperCamelCase__ = torch.arange(state.num_processes ).to(state.device )
UpperCamelCase__ = pad_across_processes(__a )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def __magic_name__ ( __a : Optional[int] ):
'''simple docstring'''
if state.num_processes != 2:
return
UpperCamelCase__ = create_tensor(__a )
UpperCamelCase__ = reduce(__a , """sum""" )
UpperCamelCase__ = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(__a , __a ), f"{reduced_tensor} != {truth_tensor}"
def __magic_name__ ( __a : Any ):
'''simple docstring'''
if state.num_processes != 2:
return
UpperCamelCase__ = create_tensor(__a )
UpperCamelCase__ = reduce(__a , """mean""" )
UpperCamelCase__ = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(__a , __a ), f"{reduced_tensor} != {truth_tensor}"
def __magic_name__ ( __a : List[Any] ):
'''simple docstring'''
main()
def __magic_name__ ( ):
'''simple docstring'''
UpperCamelCase__ = PartialState()
state.print(f"State: {state}" )
state.print("""testing gather""" )
test_gather(__a )
state.print("""testing gather_object""" )
test_gather_object(__a )
state.print("""testing broadcast""" )
test_broadcast(__a )
state.print("""testing pad_across_processes""" )
test_pad_across_processes(__a )
state.print("""testing reduce_sum""" )
test_reduce_sum(__a )
state.print("""testing reduce_mean""" )
test_reduce_mean(__a )
if __name__ == "__main__":
main()
| 244 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
A_ : Optional[Any] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
A_ : Optional[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
A_ : Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
A_ : str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
A_ : Optional[Any] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 333 | 0 |
import functools
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int:
'''simple docstring'''
if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or not all(isinstance(_UpperCAmelCase, _UpperCAmelCase ) for day in days ):
raise ValueError('The parameter days should be a list of integers' )
if len(_UpperCAmelCase ) != 3 or not all(isinstance(_UpperCAmelCase, _UpperCAmelCase ) for cost in costs ):
raise ValueError('The parameter costs should be a list of three integers' )
if len(_UpperCAmelCase ) == 0:
return 0
if min(_UpperCAmelCase ) <= 0:
raise ValueError('All days elements should be greater than 0' )
if max(_UpperCAmelCase ) >= 366:
raise ValueError('All days elements should be less than 366' )
lowerCAmelCase : List[str] = set(_UpperCAmelCase )
@functools.cache
def dynamic_programming(_UpperCAmelCase ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 138 |
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )]
__UpperCAmelCase = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key:
return input_string
for position, character in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid]
__UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE )
return output_string
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__UpperCAmelCase = []
__UpperCAmelCase = key - 1
if key <= 0:
raise ValueError('''Height of grid can\'t be 0 or negative''' )
if key == 1:
return input_string
__UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template
for position in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append('''*''' )
__UpperCAmelCase = 0
for row in temp_grid: # fills in the characters
__UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )]
grid.append(list(SCREAMING_SNAKE_CASE ) )
counter += len(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = '''''' # reads as zigzag
for position in range(len(SCREAMING_SNAKE_CASE ) ):
__UpperCAmelCase = position % (lowest * 2) # puts it in bounds
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]:
'''simple docstring'''
__UpperCAmelCase = {}
for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key
__UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
"""simple docstring"""
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True)
def lowerCamelCase ( _UpperCamelCase : Dict ) -> List[Any]:
'''simple docstring'''
if hor == 1_2_8:
__UpperCAmelCase : Optional[int] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
__UpperCAmelCase : Optional[Any] = (3_2, 1_2_8, 2_5_6)
__UpperCAmelCase : int = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 3_2:
__UpperCAmelCase : Tuple = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
__UpperCAmelCase : Union[str, Any] = (3_2, 6_4, 1_2_8, 2_5_6)
__UpperCAmelCase : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
__UpperCAmelCase : str = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
__UpperCAmelCase : Tuple = model.state_dict()
__UpperCAmelCase : str = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 1_4,
"""out_channels""": 1_4,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_5_5_3_6,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
__UpperCAmelCase : List[Any] = UNetaDModel(**_UpperCamelCase )
print(f'''length of state dict: {len(state_dict.keys() )}''' )
print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
__UpperCAmelCase : Any = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
__UpperCAmelCase : Dict = state_dict.pop(_UpperCamelCase )
hf_value_function.load_state_dict(_UpperCamelCase )
torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
def lowerCamelCase ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = {
"""in_channels""": 1_4,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (3_2, 6_4, 1_2_8, 2_5_6),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_5_5_3_6,
"""out_channels""": 1_4,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
__UpperCAmelCase : Any = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
__UpperCAmelCase : List[str] = model
__UpperCAmelCase : Optional[Any] = UNetaDModel(**_UpperCamelCase )
print(f'''length of state dict: {len(state_dict.keys() )}''' )
print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
__UpperCAmelCase : List[str] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
__UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCamelCase )
hf_value_function.load_state_dict(_UpperCamelCase )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 115 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class A_ ( _a , _a , _a , unittest.TestCase ):
'''simple docstring'''
a__ = StableUnCLIPPipeline
a__ = TEXT_TO_IMAGE_PARAMS
a__ = TEXT_TO_IMAGE_BATCH_PARAMS
a__ = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ = False
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]:
if str(lowercase__ ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(lowercase__ )
else:
__UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def lowerCAmelCase_ (self ) -> Optional[Any]:
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ )
def lowerCAmelCase_ (self ) -> int:
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=lowercase__ )
@slow
@require_torch_gpu
class A_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ (self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ (self ) -> Union[str, Any]:
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__ )
def lowerCAmelCase_ (self ) -> Tuple:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class _UpperCamelCase ( _a , unittest.TestCase ):
'''simple docstring'''
_A : List[str] = ShapEPipeline
_A : int = ['''prompt''']
_A : int = ['''prompt''']
_A : Union[str, Any] = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
_A : int = False
@property
def UpperCamelCase__ ( self : Optional[int] ):
"""simple docstring"""
return 3_2
@property
def UpperCamelCase__ ( self : Any ):
"""simple docstring"""
return 3_2
@property
def UpperCamelCase__ ( self : Optional[Any] ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def UpperCamelCase__ ( self : Dict ):
"""simple docstring"""
return 8
@property
def UpperCamelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCamelCase__ ( self : str ):
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModelWithProjection(lowercase__ )
@property
def UpperCamelCase__ ( self : List[str] ):
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : List[str] = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 1_6,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 3_2,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__SCREAMING_SNAKE_CASE : int = PriorTransformer(**lowercase__ )
return model
@property
def UpperCamelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : Tuple = {
"""param_shapes""": (
(self.renderer_dim, 9_3),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 1_2,
"""background""": (
0.1,
0.1,
0.1,
),
}
__SCREAMING_SNAKE_CASE : List[str] = ShapERenderer(**lowercase__ )
return model
def UpperCamelCase__ ( self : int ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = self.dummy_prior
__SCREAMING_SNAKE_CASE : int = self.dummy_text_encoder
__SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_tokenizer
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_renderer
__SCREAMING_SNAKE_CASE : str = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=1_0_2_4 , prediction_type="""sample""" , use_karras_sigmas=lowercase__ , clip_sample=lowercase__ , clip_sample_range=1.0 , )
__SCREAMING_SNAKE_CASE : List[Any] = {
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=0 ):
"""simple docstring"""
if str(lowercase__ ).startswith("""mps""" ):
__SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(lowercase__ )
else:
__SCREAMING_SNAKE_CASE : Any = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__SCREAMING_SNAKE_CASE : Dict = {
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 3_2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = """cpu"""
__SCREAMING_SNAKE_CASE : int = self.get_dummy_components()
__SCREAMING_SNAKE_CASE : str = self.pipeline_class(**lowercase__ )
__SCREAMING_SNAKE_CASE : List[Any] = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**self.get_dummy_inputs(lowercase__ ) )
__SCREAMING_SNAKE_CASE : List[str] = output.images[0]
__SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (2_0, 3_2, 3_2, 3)
__SCREAMING_SNAKE_CASE : List[str] = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ ( self : Dict ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = torch_device == """cpu"""
__SCREAMING_SNAKE_CASE : List[Any] = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowercase__ , relax_max_difference=lowercase__ , )
def UpperCamelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
__SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**lowercase__ )
__SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
__SCREAMING_SNAKE_CASE : List[str] = 1
__SCREAMING_SNAKE_CASE : Tuple = 2
__SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(lowercase__ )
for key in inputs.keys():
if key in self.batch_params:
__SCREAMING_SNAKE_CASE : List[Any] = batch_size * [inputs[key]]
__SCREAMING_SNAKE_CASE : Dict = pipe(**lowercase__ , num_images_per_prompt=lowercase__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self : Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
__SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" )
__SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
__SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowercase__ ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Optional[Any] = pipe(
"""a shark""" , generator=lowercase__ , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="""np""" , ).images[0]
assert images.shape == (2_0, 6_4, 6_4, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__ ) | 112 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A_ : int = logging.get_logger(__name__)
A_ : str = {'tokenizer_file': 'tokenizer.json'}
A_ : List[str] = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class A_ ( _a ):
'''simple docstring'''
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = ["input_ids", "attention_mask"]
a__ = None
def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict:
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
__UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
__UpperCAmelCase = add_prefix_space
__UpperCAmelCase = pre_tok_class(**lowercase__ )
__UpperCAmelCase = add_prefix_space
def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding:
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
''' pretokenized inputs.''' )
return super()._batch_encode_plus(*lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding:
__UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
''' pretokenized inputs.''' )
return super()._encode_plus(*lowercase__ , **lowercase__ )
def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
__UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def lowerCAmelCase_ (self , lowercase__ ) -> List[int]:
__UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
__UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 333 | 0 |
class snake_case_ :
def __init__( self : Any , lowercase_ : List[Any] = "" , lowercase_ : Tuple = False ) -> None:
# Mapping from the first character of the prefix of the node
lowercase__ : Union[str, Any] = {}
# A node will be a leaf if the tree contains its word
lowercase__ : Any = is_leaf
lowercase__ : Tuple = prefix
def __UpperCamelCase ( self : Dict , lowercase_ : Any ) -> tuple[str, str, str]:
lowercase__ : int = 0
for q, w in zip(self.prefix , lowercase__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def __UpperCamelCase ( self : Tuple , lowercase_ : int ) -> None:
for word in words:
self.insert(lowercase__ )
def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[int] ) -> None:
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase__ : Optional[int] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase__ : List[Any] = RadixNode(prefix=lowercase__ , is_leaf=lowercase__ )
else:
lowercase__ : Dict = self.nodes[word[0]]
lowercase__ , lowercase__ , lowercase__ : Any = incoming_node.match(
lowercase__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowercase__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase__ : Dict = remaining_prefix
lowercase__ : Optional[Any] = self.nodes[matching_string[0]]
lowercase__ : Union[str, Any] = RadixNode(lowercase__ , lowercase__ )
lowercase__ : int = aux_node
if remaining_word == "":
lowercase__ : int = True
else:
self.nodes[matching_string[0]].insert(lowercase__ )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str ) -> bool:
lowercase__ : List[str] = self.nodes.get(word[0] , lowercase__ )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ : str = incoming_node.match(
lowercase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowercase__ )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> bool:
lowercase__ : List[Any] = self.nodes.get(word[0] , lowercase__ )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = incoming_node.match(
lowercase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowercase__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase__ : Dict = list(self.nodes.values() )[0]
lowercase__ : int = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase__ : List[str] = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase__ : List[Any] = False
# If there is 1 edge, we merge it with its child
else:
lowercase__ : int = list(incoming_node.nodes.values() )[0]
lowercase__ : Optional[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase__ : Union[str, Any] = merging_node.nodes
return True
def __UpperCamelCase ( self : str , lowercase_ : Dict = 0 ) -> None:
if self.prefix != "":
print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def lowercase_ ( ):
lowercase__ : Any = "banana bananas bandana band apple all beast".split()
lowercase__ : Optional[int] = RadixNode()
root.insert_many(_lowerCamelCase)
assert all(root.find(_lowerCamelCase) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def lowercase_ ( ):
assert test_trie()
def lowercase_ ( ):
lowercase__ : Optional[Any] = RadixNode()
lowercase__ : Union[str, Any] = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(_lowerCamelCase)
print("Words:" , _lowerCamelCase)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| 87 |
import math
import sys
def __a ( SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if number != int(SCREAMING_SNAKE_CASE ):
raise ValueError('''the value of input must be a natural number''' )
if number < 0:
raise ValueError('''the value of input must not be a negative number''' )
if number == 0:
return 1
__UpperCAmelCase = [-1] * (number + 1)
__UpperCAmelCase = 0
for i in range(1 , number + 1 ):
__UpperCAmelCase = sys.maxsize
__UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) )
for j in range(1 , root + 1 ):
__UpperCAmelCase = 1 + answers[i - (j**2)]
__UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCAmelCase = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
_lowerCamelCase =tuple[float, float, float]
_lowerCamelCase =tuple[float, float, float]
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =end_pointa[0] - end_pointa[0]
SCREAMING_SNAKE_CASE =end_pointa[1] - end_pointa[1]
SCREAMING_SNAKE_CASE =end_pointa[2] - end_pointa[2]
return (x, y, z)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =ab[1] * ac[2] - ab[2] * ac[1] # *i
SCREAMING_SNAKE_CASE =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
SCREAMING_SNAKE_CASE =ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return tuple(round(lowerCAmelCase_, lowerCAmelCase_ ) for x in vector ) == (0, 0, 0)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 10 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =create_vector(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =create_vector(lowerCAmelCase_, lowerCAmelCase_ )
return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_, lowerCAmelCase_ ), lowerCAmelCase_ )
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =(1 - _cos) / 2
SCREAMING_SNAKE_CASE =1 - _cos
SCREAMING_SNAKE_CASE =1 + alpha
SCREAMING_SNAKE_CASE =-2 * _cos
SCREAMING_SNAKE_CASE =1 - alpha
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =(1 + _cos) / 2
SCREAMING_SNAKE_CASE =-1 - _cos
SCREAMING_SNAKE_CASE =1 + alpha
SCREAMING_SNAKE_CASE =-2 * _cos
SCREAMING_SNAKE_CASE =1 - alpha
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =_sin / 2
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =-ba
SCREAMING_SNAKE_CASE =1 + alpha
SCREAMING_SNAKE_CASE =-2 * _cos
SCREAMING_SNAKE_CASE =1 - alpha
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ) ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =1 - alpha
SCREAMING_SNAKE_CASE =-2 * _cos
SCREAMING_SNAKE_CASE =1 + alpha
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([ba, ba, ba], [ba, ba, ba] )
return filt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ), ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =10 ** (gain_db / 40)
SCREAMING_SNAKE_CASE =1 + alpha * big_a
SCREAMING_SNAKE_CASE =-2 * _cos
SCREAMING_SNAKE_CASE =1 - alpha * big_a
SCREAMING_SNAKE_CASE =1 + alpha / big_a
SCREAMING_SNAKE_CASE =-2 * _cos
SCREAMING_SNAKE_CASE =1 - alpha / big_a
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ), ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =10 ** (gain_db / 40)
SCREAMING_SNAKE_CASE =(big_a + 1) - (big_a - 1) * _cos
SCREAMING_SNAKE_CASE =(big_a + 1) + (big_a - 1) * _cos
SCREAMING_SNAKE_CASE =(big_a - 1) - (big_a + 1) * _cos
SCREAMING_SNAKE_CASE =(big_a - 1) + (big_a + 1) * _cos
SCREAMING_SNAKE_CASE =2 * sqrt(lowerCAmelCase_ ) * alpha
SCREAMING_SNAKE_CASE =big_a * (pmc + aaa)
SCREAMING_SNAKE_CASE =2 * big_a * mpc
SCREAMING_SNAKE_CASE =big_a * (pmc - aaa)
SCREAMING_SNAKE_CASE =ppmc + aaa
SCREAMING_SNAKE_CASE =-2 * pmpc
SCREAMING_SNAKE_CASE =ppmc - aaa
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 1 / sqrt(2 ), ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =tau * frequency / samplerate
SCREAMING_SNAKE_CASE =sin(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =cos(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =_sin / (2 * q_factor)
SCREAMING_SNAKE_CASE =10 ** (gain_db / 40)
SCREAMING_SNAKE_CASE =(big_a + 1) - (big_a - 1) * _cos
SCREAMING_SNAKE_CASE =(big_a + 1) + (big_a - 1) * _cos
SCREAMING_SNAKE_CASE =(big_a - 1) - (big_a + 1) * _cos
SCREAMING_SNAKE_CASE =(big_a - 1) + (big_a + 1) * _cos
SCREAMING_SNAKE_CASE =2 * sqrt(lowerCAmelCase_ ) * alpha
SCREAMING_SNAKE_CASE =big_a * (ppmc + aaa)
SCREAMING_SNAKE_CASE =-2 * big_a * pmpc
SCREAMING_SNAKE_CASE =big_a * (ppmc - aaa)
SCREAMING_SNAKE_CASE =pmc + aaa
SCREAMING_SNAKE_CASE =2 * mpc
SCREAMING_SNAKE_CASE =pmc - aaa
SCREAMING_SNAKE_CASE =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = ''
__UpperCAmelCase = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : Tuple ,snake_case : Optional[DatasetInfo] = None ,snake_case : Optional[str] = None ,**snake_case : Tuple ,):
super().__init__(self ,**snake_case )
SCREAMING_SNAKE_CASE =repo_info
SCREAMING_SNAKE_CASE =token
SCREAMING_SNAKE_CASE =None
def _lowerCAmelCase ( self : List[Any] ):
if self.dir_cache is None:
SCREAMING_SNAKE_CASE ={}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
SCREAMING_SNAKE_CASE ={
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(snake_case ): {'name': str(snake_case ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : str ,snake_case : str = "rb" ,**snake_case : Dict ,):
if not isinstance(self.repo_info ,snake_case ):
raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}' )
SCREAMING_SNAKE_CASE =hf_hub_url(self.repo_info.id ,snake_case ,revision=self.repo_info.sha )
return fsspec.open(
snake_case ,mode=snake_case ,headers=get_authentication_headers_for_url(snake_case ,use_auth_token=self.token ) ,client_kwargs={'trust_env': True} ,).open()
def _lowerCAmelCase ( self : Dict ,snake_case : Optional[int] ,**snake_case : Optional[Any] ):
self._get_dirs()
SCREAMING_SNAKE_CASE =self._strip_protocol(snake_case )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Any ,snake_case : Union[str, Any]=False ,**snake_case : str ):
self._get_dirs()
SCREAMING_SNAKE_CASE =PurePosixPath(path.strip('/' ) )
SCREAMING_SNAKE_CASE ={}
for p, f in self.dir_cache.items():
SCREAMING_SNAKE_CASE =PurePosixPath(p.strip('/' ) )
SCREAMING_SNAKE_CASE =p.parent
if root == path:
SCREAMING_SNAKE_CASE =f
SCREAMING_SNAKE_CASE =list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[0] * len(lowerCAmelCase_ )
for i in range(1, len(lowerCAmelCase_ ) ):
# use last results for better performance - dynamic programming
SCREAMING_SNAKE_CASE =prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
SCREAMING_SNAKE_CASE =prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
SCREAMING_SNAKE_CASE =j
return prefix_result
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return max(prefix_function(lowerCAmelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCamelCase =10
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for i in range(lowerCAmelCase_, lowerCAmelCase_ ):
if array[i] == target:
return i
return -1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
while left <= right:
if right - left < precision:
return lin_search(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(left + right) // 3 + 1
SCREAMING_SNAKE_CASE =2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
SCREAMING_SNAKE_CASE =one_third - 1
elif array[two_third] < target:
SCREAMING_SNAKE_CASE =two_third + 1
else:
SCREAMING_SNAKE_CASE =one_third + 1
SCREAMING_SNAKE_CASE =two_third - 1
else:
return -1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if left < right:
if right - left < precision:
return lin_search(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(left + right) // 3 + 1
SCREAMING_SNAKE_CASE =2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(lowerCAmelCase_, one_third - 1, lowerCAmelCase_, lowerCAmelCase_ )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
else:
return rec_ternary_search(one_third + 1, two_third - 1, lowerCAmelCase_, lowerCAmelCase_ )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =input("Enter numbers separated by comma:\n").strip()
_lowerCamelCase =[int(item.strip()) for item in user_input.split(",")]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_lowerCamelCase =int(input("Enter the number to be found in the list:\n").strip())
_lowerCamelCase =ite_ternary_search(collection, target)
_lowerCamelCase =rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'Iterative search: {target} found at positions: {resulta}')
print(f'Recursive search: {target} found at positions: {resulta}')
else:
print("Not found")
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCamelCase ={
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
import requests
_lowerCamelCase ="YOUR API KEY"
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = giphy_api_key ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='+'.join(query.split() )
SCREAMING_SNAKE_CASE =F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_ ).json()['data']
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print("\n".join(get_gifs("space ship")))
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = TextToVideoSDPipeline
__UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
__UpperCAmelCase = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def _lowerCAmelCase ( self : Tuple ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') ,up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') ,cross_attention_dim=32 ,attention_head_dim=4 ,)
SCREAMING_SNAKE_CASE =DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=snake_case ,set_alpha_to_one=snake_case ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=128 ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='gelu' ,projection_dim=512 ,)
SCREAMING_SNAKE_CASE =CLIPTextModel(snake_case )
SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE ={
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def _lowerCAmelCase ( self : List[str] ,snake_case : Optional[Any] ,snake_case : int=0 ):
if str(snake_case ).startswith('mps' ):
SCREAMING_SNAKE_CASE =torch.manual_seed(snake_case )
else:
SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(snake_case )
SCREAMING_SNAKE_CASE ={
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE =self.get_dummy_components()
SCREAMING_SNAKE_CASE =TextToVideoSDPipeline(**snake_case )
SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case )
sd_pipe.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE =self.get_dummy_inputs(snake_case )
SCREAMING_SNAKE_CASE ='np'
SCREAMING_SNAKE_CASE =sd_pipe(**snake_case ).frames
SCREAMING_SNAKE_CASE =frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
SCREAMING_SNAKE_CASE =np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self : Tuple ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case ,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,)
def _lowerCAmelCase ( self : List[Any] ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case ,expected_max_diff=1e-2 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def _lowerCAmelCase ( self : List[str] ):
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def _lowerCAmelCase ( self : str ):
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def _lowerCAmelCase ( self : Any ):
pass
def _lowerCAmelCase ( self : List[str] ):
return super().test_progress_bar()
@slow
@skip_mps
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' )
SCREAMING_SNAKE_CASE =TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE =pipe.to('cuda' )
SCREAMING_SNAKE_CASE ='Spiderman is surfing'
SCREAMING_SNAKE_CASE =torch.Generator(device='cpu' ).manual_seed(0 )
SCREAMING_SNAKE_CASE =pipe(snake_case ,generator=snake_case ,num_inference_steps=25 ,output_type='pt' ).frames
SCREAMING_SNAKE_CASE =video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' )
SCREAMING_SNAKE_CASE =TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
SCREAMING_SNAKE_CASE =pipe.to('cuda' )
SCREAMING_SNAKE_CASE ='Spiderman is surfing'
SCREAMING_SNAKE_CASE =torch.Generator(device='cpu' ).manual_seed(0 )
SCREAMING_SNAKE_CASE =pipe(snake_case ,generator=snake_case ,num_inference_steps=2 ,output_type='pt' ).frames
SCREAMING_SNAKE_CASE =video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 334 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 | 1 |
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = ['input_features', 'attention_mask']
def __init__( self : Dict ,snake_case : Tuple=80 ,snake_case : Optional[Any]=16000 ,snake_case : List[str]=0.0 ,snake_case : Tuple=10 ,snake_case : List[Any]=25 ,snake_case : int="hamming_window" ,snake_case : Optional[Any]=32_768.0 ,snake_case : str=0.97 ,snake_case : List[str]=1.0 ,snake_case : Union[str, Any]=True ,snake_case : List[Any]=True ,snake_case : int=False ,**snake_case : Union[str, Any] ,):
super().__init__(feature_size=snake_case ,sampling_rate=snake_case ,padding_value=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =feature_size
SCREAMING_SNAKE_CASE =sampling_rate
SCREAMING_SNAKE_CASE =padding_value
SCREAMING_SNAKE_CASE =hop_length
SCREAMING_SNAKE_CASE =win_length
SCREAMING_SNAKE_CASE =frame_signal_scale
SCREAMING_SNAKE_CASE =preemphasis_coeff
SCREAMING_SNAKE_CASE =mel_floor
SCREAMING_SNAKE_CASE =normalize_means
SCREAMING_SNAKE_CASE =normalize_vars
SCREAMING_SNAKE_CASE =win_function
SCREAMING_SNAKE_CASE =return_attention_mask
SCREAMING_SNAKE_CASE =win_length * sampling_rate // 1000
SCREAMING_SNAKE_CASE =hop_length * sampling_rate // 1000
SCREAMING_SNAKE_CASE =optimal_fft_length(self.sample_size )
SCREAMING_SNAKE_CASE =(self.n_fft // 2) + 1
def _lowerCAmelCase ( self : int ,snake_case : np.array ):
if self.win_function == "hamming_window":
SCREAMING_SNAKE_CASE =window_function(window_length=self.sample_size ,name=self.win_function ,periodic=snake_case )
else:
SCREAMING_SNAKE_CASE =window_function(window_length=self.sample_size ,name=self.win_function )
SCREAMING_SNAKE_CASE =mel_filter_bank(
num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,)
SCREAMING_SNAKE_CASE =spectrogram(
one_waveform * self.frame_signal_scale ,window=snake_case ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=snake_case ,preemphasis=self.preemphasis_coeff ,mel_filters=snake_case ,mel_floor=self.mel_floor ,log_mel='log' ,)
return msfc_features.T
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : int ,snake_case : List[Any] ):
# make sure we normalize float32 arrays
if self.normalize_means:
SCREAMING_SNAKE_CASE =x[:input_length].mean(axis=0 )
SCREAMING_SNAKE_CASE =np.subtract(snake_case ,snake_case )
if self.normalize_vars:
SCREAMING_SNAKE_CASE =x[:input_length].std(axis=0 )
SCREAMING_SNAKE_CASE =np.divide(snake_case ,snake_case )
if input_length < x.shape[0]:
SCREAMING_SNAKE_CASE =padding_value
# make sure array is in float32
SCREAMING_SNAKE_CASE =x.astype(np.floataa )
return x
def _lowerCAmelCase ( self : Dict ,snake_case : List[np.ndarray] ,snake_case : Optional[np.ndarray] = None ):
SCREAMING_SNAKE_CASE =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(snake_case ,snake_case ,self.padding_value ) for x, n in zip(snake_case ,snake_case )]
def __call__( self : Optional[Any] ,snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,snake_case : Union[bool, str, PaddingStrategy] = False ,snake_case : Optional[int] = None ,snake_case : bool = False ,snake_case : Optional[int] = None ,snake_case : Optional[bool] = None ,snake_case : Optional[Union[str, TensorType]] = None ,snake_case : Optional[int] = None ,**snake_case : str ,):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE =isinstance(snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
SCREAMING_SNAKE_CASE =is_batched_numpy or (
isinstance(snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE =[np.asarray(snake_case ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(snake_case ,np.ndarray ):
SCREAMING_SNAKE_CASE =np.asarray(snake_case ,dtype=np.floataa )
elif isinstance(snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE =raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE =[raw_speech]
# extract fbank features
SCREAMING_SNAKE_CASE =[self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech]
# convert into correct format for padding
SCREAMING_SNAKE_CASE =BatchFeature({'input_features': features} )
SCREAMING_SNAKE_CASE =self.pad(
snake_case ,padding=snake_case ,max_length=snake_case ,truncation=snake_case ,pad_to_multiple_of=snake_case ,return_attention_mask=snake_case ,**snake_case ,)
# make sure list is in array format
SCREAMING_SNAKE_CASE =padded_inputs.get('input_features' )
if isinstance(input_features[0] ,snake_case ):
SCREAMING_SNAKE_CASE =[np.asarray(snake_case ,dtype=np.floataa ) for feature in input_features]
SCREAMING_SNAKE_CASE =padded_inputs.get('attention_mask' )
if attention_mask is not None:
SCREAMING_SNAKE_CASE =[np.asarray(snake_case ,dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
SCREAMING_SNAKE_CASE =(
np.array(snake_case ,dtype=np.intaa )
if self._get_padding_strategies(snake_case ,max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
SCREAMING_SNAKE_CASE =self.normalize(
padded_inputs['input_features'] ,attention_mask=snake_case )
if return_tensors is not None:
SCREAMING_SNAKE_CASE =padded_inputs.convert_to_tensors(snake_case )
return padded_inputs
| 334 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCamelCase ={}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["GPTSw3Tokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
_lowerCamelCase =None
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
_lowerCamelCase ={
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
_lowerCamelCase ={
"facebook/mbart-large-en-ro": 10_24,
"facebook/mbart-large-cc25": 10_24,
}
# fmt: off
_lowerCamelCase =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = ['input_ids', 'attention_mask']
__UpperCAmelCase = MBartTokenizer
__UpperCAmelCase = []
__UpperCAmelCase = []
def __init__( self : str ,snake_case : Any=None ,snake_case : Dict=None ,snake_case : Tuple="<s>" ,snake_case : int="</s>" ,snake_case : Optional[Any]="</s>" ,snake_case : Optional[int]="<s>" ,snake_case : Optional[Any]="<unk>" ,snake_case : Dict="<pad>" ,snake_case : Union[str, Any]="<mask>" ,snake_case : List[Any]=None ,snake_case : Dict=None ,snake_case : int=None ,**snake_case : Dict ,):
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token
super().__init__(
vocab_file=snake_case ,tokenizer_file=snake_case ,bos_token=snake_case ,eos_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,src_lang=snake_case ,tgt_lang=snake_case ,additional_special_tokens=snake_case ,**snake_case ,)
SCREAMING_SNAKE_CASE =vocab_file
SCREAMING_SNAKE_CASE =False if not self.vocab_file else True
SCREAMING_SNAKE_CASE =FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
SCREAMING_SNAKE_CASE ={
lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE =src_lang if src_lang is not None else 'en_XX'
SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE =tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _lowerCAmelCase ( self : List[Any] ):
return self._src_lang
@src_lang.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : str ):
SCREAMING_SNAKE_CASE =new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowerCAmelCase ( self : Dict ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCAmelCase ( self : str ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.sep_token_id]
SCREAMING_SNAKE_CASE =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Dict ,snake_case : str ,snake_case : Optional[str] ,snake_case : Optional[str] ,**snake_case : Optional[int] ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
SCREAMING_SNAKE_CASE =src_lang
SCREAMING_SNAKE_CASE =self(snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(snake_case )
SCREAMING_SNAKE_CASE =tgt_lang_id
return inputs
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List[str] ,snake_case : str = "en_XX" ,snake_case : Optional[List[str]] = None ,snake_case : str = "ro_RO" ,**snake_case : str ,):
SCREAMING_SNAKE_CASE =src_lang
SCREAMING_SNAKE_CASE =tgt_lang
return super().prepare_seqaseq_batch(snake_case ,snake_case ,**snake_case )
def _lowerCAmelCase ( self : Any ):
return self.set_src_lang_special_tokens(self.src_lang )
def _lowerCAmelCase ( self : str ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ):
SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(snake_case )
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE =processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,)
def _lowerCAmelCase ( self : str ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(snake_case )
SCREAMING_SNAKE_CASE =[]
SCREAMING_SNAKE_CASE =[self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE =processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,)
def _lowerCAmelCase ( self : str ,snake_case : str ,snake_case : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory.' )
return
SCREAMING_SNAKE_CASE =os.path.join(
snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ):
copyfile(self.vocab_file ,snake_case )
return (out_vocab_file,)
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
import random
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =a[left_index]
SCREAMING_SNAKE_CASE =left_index + 1
for j in range(left_index + 1, lowerCAmelCase_ ):
if a[j] < pivot:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =a[i], a[j]
i += 1
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =a[i - 1], a[left_index]
return i - 1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if left < right:
SCREAMING_SNAKE_CASE =random.randint(lowerCAmelCase_, right - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =(
a[left],
a[pivot],
) # switches the pivot with the left most bound
SCREAMING_SNAKE_CASE =partition(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
quick_sort_random(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
lowerCAmelCase_, pivot_index + 1, lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =input('Enter numbers separated by a comma:\n' ).strip()
SCREAMING_SNAKE_CASE =[int(lowerCAmelCase_ ) for item in user_input.split(',' )]
quick_sort_random(lowerCAmelCase_, 0, len(lowerCAmelCase_ ) )
print(lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 | 1 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 | 1 |
_lowerCamelCase =8.314462 # Unit - J mol-1 K-1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError('Invalid inputs. Enter positive value.' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError('Invalid inputs. Enter positive value.' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 334 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
@property
def _lowerCAmelCase ( self : List[Any] ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case ,'feature_size' ) )
self.assertTrue(hasattr(snake_case ,'sampling_rate' ) )
self.assertTrue(hasattr(snake_case ,'padding_value' ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ):
def _inputs_have_equal_length(snake_case : Dict ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : str ,snake_case : Dict ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ):
def _inputs_have_equal_length(snake_case : str ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE =len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def _lowerCAmelCase ( self : Optional[int] ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : List[str] ):
self._check_truncation(numpify=snake_case )
def _lowerCAmelCase ( self : int ):
self._check_truncation(numpify=snake_case )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =min(snake_case )
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
| 334 | 1 |
import math
import os
import sys
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =''
try:
with open(lowerCAmelCase_, 'rb' ) as binary_file:
SCREAMING_SNAKE_CASE =binary_file.read()
for dat in data:
SCREAMING_SNAKE_CASE =F'{dat:08b}'
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
lexicon.pop(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =last_match_id
if math.loga(lowerCAmelCase_ ).is_integer():
for curr_key in lexicon:
SCREAMING_SNAKE_CASE ='0' + lexicon[curr_key]
SCREAMING_SNAKE_CASE =bin(lowerCAmelCase_ )[2:]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ={'0': '0', '1': '1'}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ='', ''
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
for i in range(len(lowerCAmelCase_ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
SCREAMING_SNAKE_CASE =lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
index += 1
SCREAMING_SNAKE_CASE =''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
SCREAMING_SNAKE_CASE =lexicon[curr_string]
result += last_match_id
return result
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =os.path.getsize(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =bin(lowerCAmelCase_ )[2:]
SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ )
return "0" * (length_length - 1) + file_length_binary + compressed
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =8
try:
with open(lowerCAmelCase_, 'wb' ) as opened_file:
SCREAMING_SNAKE_CASE =[
to_write[i : i + byte_length]
for i in range(0, len(lowerCAmelCase_ ), lowerCAmelCase_ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(lowerCAmelCase_, 2 ).to_bytes(1, byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =read_file_binary(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =compress_data(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =add_file_length(lowerCAmelCase_, lowerCAmelCase_ )
write_file_binary(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 334 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 | 1 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_ = 4 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =abs(lowerCAmelCase_ ) or 4
return [[1 + x + y * row_size for x in range(lowerCAmelCase_ )] for y in range(lowerCAmelCase_ )]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return reverse_row(transpose(lowerCAmelCase_ ) )
# OR.. transpose(reverse_column(matrix))
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return reverse_row(reverse_column(lowerCAmelCase_ ) )
# OR.. reverse_column(reverse_row(matrix))
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return reverse_column(transpose(lowerCAmelCase_ ) )
# OR.. transpose(reverse_row(matrix))
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[list(lowerCAmelCase_ ) for x in zip(*lowerCAmelCase_ )]
return matrix
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =matrix[::-1]
return matrix
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[x[::-1] for x in matrix]
return matrix
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
for i in matrix:
print(*lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 90 counterclockwise:\n")
print_matrix(rotate_aa(matrix))
_lowerCamelCase =make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 180:\n")
print_matrix(rotate_aaa(matrix))
_lowerCamelCase =make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 270 counterclockwise:\n")
print_matrix(rotate_aaa(matrix))
| 334 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCAmelCase ( self : Optional[Any] ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCAmelCase ( self : Union[str, Any] ):
# This test is for deprecated behavior and can be removed in v5
try:
SCREAMING_SNAKE_CASE =tempfile.mktemp()
with open(snake_case ,'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case )
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case )
finally:
os.remove(snake_case )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' ,'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCAmelCase ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def _lowerCAmelCase ( cls : List[Any] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Tuple ):
try:
delete_repo(token=cls._token ,repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def _lowerCAmelCase ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def _lowerCAmelCase ( self : str ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case )
bert_tokenizer.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case )
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] )
def _lowerCAmelCase ( self : Optional[Any] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
SCREAMING_SNAKE_CASE =Trie()
SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case ,['AB', 'C'] )
| 334 | 1 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowerCamelCase ={
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if args.student_type == "roberta":
SCREAMING_SNAKE_CASE =False
elif args.student_type == "gpt2":
SCREAMING_SNAKE_CASE =False
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if args.student_type == "roberta":
SCREAMING_SNAKE_CASE =False
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Training' )
parser.add_argument('--force', action='store_true', help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path', type=lowerCAmelCase_, required=lowerCAmelCase_, help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file', type=lowerCAmelCase_, required=lowerCAmelCase_, help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.', )
parser.add_argument(
'--student_type', type=lowerCAmelCase_, choices=['distilbert', 'roberta', 'gpt2'], required=lowerCAmelCase_, help='The student type (DistilBERT, RoBERTa).', )
parser.add_argument('--student_config', type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type', choices=['bert', 'roberta', 'gpt2'], required=lowerCAmelCase_, help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name', type=lowerCAmelCase_, required=lowerCAmelCase_, help='The teacher model.' )
parser.add_argument('--temperature', default=2.0, type=lowerCAmelCase_, help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce', default=0.5, type=lowerCAmelCase_, help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm', default=0.0, type=lowerCAmelCase_, help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.', )
parser.add_argument('--alpha_clm', default=0.5, type=lowerCAmelCase_, help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse', default=0.0, type=lowerCAmelCase_, help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos', default=0.0, type=lowerCAmelCase_, help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm', action='store_true', help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop', default=0.15, type=lowerCAmelCase_, help='Proportion of tokens for which we need to make a prediction.', )
parser.add_argument('--word_mask', default=0.8, type=lowerCAmelCase_, help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep', default=0.1, type=lowerCAmelCase_, help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand', default=0.1, type=lowerCAmelCase_, help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing', default=0.7, type=lowerCAmelCase_, help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).', )
parser.add_argument('--token_counts', type=lowerCAmelCase_, help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask', action='store_true', help='If true, compute the distillation loss only the [MLM] prediction distribution.', )
parser.add_argument(
'--freeze_pos_embs', action='store_true', help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.', )
parser.add_argument(
'--freeze_token_type_embds', action='store_true', help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.', )
parser.add_argument('--n_epoch', type=lowerCAmelCase_, default=3, help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size', type=lowerCAmelCase_, default=5, help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size', action='store_false', help='If true, group sequences that have similar length into the same batch. Default is true.', )
parser.add_argument(
'--gradient_accumulation_steps', type=lowerCAmelCase_, default=50, help='Gradient accumulation for larger training batches.', )
parser.add_argument('--warmup_prop', default=0.05, type=lowerCAmelCase_, help='Linear warmup proportion.' )
parser.add_argument('--weight_decay', default=0.0, type=lowerCAmelCase_, help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate', default=5e-4, type=lowerCAmelCase_, help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon', default=1e-6, type=lowerCAmelCase_, help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm', default=5.0, type=lowerCAmelCase_, help='Max gradient norm.' )
parser.add_argument('--initializer_range', default=0.02, type=lowerCAmelCase_, help='Random initialization range.' )
parser.add_argument(
'--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit', )
parser.add_argument(
'--fp16_opt_level', type=lowerCAmelCase_, default='O1', help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
), )
parser.add_argument('--n_gpu', type=lowerCAmelCase_, default=1, help='Number of GPUs in the node.' )
parser.add_argument('--local_rank', type=lowerCAmelCase_, default=-1, help='Distributed training - Local rank' )
parser.add_argument('--seed', type=lowerCAmelCase_, default=56, help='Random seed' )
parser.add_argument('--log_interval', type=lowerCAmelCase_, default=500, help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval', type=lowerCAmelCase_, default=4000, help='Checkpoint interval.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
sanity_checks(lowerCAmelCase_ )
# ARGS #
init_gpu_params(lowerCAmelCase_ )
set_seed(lowerCAmelCase_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'Experiment will be dumped and logged in {args.dump_path}' )
# SAVE PARAMS #
logger.info(F'Param: {args}' )
with open(os.path.join(args.dump_path, 'parameters.json' ), 'w' ) as f:
json.dump(vars(lowerCAmelCase_ ), lowerCAmelCase_, indent=4 )
git_log(args.dump_path )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =MODEL_CLASSES[args.student_type]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
SCREAMING_SNAKE_CASE =teacher_tokenizer_class.from_pretrained(args.teacher_name )
SCREAMING_SNAKE_CASE ={}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
SCREAMING_SNAKE_CASE =tokenizer.all_special_tokens.index(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =tokenizer.all_special_ids[idx]
logger.info(F'Special tokens {special_tok_ids}' )
SCREAMING_SNAKE_CASE =special_tok_ids
SCREAMING_SNAKE_CASE =tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'Loading data from {args.data_file}' )
with open(args.data_file, 'rb' ) as fp:
SCREAMING_SNAKE_CASE =pickle.load(lowerCAmelCase_ )
if args.mlm:
logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' )
with open(args.token_counts, 'rb' ) as fp:
SCREAMING_SNAKE_CASE =pickle.load(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.maximum(lowerCAmelCase_, 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
SCREAMING_SNAKE_CASE =0.0 # do not predict special tokens
SCREAMING_SNAKE_CASE =torch.from_numpy(lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =LmSeqsDataset(params=lowerCAmelCase_, data=lowerCAmelCase_ )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'Loading student config from {args.student_config}' )
SCREAMING_SNAKE_CASE =student_config_class.from_pretrained(args.student_config )
SCREAMING_SNAKE_CASE =True
if args.student_pretrained_weights is not None:
logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' )
SCREAMING_SNAKE_CASE =student_model_class.from_pretrained(args.student_pretrained_weights, config=lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =student_model_class(lowerCAmelCase_ )
if args.n_gpu > 0:
student.to(F'cuda:{args.local_rank}' )
logger.info('Student loaded.' )
# TEACHER #
SCREAMING_SNAKE_CASE =teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=lowerCAmelCase_ )
if args.n_gpu > 0:
teacher.to(F'cuda:{args.local_rank}' )
logger.info(F'Teacher loaded from {args.teacher_name}.' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(lowerCAmelCase_, lowerCAmelCase_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(lowerCAmelCase_, lowerCAmelCase_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
SCREAMING_SNAKE_CASE =Distiller(
params=lowerCAmelCase_, dataset=lowerCAmelCase_, token_probs=lowerCAmelCase_, student=lowerCAmelCase_, teacher=lowerCAmelCase_ )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 334 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
_lowerCamelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )
return sd
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =OrderedDict()
SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
SCREAMING_SNAKE_CASE =key
for name_pair in rename_keys_prefix:
SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] )
SCREAMING_SNAKE_CASE =d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
SCREAMING_SNAKE_CASE ='pretraining'
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
SCREAMING_SNAKE_CASE ='multichoice'
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
SCREAMING_SNAKE_CASE ='vqa_advanced'
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129}
SCREAMING_SNAKE_CASE ='vqa'
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={
'visual_embedding_dim': 1024,
'num_labels': 2,
}
SCREAMING_SNAKE_CASE ='nlvr'
SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ )
# Load State Dict
SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ )
if model_type == "pretraining":
SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ )
elif model_type == "vqa":
SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ )
elif model_type == "nlvr":
SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ )
elif model_type == "multichoice":
SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Save Checkpoints
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
_lowerCamelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 334 | 1 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if len(lowerCAmelCase_ ) <= 1 or n <= 1:
return
insert_next(lowerCAmelCase_, n - 1 )
rec_insertion_sort(lowerCAmelCase_, n - 1 )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if index >= len(lowerCAmelCase_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =(
collection[index],
collection[index - 1],
)
insert_next(lowerCAmelCase_, index + 1 )
if __name__ == "__main__":
_lowerCamelCase =input("Enter integers separated by spaces: ")
_lowerCamelCase =[int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'nllb-moe'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =encoder_ffn_dim
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =encoder_attention_heads
SCREAMING_SNAKE_CASE =decoder_ffn_dim
SCREAMING_SNAKE_CASE =decoder_layers
SCREAMING_SNAKE_CASE =decoder_attention_heads
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =activation_dropout
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =encoder_layerdrop
SCREAMING_SNAKE_CASE =decoder_layerdrop
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =encoder_layers
SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE =router_z_loss_coef
SCREAMING_SNAKE_CASE =router_aux_loss_coef
SCREAMING_SNAKE_CASE =decoder_sparse_step
SCREAMING_SNAKE_CASE =encoder_sparse_step
SCREAMING_SNAKE_CASE =num_experts
SCREAMING_SNAKE_CASE =expert_capacity
SCREAMING_SNAKE_CASE =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
SCREAMING_SNAKE_CASE =router_dtype
SCREAMING_SNAKE_CASE =router_ignore_padding_tokens
SCREAMING_SNAKE_CASE =batch_prioritized_routing
SCREAMING_SNAKE_CASE =second_expert_policy
SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE =moe_token_dropout
SCREAMING_SNAKE_CASE =output_router_logits
super().__init__(
pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
| 334 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'gpt_bigcode'
__UpperCAmelCase = ['past_key_values']
__UpperCAmelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Optional[int] ,snake_case : Union[str, Any]=50257 ,snake_case : Optional[int]=1024 ,snake_case : Optional[int]=768 ,snake_case : Dict=12 ,snake_case : Dict=12 ,snake_case : str=None ,snake_case : List[str]="gelu_pytorch_tanh" ,snake_case : Optional[int]=0.1 ,snake_case : Tuple=0.1 ,snake_case : Optional[Any]=0.1 ,snake_case : Dict=1e-5 ,snake_case : List[str]=0.02 ,snake_case : Dict=True ,snake_case : Tuple=True ,snake_case : Optional[int]=50256 ,snake_case : Dict=50256 ,snake_case : Any=True ,snake_case : Any=True ,snake_case : Optional[int]=True ,**snake_case : str ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =n_positions
SCREAMING_SNAKE_CASE =n_embd
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =n_inner
SCREAMING_SNAKE_CASE =activation_function
SCREAMING_SNAKE_CASE =resid_pdrop
SCREAMING_SNAKE_CASE =embd_pdrop
SCREAMING_SNAKE_CASE =attn_pdrop
SCREAMING_SNAKE_CASE =layer_norm_epsilon
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scale_attn_weights
SCREAMING_SNAKE_CASE =use_cache
SCREAMING_SNAKE_CASE =attention_softmax_in_fpaa
SCREAMING_SNAKE_CASE =scale_attention_softmax_in_fpaa
SCREAMING_SNAKE_CASE =multi_query
SCREAMING_SNAKE_CASE =bos_token_id
SCREAMING_SNAKE_CASE =eos_token_id
super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case )
| 334 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
SCREAMING_SNAKE_CASE =192
SCREAMING_SNAKE_CASE =768
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =3
SCREAMING_SNAKE_CASE =[800, 1333]
SCREAMING_SNAKE_CASE =False
elif yolos_name == "yolos_s_dWr":
SCREAMING_SNAKE_CASE =330
SCREAMING_SNAKE_CASE =14
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =1320
elif "yolos_s" in yolos_name:
SCREAMING_SNAKE_CASE =384
SCREAMING_SNAKE_CASE =1536
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =6
elif "yolos_b" in yolos_name:
SCREAMING_SNAKE_CASE =[800, 1344]
SCREAMING_SNAKE_CASE =91
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE ='coco-detection-id2label.json'
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
return config
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE =state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
SCREAMING_SNAKE_CASE =state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE =in_proj_weight[: config.hidden_size, :]
SCREAMING_SNAKE_CASE =in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE =in_proj_weight[-config.hidden_size :, :]
SCREAMING_SNAKE_CASE =in_proj_bias[-config.hidden_size :]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if "backbone" in name:
SCREAMING_SNAKE_CASE =name.replace('backbone', 'vit' )
if "cls_token" in name:
SCREAMING_SNAKE_CASE =name.replace('cls_token', 'embeddings.cls_token' )
if "det_token" in name:
SCREAMING_SNAKE_CASE =name.replace('det_token', 'embeddings.detection_tokens' )
if "mid_pos_embed" in name:
SCREAMING_SNAKE_CASE =name.replace('mid_pos_embed', 'encoder.mid_position_embeddings' )
if "pos_embed" in name:
SCREAMING_SNAKE_CASE =name.replace('pos_embed', 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE =name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "blocks" in name:
SCREAMING_SNAKE_CASE =name.replace('blocks', 'encoder.layer' )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE =name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
SCREAMING_SNAKE_CASE =name.replace('attn', 'attention.self' )
if "norm1" in name:
SCREAMING_SNAKE_CASE =name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
SCREAMING_SNAKE_CASE =name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE =name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE =name.replace('mlp.fc2', 'output.dense' )
if "class_embed" in name:
SCREAMING_SNAKE_CASE =name.replace('class_embed', 'class_labels_classifier' )
if "bbox_embed" in name:
SCREAMING_SNAKE_CASE =name.replace('bbox_embed', 'bbox_predictor' )
if "vit.norm" in name:
SCREAMING_SNAKE_CASE =name.replace('vit.norm', 'vit.layernorm' )
return name
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE =orig_state_dict.pop(lowerCAmelCase_ )
if "qkv" in key:
SCREAMING_SNAKE_CASE =key.split('.' )
SCREAMING_SNAKE_CASE =int(key_split[2] )
SCREAMING_SNAKE_CASE =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE =val[:dim, :]
SCREAMING_SNAKE_CASE =val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE =val[-dim:, :]
else:
SCREAMING_SNAKE_CASE =val[:dim]
SCREAMING_SNAKE_CASE =val[dim : dim * 2]
SCREAMING_SNAKE_CASE =val[-dim:]
else:
SCREAMING_SNAKE_CASE =val
return orig_state_dict
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='http://images.cocodataset.org/val2017/000000039769.jpg'
SCREAMING_SNAKE_CASE =Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_yolos_config(lowerCAmelCase_ )
# load original state_dict
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )['model']
# load 🤗 model
SCREAMING_SNAKE_CASE =YolosForObjectDetection(lowerCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE =convert_state_dict(lowerCAmelCase_, lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Check outputs on an image, prepared by YolosImageProcessor
SCREAMING_SNAKE_CASE =800 if yolos_name != 'yolos_ti' else 512
SCREAMING_SNAKE_CASE =YolosImageProcessor(format='coco_detection', size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =image_processor(images=prepare_img(), return_tensors='pt' )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =outputs.logits, outputs.pred_boxes
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =None, None
if yolos_name == "yolos_ti":
SCREAMING_SNAKE_CASE =torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
SCREAMING_SNAKE_CASE =torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
SCREAMING_SNAKE_CASE =torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
SCREAMING_SNAKE_CASE =torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
SCREAMING_SNAKE_CASE =torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
SCREAMING_SNAKE_CASE =torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
SCREAMING_SNAKE_CASE =torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
SCREAMING_SNAKE_CASE =torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
SCREAMING_SNAKE_CASE =torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
SCREAMING_SNAKE_CASE =torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(F'Unknown yolos_name: {yolos_name}' )
assert torch.allclose(logits[0, :3, :3], lowerCAmelCase_, atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3], lowerCAmelCase_, atol=1e-4 )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase_ )
if push_to_hub:
SCREAMING_SNAKE_CASE ={
'yolos_ti': 'yolos-tiny',
'yolos_s_200_pre': 'yolos-small',
'yolos_s_300_pre': 'yolos-small-300',
'yolos_s_dWr': 'yolos-small-dwr',
'yolos_base': 'yolos-base',
}
print('Pushing to the hub...' )
SCREAMING_SNAKE_CASE =model_mapping[yolos_name]
image_processor.push_to_hub(lowerCAmelCase_, organization='hustvl' )
model.push_to_hub(lowerCAmelCase_, organization='hustvl' )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
_lowerCamelCase =parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 | 1 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def snake_case__ ( lowerCAmelCase_ = 3 ):
"""simple docstring"""
if isinstance(lowerCAmelCase_, lowerCAmelCase_ ):
raise TypeError('number of qubits must be a integer.' )
if number_of_qubits <= 0:
raise ValueError('number of qubits must be > 0.' )
if math.floor(lowerCAmelCase_ ) != number_of_qubits:
raise ValueError('number of qubits must be exact integer.' )
if number_of_qubits > 10:
raise ValueError('number of qubits too large to simulate(>10).' )
SCREAMING_SNAKE_CASE =QuantumRegister(lowerCAmelCase_, 'qr' )
SCREAMING_SNAKE_CASE =ClassicalRegister(lowerCAmelCase_, 'cr' )
SCREAMING_SNAKE_CASE =QuantumCircuit(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =number_of_qubits
for i in range(lowerCAmelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(lowerCAmelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j), lowerCAmelCase_, lowerCAmelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(lowerCAmelCase_, number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(lowerCAmelCase_, lowerCAmelCase_ )
# simulate with 10000 shots
SCREAMING_SNAKE_CASE =Aer.get_backend('qasm_simulator' )
SCREAMING_SNAKE_CASE =execute(lowerCAmelCase_, lowerCAmelCase_, shots=10000 )
return job.result().get_counts(lowerCAmelCase_ )
if __name__ == "__main__":
print(
f'Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'
)
| 334 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class a_ :
"""simple docstring"""
def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =100
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =out_indices
SCREAMING_SNAKE_CASE =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE =num_patches + 1
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
SCREAMING_SNAKE_CASE =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ):
SCREAMING_SNAKE_CASE =BeitModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.type_sequence_label_size
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs
SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =BeitModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
SCREAMING_SNAKE_CASE =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(snake_case )
SCREAMING_SNAKE_CASE =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE =['pixel_values']
self.assertListEqual(arg_names[:1] ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case )
def _lowerCAmelCase ( self : Any ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]:
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE =False
SCREAMING_SNAKE_CASE =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE =model_class(snake_case )
model.gradient_checkpointing_enable()
model.to(snake_case )
model.train()
SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case )
SCREAMING_SNAKE_CASE =model(**snake_case ).loss
loss.backward()
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE =_config_zero_init(snake_case )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE =model_class(config=snake_case )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,)
@slow
def _lowerCAmelCase ( self : List[str] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : Tuple ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case )
# prepare bool_masked_pos
SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 1000) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =281
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
snake_case )
SCREAMING_SNAKE_CASE =self.default_image_processor
SCREAMING_SNAKE_CASE =prepare_img()
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 21841) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case )
self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) )
SCREAMING_SNAKE_CASE =2396
self.assertEqual(logits.argmax(-1 ).item() ,snake_case )
@slow
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape ,snake_case )
SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] ,device=snake_case ,)
else:
SCREAMING_SNAKE_CASE =torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] ,device=snake_case ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
SCREAMING_SNAKE_CASE =model.to(snake_case )
SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case )
SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' )
SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] )
SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**snake_case )
SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] )
SCREAMING_SNAKE_CASE =torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,snake_case )
SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case )
SCREAMING_SNAKE_CASE =torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape ,snake_case )
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase ={
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : List[str] ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 1
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = True
def __call__( self : str ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch:
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any ,snake_case : nn.Module ):
super().__init__()
SCREAMING_SNAKE_CASE =[]
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f'Unexpected layer name {k}'
SCREAMING_SNAKE_CASE =len(snake_case ) + 1
feature_blocks.append((f'res{block_index}', v) )
SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case )
def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ):
return get_trunk_forward_outputs(
snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ):
SCREAMING_SNAKE_CASE =x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Optional[Any] ,snake_case : str ):
# default to timm!
if x not in self:
SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case )
SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) )
else:
SCREAMING_SNAKE_CASE =super().__getitem__(snake_case )
return val
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __getitem__( self : int ,snake_case : str ):
if "seer" in x and "in1k" not in x:
SCREAMING_SNAKE_CASE =RegNetModel
else:
SCREAMING_SNAKE_CASE =RegNetForImageClassification
return val
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
for from_key, to_key in keys:
SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone()
print(F'Copied key={from_key} to={to_key}' )
return to_state_dict
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func()
SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
if from_state_dict is not None:
SCREAMING_SNAKE_CASE =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ )
our_model.load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =(
our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state
)
SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1]
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ),
}
SCREAMING_SNAKE_CASE =NameToOurModelFuncMap()
SCREAMING_SNAKE_CASE =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]:
SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' )
SCREAMING_SNAKE_CASE =model_func()
# check if we have a head, if yes add it
SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model']
SCREAMING_SNAKE_CASE =model_state_dict['trunk']
model.load_state_dict(lowerCAmelCase_ )
return model.eval(), model_state_dict["heads"]
# pretrained
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
SCREAMING_SNAKE_CASE =partial(
lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported regnet* architecture,"
" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 334 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase =16
_lowerCamelCase =32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE =datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE =16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE =8
else:
SCREAMING_SNAKE_CASE =None
return tokenizer.pad(
lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =DataLoader(
tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase =mocked_dataloaders # noqa: F811
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1":
SCREAMING_SNAKE_CASE =2
# Initialize accelerator
SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE =config['lr']
SCREAMING_SNAKE_CASE =int(config['num_epochs'] )
SCREAMING_SNAKE_CASE =int(config['seed'] )
SCREAMING_SNAKE_CASE =int(config['batch_size'] )
SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCAmelCase_ )
def inner_training_loop(lowerCAmelCase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE =model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare(
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=lowerCAmelCase_, references=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.', )
parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(lowerCAmelCase_, lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 334 | 1 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
_lowerCamelCase =logging.getLogger(__name__)
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =git.Repo(search_parent_directories=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'repo_id': str(lowerCAmelCase_ ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
}
with open(os.path.join(lowerCAmelCase_, 'git_log.json' ), 'w' ) as f:
json.dump(lowerCAmelCase_, lowerCAmelCase_, indent=4 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if params.n_gpu <= 0:
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =-1
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs' )
if params.n_gpu > 1:
assert params.local_rank != -1
SCREAMING_SNAKE_CASE =int(os.environ['WORLD_SIZE'] )
SCREAMING_SNAKE_CASE =int(os.environ['N_GPU_NODE'] )
SCREAMING_SNAKE_CASE =int(os.environ['RANK'] )
# number of nodes / node ID
SCREAMING_SNAKE_CASE =params.world_size // params.n_gpu_per_node
SCREAMING_SNAKE_CASE =params.global_rank // params.n_gpu_per_node
SCREAMING_SNAKE_CASE =True
assert params.n_nodes == int(os.environ['N_NODES'] )
assert params.node_id == int(os.environ['NODE_RANK'] )
# local job (single GPU)
else:
assert params.local_rank == -1
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =0
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =1
SCREAMING_SNAKE_CASE =False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
SCREAMING_SNAKE_CASE =params.node_id == 0 and params.local_rank == 0
SCREAMING_SNAKE_CASE =params.n_nodes > 1
# summary
SCREAMING_SNAKE_CASE =F'--- Global rank: {params.global_rank} - '
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes )
logger.info(PREFIX + 'Node ID : %i' % params.node_id )
logger.info(PREFIX + 'Local rank : %i' % params.local_rank )
logger.info(PREFIX + 'World size : %i' % params.world_size )
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node )
logger.info(PREFIX + 'Master : %s' % str(params.is_master ) )
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) )
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) )
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed' )
torch.distributed.init_process_group(
init_method='env://', backend='nccl', )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 334 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
return " ".join(
''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowerCamelCase ={"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_lowerCamelCase ="sshleifer/mar_enro_6_3_student"
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ):
super().setUp()
SCREAMING_SNAKE_CASE =cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,)
SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ):
MarianMTModel.from_pretrained(snake_case )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE ={
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] ,17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro'
SCREAMING_SNAKE_CASE ={
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
SCREAMING_SNAKE_CASE =(
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' )
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' )
for k, v in env_vars_to_replace.items():
SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) )
SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' )
SCREAMING_SNAKE_CASE =6
SCREAMING_SNAKE_CASE =(
['distillation.py']
+ bash_script.split()
+ [
f'--output_dir={output_dir}',
'--gpus=1',
'--learning_rate=1e-3',
f'--num_train_epochs={epochs}',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(snake_case ,'argv' ,snake_case ):
SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case )
SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() )
SCREAMING_SNAKE_CASE =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
SCREAMING_SNAKE_CASE =distill_main(snake_case )
# Check metrics
SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path )
SCREAMING_SNAKE_CASE =metrics['val'][0]
SCREAMING_SNAKE_CASE =metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case )
# check lightning ckpt can be loaded and has a reasonable statedict
SCREAMING_SNAKE_CASE =os.listdir(snake_case )
SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0]
SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case )
SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' )
SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if not all(char in '01' for char in bin_string ):
raise ValueError('Non-binary value was passed to the function' )
if not bin_string:
raise ValueError('Empty string was passed to the function' )
SCREAMING_SNAKE_CASE =''
while len(lowerCAmelCase_ ) % 3 != 0:
SCREAMING_SNAKE_CASE ='0' + bin_string
SCREAMING_SNAKE_CASE =[
bin_string[index : index + 3]
for index in range(len(lowerCAmelCase_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
SCREAMING_SNAKE_CASE =0
for index, val in enumerate(lowerCAmelCase_ ):
oct_val += int(2 ** (2 - index) * int(lowerCAmelCase_ ) )
oct_string += str(lowerCAmelCase_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 334 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_vision_model'
def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =attention_dropout
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =qkv_bias
@classmethod
def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip_2_qformer'
def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,):
super().__init__(pad_token_id=snake_case ,**snake_case )
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =position_embedding_type
SCREAMING_SNAKE_CASE =cross_attention_frequency
SCREAMING_SNAKE_CASE =encoder_hidden_size
@classmethod
def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ):
cls._set_token_in_kwargs(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
SCREAMING_SNAKE_CASE =config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case ,**snake_case )
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'blip-2'
__UpperCAmelCase = True
def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ):
super().__init__(**snake_case )
if vision_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
SCREAMING_SNAKE_CASE ={}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case )
SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case )
SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt'
SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case )
SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE =num_query_tokens
SCREAMING_SNAKE_CASE =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE =1.0
SCREAMING_SNAKE_CASE =0.02
@classmethod
def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,):
return cls(
vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,)
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE =self.text_config.to_dict()
SCREAMING_SNAKE_CASE =self.__class__.model_type
return output
| 334 | 1 |
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if number < 0:
raise ValueError('number must not be negative' )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,):
SCREAMING_SNAKE_CASE =compute_mauve(
p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,)
return out
| 334 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCamelCase =get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
@require_sentencepiece
@require_tokenizers
class a_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = SpeechTaTokenizer
__UpperCAmelCase = False
__UpperCAmelCase = True
def _lowerCAmelCase ( self : Optional[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE =SpeechTaTokenizer(snake_case )
SCREAMING_SNAKE_CASE =AddedToken('<mask>' ,lstrip=snake_case ,rstrip=snake_case )
SCREAMING_SNAKE_CASE =mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[Any] ):
SCREAMING_SNAKE_CASE ='this is a test'
SCREAMING_SNAKE_CASE ='this is a test'
return input_text, output_text
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Any ,snake_case : int=False ,snake_case : str=20 ,snake_case : Any=5 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.get_input_output_texts(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.encode(snake_case ,add_special_tokens=snake_case )
SCREAMING_SNAKE_CASE =tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case )
return text, ids
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE ='<pad>'
SCREAMING_SNAKE_CASE =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) ,snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'<s>' )
self.assertEqual(vocab_keys[1] ,'<pad>' )
self.assertEqual(vocab_keys[-4] ,'œ' )
self.assertEqual(vocab_keys[-2] ,'<mask>' )
self.assertEqual(vocab_keys[-1] ,'<ctc_blank>' )
self.assertEqual(len(snake_case ) ,81 )
def _lowerCAmelCase ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size ,79 )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.get_tokenizers(do_lower_case=snake_case )
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
SCREAMING_SNAKE_CASE =tokenizer.vocab_size
SCREAMING_SNAKE_CASE =len(snake_case )
self.assertNotEqual(snake_case ,0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
SCREAMING_SNAKE_CASE =['aaaaa bbbbbb', 'cccccccccdddddddd']
SCREAMING_SNAKE_CASE =tokenizer.add_tokens(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.vocab_size
SCREAMING_SNAKE_CASE =len(snake_case )
self.assertNotEqual(snake_case ,0 )
self.assertEqual(snake_case ,snake_case )
self.assertEqual(snake_case ,len(snake_case ) )
self.assertEqual(snake_case ,all_size + len(snake_case ) )
SCREAMING_SNAKE_CASE =tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' ,add_special_tokens=snake_case )
self.assertGreaterEqual(len(snake_case ) ,4 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
SCREAMING_SNAKE_CASE ={'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
SCREAMING_SNAKE_CASE =tokenizer.add_special_tokens(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.vocab_size
SCREAMING_SNAKE_CASE =len(snake_case )
self.assertNotEqual(snake_case ,0 )
self.assertEqual(snake_case ,snake_case )
self.assertEqual(snake_case ,len(snake_case ) )
self.assertEqual(snake_case ,all_size_a + len(snake_case ) )
SCREAMING_SNAKE_CASE =tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' ,add_special_tokens=snake_case )
self.assertGreaterEqual(len(snake_case ) ,6 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] ,tokens[1] )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokens[-4] )
self.assertEqual(tokens[0] ,tokenizer.eos_token_id )
self.assertEqual(tokens[-3] ,tokenizer.pad_token_id )
def _lowerCAmelCase ( self : Tuple ):
pass
def _lowerCAmelCase ( self : List[str] ):
pass
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(snake_case ,[SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,)
SCREAMING_SNAKE_CASE =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_ids(snake_case )
# fmt: off
self.assertListEqual(snake_case ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
SCREAMING_SNAKE_CASE =tokenizer.convert_ids_to_tokens(snake_case )
self.assertListEqual(
snake_case ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def _lowerCAmelCase ( self : Tuple ):
# Use custom sequence because this tokenizer does not handle numbers.
SCREAMING_SNAKE_CASE =[
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
SCREAMING_SNAKE_CASE ={
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case ,model_name='microsoft/speecht5_asr' ,revision='c5ef64c71905caeccde0e4462ef3f9077224c524' ,sequences=snake_case ,)
| 334 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'vit_mae'
def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =layer_norm_eps
SCREAMING_SNAKE_CASE =image_size
SCREAMING_SNAKE_CASE =patch_size
SCREAMING_SNAKE_CASE =num_channels
SCREAMING_SNAKE_CASE =qkv_bias
SCREAMING_SNAKE_CASE =decoder_num_attention_heads
SCREAMING_SNAKE_CASE =decoder_hidden_size
SCREAMING_SNAKE_CASE =decoder_num_hidden_layers
SCREAMING_SNAKE_CASE =decoder_intermediate_size
SCREAMING_SNAKE_CASE =mask_ratio
SCREAMING_SNAKE_CASE =norm_pix_loss
| 334 | 1 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
_lowerCamelCase =logging.getLogger(__name__)
_lowerCamelCase =tf.data.AUTOTUNE
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Train a masked language model on TPU.' )
parser.add_argument(
'--pretrained_model_config', type=lowerCAmelCase_, default='roberta-base', help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!', )
parser.add_argument(
'--tokenizer', type=lowerCAmelCase_, default='unigram-tokenizer-wikitext', help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.', )
parser.add_argument(
'--per_replica_batch_size', type=lowerCAmelCase_, default=8, help='Batch size per TPU core.', )
parser.add_argument(
'--no_tpu', action='store_true', help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.', )
parser.add_argument(
'--tpu_name', type=lowerCAmelCase_, help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.', default='local', )
parser.add_argument(
'--tpu_zone', type=lowerCAmelCase_, help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.', )
parser.add_argument(
'--gcp_project', type=lowerCAmelCase_, help='Google cloud project name. Only used for non-Colab TPU nodes.' )
parser.add_argument(
'--bfloat16', action='store_true', help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.', )
parser.add_argument(
'--train_dataset', type=lowerCAmelCase_, help='Path to training dataset to load. If the path begins with `gs://`'
' then the dataset will be loaded from a Google Cloud Storage bucket.', )
parser.add_argument(
'--shuffle_buffer_size', type=lowerCAmelCase_, default=2**18, help='Size of the shuffle buffer (in samples)', )
parser.add_argument(
'--eval_dataset', type=lowerCAmelCase_, help='Path to evaluation dataset to load. If the path begins with `gs://`'
' then the dataset will be loaded from a Google Cloud Storage bucket.', )
parser.add_argument(
'--num_epochs', type=lowerCAmelCase_, default=1, help='Number of epochs to train for.', )
parser.add_argument(
'--learning_rate', type=lowerCAmelCase_, default=1e-4, help='Learning rate to use for training.', )
parser.add_argument(
'--weight_decay_rate', type=lowerCAmelCase_, default=1e-3, help='Weight decay rate to use for training.', )
parser.add_argument(
'--max_length', type=lowerCAmelCase_, default=512, help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py', )
parser.add_argument(
'--mlm_probability', type=lowerCAmelCase_, default=0.15, help='Fraction of tokens to mask during training.', )
parser.add_argument('--output_dir', type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to save model checkpoints to.' )
parser.add_argument('--hub_model_id', type=lowerCAmelCase_, help='Model ID to upload to on the Hugging Face Hub.' )
SCREAMING_SNAKE_CASE =parser.parse_args()
return args
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
try:
if args.tpu_name:
SCREAMING_SNAKE_CASE =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
SCREAMING_SNAKE_CASE =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or '
'--gcp_project. When running on a TPU VM, use --tpu_name local.' )
tf.config.experimental_connect_to_cluster(lowerCAmelCase_ )
tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase_ )
return tpu
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =0
for file in file_list:
SCREAMING_SNAKE_CASE =file.split('/' )[-1]
SCREAMING_SNAKE_CASE =re.search(r'-\d+-(\d+)\.tfrecord', lowerCAmelCase_ ).group(1 )
SCREAMING_SNAKE_CASE =int(lowerCAmelCase_ )
num_samples += sample_count
return num_samples
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =count_samples(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =tf.data.Dataset.from_tensor_slices(lowerCAmelCase_ )
if shuffle:
SCREAMING_SNAKE_CASE =dataset.shuffle(len(lowerCAmelCase_ ) )
SCREAMING_SNAKE_CASE =tf.data.TFRecordDataset(lowerCAmelCase_, num_parallel_reads=lowerCAmelCase_ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
SCREAMING_SNAKE_CASE =dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase_ ) )
SCREAMING_SNAKE_CASE =dataset.map(lowerCAmelCase_, num_parallel_calls=lowerCAmelCase_ )
if shuffle:
assert shuffle_buffer_size is not None
SCREAMING_SNAKE_CASE =dataset.shuffle(args.shuffle_buffer_size )
SCREAMING_SNAKE_CASE =dataset.batch(lowerCAmelCase_, drop_remainder=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =dataset.map(lowerCAmelCase_, num_parallel_calls=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =dataset.prefetch(lowerCAmelCase_ )
return dataset
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if not args.no_tpu:
SCREAMING_SNAKE_CASE =initialize_tpu(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =tf.distribute.TPUStrategy(lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =tf.distribute.OneDeviceStrategy(device='/gpu:0' )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(args.tokenizer )
SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(args.pretrained_model_config )
SCREAMING_SNAKE_CASE =tokenizer.vocab_size
SCREAMING_SNAKE_CASE =tf.io.gfile.glob(os.path.join(args.train_dataset, '*.tfrecord' ) )
if not training_records:
raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' )
SCREAMING_SNAKE_CASE =tf.io.gfile.glob(os.path.join(args.eval_dataset, '*.tfrecord' ) )
if not eval_records:
raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' )
SCREAMING_SNAKE_CASE =count_samples(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
SCREAMING_SNAKE_CASE =steps_per_epoch * args.num_epochs
with strategy.scope():
SCREAMING_SNAKE_CASE =TFAutoModelForMaskedLM.from_config(lowerCAmelCase_ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =create_optimizer(
num_train_steps=lowerCAmelCase_, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowerCAmelCase_, metrics=['accuracy'] )
def decode_fn(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={
'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowerCAmelCase_, lowerCAmelCase_ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
SCREAMING_SNAKE_CASE =DataCollatorForLanguageModeling(
tokenizer=lowerCAmelCase_, mlm_probability=args.mlm_probability, mlm=lowerCAmelCase_, return_tensors='tf' )
def mask_with_collator(lowerCAmelCase_ ):
# TF really needs an isin() function
SCREAMING_SNAKE_CASE =(
~tf.cast(batch['attention_mask'], tf.bool )
| (batch['input_ids'] == tokenizer.cls_token_id)
| (batch['input_ids'] == tokenizer.sep_token_id)
)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =data_collator.tf_mask_tokens(
batch['input_ids'], vocab_size=len(lowerCAmelCase_ ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=lowerCAmelCase_, )
return batch
SCREAMING_SNAKE_CASE =args.per_replica_batch_size * strategy.num_replicas_in_sync
SCREAMING_SNAKE_CASE =prepare_dataset(
lowerCAmelCase_, decode_fn=lowerCAmelCase_, mask_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_, shuffle=lowerCAmelCase_, shuffle_buffer_size=args.shuffle_buffer_size, )
SCREAMING_SNAKE_CASE =prepare_dataset(
lowerCAmelCase_, decode_fn=lowerCAmelCase_, mask_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_, shuffle=lowerCAmelCase_, )
SCREAMING_SNAKE_CASE =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=lowerCAmelCase_ ) )
model.fit(
lowerCAmelCase_, validation_data=lowerCAmelCase_, epochs=args.num_epochs, callbacks=lowerCAmelCase_, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
_lowerCamelCase =parse_args()
main(args)
| 334 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_lowerCamelCase ={
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
def __init__( self : Union[str, Any] ,snake_case : UNetaDModel ,snake_case : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=snake_case ,scheduler=snake_case )
@torch.no_grad()
def __call__( self : Optional[int] ,snake_case : int = 1 ,snake_case : int = 50 ,snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,snake_case : Optional[str] = "pil" ,snake_case : bool = True ,**snake_case : int ,):
SCREAMING_SNAKE_CASE =self.unet.config.sample_size
SCREAMING_SNAKE_CASE =(batch_size, 3, img_size, img_size)
SCREAMING_SNAKE_CASE =self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
SCREAMING_SNAKE_CASE =randn_tensor(snake_case ,generator=snake_case ,device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(snake_case )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
SCREAMING_SNAKE_CASE =self.scheduler.schedule[t]
SCREAMING_SNAKE_CASE =self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.scheduler.add_noise_to_input(snake_case ,snake_case ,generator=snake_case )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
SCREAMING_SNAKE_CASE =(sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
SCREAMING_SNAKE_CASE =self.scheduler.step(snake_case ,snake_case ,snake_case ,snake_case )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
SCREAMING_SNAKE_CASE =(sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample
SCREAMING_SNAKE_CASE =self.scheduler.step_correct(
snake_case ,snake_case ,snake_case ,snake_case ,step_output.prev_sample ,step_output['derivative'] ,)
SCREAMING_SNAKE_CASE =step_output.prev_sample
SCREAMING_SNAKE_CASE =(sample / 2 + 0.5).clamp(0 ,1 )
SCREAMING_SNAKE_CASE =sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE =self.numpy_to_pil(snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case )
| 334 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : Any ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() )
def _lowerCAmelCase ( self : Union[str, Any] ):
with self.assertRaises(snake_case ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : int ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) )
self.assertEqual(arr.type ,pa.intaa() )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : Dict ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) )
self.assertEqual(arr.type ,pa.string() )
@require_pil
def _lowerCAmelCase ( self : int ):
import PIL.Image
SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects:
SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' ,snake_case )
self.assertFalse(kwargs['optimize_list_casting'] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =f.read_all()
SCREAMING_SNAKE_CASE =pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(lowerCAmelCase_ )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
with pytest.raises(lowerCAmelCase_ ):
writer.write({'col_1': 'foo', 'col_2': 1}, key=10 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=10 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
@pytest.mark.parametrize('writer_batch_size', [None, 2, 10] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(
stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1}, key=1 )
writer.write({'col_1': 'bar', 'col_2': 2}, key=2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size', [None, 1, 10] )
@pytest.mark.parametrize(
'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None
with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def snake_case__ ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()}
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' )
with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata )
_check_output(lowerCAmelCase_, 1 )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
if pa.types.is_list(lowerCAmelCase_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if isinstance(lst[0], lowerCAmelCase_ ):
change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE =value
@pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype', [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
], )
@pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=lowerCAmelCase_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow'
with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs, type(lowerCAmelCase_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(lowerCAmelCase_ )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(stream=lowerCAmelCase_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize()
assert num_examples == 2
assert num_bytes > 0
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files', [False, True] )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
import PIL.Image
SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ParquetWriter(
stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() )
SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'], lowerCAmelCase_ )
with open(lowerCAmelCase_, 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] )
SCREAMING_SNAKE_CASE =pa.BufferOutputStream()
with ArrowWriter(stream=lowerCAmelCase_ ) as writer:
writer._build_writer(inferred_schema=lowerCAmelCase_ )
assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
| 334 | 1 |
from __future__ import annotations
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =sorted(numsa + numsa )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()]
_lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 334 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 334 | 1 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={"vocab_file": "vocab.txt"}
_lowerCamelCase ={
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase ={
"facebook/esm2_t6_8M_UR50D": 10_24,
"facebook/esm2_t12_35M_UR50D": 10_24,
}
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
with open(lowerCAmelCase_, 'r' ) as f:
SCREAMING_SNAKE_CASE =f.read().splitlines()
return [l.strip() for l in lines]
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =load_vocab_file(snake_case )
SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE =unk_token
SCREAMING_SNAKE_CASE =cls_token
SCREAMING_SNAKE_CASE =pad_token
SCREAMING_SNAKE_CASE =mask_token
SCREAMING_SNAKE_CASE =eos_token
SCREAMING_SNAKE_CASE =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ):
return text.split()
def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ):
return len(self._id_to_token )
def _lowerCAmelCase ( self : List[str] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _lowerCAmelCase ( self : List[Any] ,snake_case : str ):
return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) )
def _lowerCAmelCase ( self : Any ,snake_case : int ):
return self._id_to_token.get(snake_case ,self.unk_token )
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.cls_token_id]
SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(snake_case ) + [1]
return mask
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ):
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(snake_case ,'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def _lowerCAmelCase ( self : int ):
return self.get_vocab_size(with_added_tokens=snake_case )
def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ):
return super()._add_tokens(snake_case ,special_tokens=snake_case )
| 334 | 1 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self : Dict ,snake_case : List[str]="</s>" ,snake_case : List[str]="<unk>" ,snake_case : Union[str, Any]="<pad>" ,snake_case : Union[str, Any]=125 ,snake_case : Union[str, Any]=None ,**snake_case : int ,):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
SCREAMING_SNAKE_CASE =[f'<extra_id_{i}>' for i in range(snake_case )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
SCREAMING_SNAKE_CASE =len(set(filter(lambda snake_case : bool('extra_id' in str(snake_case ) ) ,snake_case ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the'
' extra_ids tokens' )
SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else pad_token
SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else eos_token
SCREAMING_SNAKE_CASE =AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else unk_token
super().__init__(
eos_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,extra_ids=snake_case ,additional_special_tokens=snake_case ,**snake_case ,)
SCREAMING_SNAKE_CASE =extra_ids
SCREAMING_SNAKE_CASE =2**8 # utf is 8 bits
# define special tokens dict
SCREAMING_SNAKE_CASE ={
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
SCREAMING_SNAKE_CASE =len(self.special_tokens_encoder )
SCREAMING_SNAKE_CASE =len(snake_case )
for i, token in enumerate(snake_case ):
SCREAMING_SNAKE_CASE =self.vocab_size + i - n
SCREAMING_SNAKE_CASE ={v: k for k, v in self.special_tokens_encoder.items()}
@property
def _lowerCAmelCase ( self : List[Any] ):
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def _lowerCAmelCase ( self : Any ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ,snake_case : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case )) + [1]
return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1]
def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ):
if len(snake_case ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =[self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE =self._add_eos_if_not_present(snake_case )
if token_ids_a is None:
return token_ids_a
else:
SCREAMING_SNAKE_CASE =self._add_eos_if_not_present(snake_case )
return token_ids_a + token_ids_a
def _lowerCAmelCase ( self : Dict ,snake_case : str ):
SCREAMING_SNAKE_CASE =[chr(snake_case ) for i in text.encode('utf-8' )]
return tokens
def _lowerCAmelCase ( self : str ,snake_case : Tuple ):
if token in self.special_tokens_encoder:
SCREAMING_SNAKE_CASE =self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
SCREAMING_SNAKE_CASE =self.added_tokens_encoder[token]
elif len(snake_case ) != 1:
SCREAMING_SNAKE_CASE =self.unk_token_id
else:
SCREAMING_SNAKE_CASE =ord(snake_case ) + self._num_special_tokens
return token_id
def _lowerCAmelCase ( self : List[str] ,snake_case : str ):
if index in self.special_tokens_decoder:
SCREAMING_SNAKE_CASE =self.special_tokens_decoder[index]
else:
SCREAMING_SNAKE_CASE =chr(index - self._num_special_tokens )
return token
def _lowerCAmelCase ( self : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =B''
for token in tokens:
if token in self.special_tokens_decoder:
SCREAMING_SNAKE_CASE =self.special_tokens_decoder[token].encode('utf-8' )
elif token in self.added_tokens_decoder:
SCREAMING_SNAKE_CASE =self.special_tokens_decoder[token].encode('utf-8' )
elif token in self.special_tokens_encoder:
SCREAMING_SNAKE_CASE =token.encode('utf-8' )
elif token in self.added_tokens_encoder:
SCREAMING_SNAKE_CASE =token.encode('utf-8' )
else:
SCREAMING_SNAKE_CASE =bytes([ord(snake_case )] )
bstring += tok_string
SCREAMING_SNAKE_CASE =bstring.decode('utf-8' ,errors='ignore' )
return string
def _lowerCAmelCase ( self : Dict ,snake_case : str ,snake_case : Optional[str] = None ):
return ()
| 334 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger()
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(snake_case )
def __call__( self : int ,snake_case : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(snake_case )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 0
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
__UpperCAmelCase = field(default_factory=lowerCamelCase_ )
def __call__( self : int ,snake_case : Tensor ):
SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) )
SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) )
if len(snake_case ) != len(snake_case ):
raise Exception(
f'Numbers of operations are different. Source module has {len(snake_case )} operations while'
f' destination module has {len(snake_case )}.' )
for dest_m, src_m in zip(snake_case ,snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
print(F'Converting {name}...' )
with torch.no_grad():
SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval()
SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) )
module_transfer(lowerCAmelCase_ )
assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowerCAmelCase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, )
# we can use the convnext one
SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, )
print(F'Pushed {checkpoint_name}' )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE =1000
SCREAMING_SNAKE_CASE =(1, num_labels)
SCREAMING_SNAKE_CASE ='huggingface/label-files'
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =idalabel
SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
_lowerCamelCase =parser.parse_args()
_lowerCamelCase =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 334 | 1 |
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict', [
SplitDict(),
SplitDict({'train': SplitInfo(name='train', num_bytes=1337, num_examples=42, dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train', num_bytes=1337, num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
], )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =split_dict._to_yaml_list()
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =SplitDict._from_yaml_list(lowerCAmelCase_ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
SCREAMING_SNAKE_CASE =None
# the split name of split_dict takes over the name of the split info object
SCREAMING_SNAKE_CASE =split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info', [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase_ ), SplitInfo(dataset_name='my_dataset' )] )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 334 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =None
if token is not None:
SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE ='636036'
SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json()
return result["workflow_runs"]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE =workflow_run['id']
break
return workflow_run_id
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE =artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
SCREAMING_SNAKE_CASE ={}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' )
if os.path.isfile(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE ={}
with zipfile.ZipFile(lowerCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase_ ):
# read the file
with z.open(lowerCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' )
return results
| 334 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase ={
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = 'transfo-xl'
__UpperCAmelCase = ['mems']
__UpperCAmelCase = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,):
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =[]
self.cutoffs.extend(snake_case )
if proj_share_all_but_first:
SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs )
else:
SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs )
SCREAMING_SNAKE_CASE =d_model
SCREAMING_SNAKE_CASE =d_embed
SCREAMING_SNAKE_CASE =d_head
SCREAMING_SNAKE_CASE =d_inner
SCREAMING_SNAKE_CASE =div_val
SCREAMING_SNAKE_CASE =pre_lnorm
SCREAMING_SNAKE_CASE =n_layer
SCREAMING_SNAKE_CASE =n_head
SCREAMING_SNAKE_CASE =mem_len
SCREAMING_SNAKE_CASE =same_length
SCREAMING_SNAKE_CASE =attn_type
SCREAMING_SNAKE_CASE =clamp_len
SCREAMING_SNAKE_CASE =sample_softmax
SCREAMING_SNAKE_CASE =adaptive
SCREAMING_SNAKE_CASE =dropout
SCREAMING_SNAKE_CASE =dropatt
SCREAMING_SNAKE_CASE =untie_r
SCREAMING_SNAKE_CASE =init
SCREAMING_SNAKE_CASE =init_range
SCREAMING_SNAKE_CASE =proj_init_std
SCREAMING_SNAKE_CASE =init_std
SCREAMING_SNAKE_CASE =layer_norm_epsilon
super().__init__(eos_token_id=snake_case ,**snake_case )
@property
def _lowerCAmelCase ( self : str ):
# Message copied from Transformer-XL documentation
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 334 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =seq_length
SCREAMING_SNAKE_CASE =is_training
SCREAMING_SNAKE_CASE =use_input_mask
SCREAMING_SNAKE_CASE =use_token_type_ids
SCREAMING_SNAKE_CASE =use_labels
SCREAMING_SNAKE_CASE =vocab_size
SCREAMING_SNAKE_CASE =hidden_size
SCREAMING_SNAKE_CASE =num_hidden_layers
SCREAMING_SNAKE_CASE =num_attention_heads
SCREAMING_SNAKE_CASE =intermediate_size
SCREAMING_SNAKE_CASE =hidden_act
SCREAMING_SNAKE_CASE =hidden_dropout_prob
SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE =max_position_embeddings
SCREAMING_SNAKE_CASE =type_vocab_size
SCREAMING_SNAKE_CASE =type_sequence_label_size
SCREAMING_SNAKE_CASE =initializer_range
SCREAMING_SNAKE_CASE =num_labels
SCREAMING_SNAKE_CASE =num_choices
SCREAMING_SNAKE_CASE =scope
SCREAMING_SNAKE_CASE =q_groups
SCREAMING_SNAKE_CASE =k_groups
SCREAMING_SNAKE_CASE =v_groups
SCREAMING_SNAKE_CASE =post_attention_groups
SCREAMING_SNAKE_CASE =intermediate_groups
SCREAMING_SNAKE_CASE =output_groups
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
SCREAMING_SNAKE_CASE =None
if self.use_input_mask:
SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
SCREAMING_SNAKE_CASE =None
if self.use_labels:
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices )
SCREAMING_SNAKE_CASE =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,)
def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,snake_case )
SCREAMING_SNAKE_CASE =model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ):
SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ):
SCREAMING_SNAKE_CASE =self.num_labels
SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.num_choices
SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
SCREAMING_SNAKE_CASE =model(
snake_case ,attention_mask=snake_case ,labels=snake_case ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs
SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 )
def _lowerCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*snake_case )
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case )
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case )
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case )
@slow
def _lowerCAmelCase ( self : str ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_sentencepiece
@require_tokenizers
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE =model(snake_case )[0]
SCREAMING_SNAKE_CASE =torch.Size((1, 3) )
self.assertEqual(output.shape ,snake_case )
SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
| 334 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowerCamelCase ={
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
__UpperCAmelCase = None
__UpperCAmelCase = None
@property
def _lowerCAmelCase ( self : List[Any] ):
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case ,'feature_size' ) )
self.assertTrue(hasattr(snake_case ,'sampling_rate' ) )
self.assertTrue(hasattr(snake_case ,'padding_value' ) )
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case )
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' )
SCREAMING_SNAKE_CASE =processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE =batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ):
def _inputs_have_equal_length(snake_case : Dict ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : str ,snake_case : Dict ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff
SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length
SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size
SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ):
def _inputs_have_equal_length(snake_case : str ):
SCREAMING_SNAKE_CASE =len(input[0] )
for input_slice in input[1:]:
if len(snake_case ) != length:
return False
return True
def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ):
if len(snake_case ) != len(snake_case ):
return False
for input_slice_a, input_slice_a in zip(snake_case ,snake_case ):
if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ):
return False
return True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case )
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
# truncate to smallest
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to smallest with np
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
# truncate to middle
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case )
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' )
SCREAMING_SNAKE_CASE =input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(snake_case ):
feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
SCREAMING_SNAKE_CASE =12
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,)
SCREAMING_SNAKE_CASE =input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
SCREAMING_SNAKE_CASE =len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(snake_case ) )
self.assertFalse(_inputs_have_equal_length(snake_case ) )
def _lowerCAmelCase ( self : Optional[int] ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : Tuple ):
self._check_padding(numpify=snake_case )
def _lowerCAmelCase ( self : List[str] ):
self._check_truncation(numpify=snake_case )
def _lowerCAmelCase ( self : int ):
self._check_truncation(numpify=snake_case )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feat_extract_dict
SCREAMING_SNAKE_CASE =True
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case )
SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common()
SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs]
SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE =min(snake_case )
SCREAMING_SNAKE_CASE =feat_extract.pad(
snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' )
self.assertIn('attention_mask' ,snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
| 334 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
_lowerCamelCase =random.Random()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=1.0, lowerCAmelCase_=None, lowerCAmelCase_=None ):
"""simple docstring"""
if rng is None:
SCREAMING_SNAKE_CASE =global_rng
SCREAMING_SNAKE_CASE =[]
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict ,snake_case : str ,snake_case : List[Any]=7 ,snake_case : List[Any]=400 ,snake_case : int=2000 ,snake_case : Union[str, Any]=1 ,snake_case : str=0.0 ,snake_case : Union[str, Any]=16000 ,snake_case : List[Any]=True ,snake_case : Tuple=True ,):
SCREAMING_SNAKE_CASE =parent
SCREAMING_SNAKE_CASE =batch_size
SCREAMING_SNAKE_CASE =min_seq_length
SCREAMING_SNAKE_CASE =max_seq_length
SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE =feature_size
SCREAMING_SNAKE_CASE =padding_value
SCREAMING_SNAKE_CASE =sampling_rate
SCREAMING_SNAKE_CASE =return_attention_mask
SCREAMING_SNAKE_CASE =do_normalize
def _lowerCAmelCase ( self : Any ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _lowerCAmelCase ( self : str ,snake_case : Optional[Any]=False ,snake_case : Union[str, Any]=False ):
def _flatten(snake_case : Optional[Any] ):
return list(itertools.chain(*snake_case ) )
if equal_length:
SCREAMING_SNAKE_CASE =floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE =[
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE =[np.asarray(snake_case ) for x in speech_inputs]
return speech_inputs
class a_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = WavaVecaFeatureExtractor
def _lowerCAmelCase ( self : str ):
SCREAMING_SNAKE_CASE =WavaVecaFeatureExtractionTester(self )
def _lowerCAmelCase ( self : List[str] ,snake_case : str ):
self.assertTrue(np.all(np.mean(snake_case ,axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case ,axis=0 ) - 1 ) < 1e-3 ) )
def _lowerCAmelCase ( self : Dict ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
SCREAMING_SNAKE_CASE =[np.asarray(snake_case ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE =feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE =feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values
self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) )
# Test batched
SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case ,snake_case ):
self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE =np.asarray(snake_case )
SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case ,snake_case ):
self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
SCREAMING_SNAKE_CASE =['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE =[None, 1600, None]
for max_length, padding in zip(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =feat_extract(snake_case ,padding=snake_case ,max_length=snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE =range(800 ,1400 ,200 )
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE =['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE =[None, 1600, None]
for max_length, padding in zip(snake_case ,snake_case ):
SCREAMING_SNAKE_CASE =feat_extract(snake_case ,max_length=snake_case ,padding=snake_case )
SCREAMING_SNAKE_CASE =processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
SCREAMING_SNAKE_CASE =feat_extract(
snake_case ,truncation=snake_case ,max_length=1000 ,padding='max_length' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
SCREAMING_SNAKE_CASE =feat_extract(
snake_case ,truncation=snake_case ,max_length=1000 ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
SCREAMING_SNAKE_CASE =feat_extract(
snake_case ,truncation=snake_case ,max_length=2000 ,padding='longest' ,return_tensors='np' )
SCREAMING_SNAKE_CASE =processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
import torch
SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE =np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE =np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def _lowerCAmelCase ( self : List[Any] ):
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
SCREAMING_SNAKE_CASE =WavaVecaConfig.from_pretrained(snake_case )
SCREAMING_SNAKE_CASE =WavaVecaFeatureExtractor.from_pretrained(snake_case )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == 'layer' )
| 334 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowerCamelCase =2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowerCamelCase =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowerCamelCase =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] )
return (item, float(lowerCAmelCase_ ))
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 )
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =[]
# Generate more children proportionally to the fitness score.
SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1
SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n
for _ in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ )
# Append new string to the population list.
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) )
return pop
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ):
"""simple docstring"""
if N_POPULATION < N_SELECTED:
SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(lowerCAmelCase_ )
# Verify that the target contains no genes besides the ones inside genes variable.
SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} )
if not_in_genes_list:
SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(lowerCAmelCase_ )
# Generate random starting population.
SCREAMING_SNAKE_CASE =[]
for _ in range(lowerCAmelCase_ ):
population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) )
# Just some logs to know what the algorithms is doing.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(lowerCAmelCase_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population]
# Check if there is a matching evolution.
SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(lowerCAmelCase_ )
# Normalize population score to be between 0 and 1.
SCREAMING_SNAKE_CASE =[
(item, score / len(lowerCAmelCase_ )) for item, score in population_score
]
# This is selection
for i in range(lowerCAmelCase_ ):
population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(lowerCAmelCase_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowerCamelCase =(
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_lowerCamelCase =list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list)
print(
f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'
)
| 334 | 1 |
import unittest
import numpy as np
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = None, ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =np.shape(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.shape(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =np.shape(lowerCAmelCase_ )
if shape_a[0] != shape_b[0]:
SCREAMING_SNAKE_CASE =(
'Expected the same number of rows for A and B. '
F'Instead found A of size {shape_a} and B of size {shape_b}'
)
raise ValueError(lowerCAmelCase_ )
if shape_b[1] != shape_c[1]:
SCREAMING_SNAKE_CASE =(
'Expected the same number of columns for B and C. '
F'Instead found B of size {shape_b} and C of size {shape_c}'
)
raise ValueError(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =pseudo_inv
if a_inv is None:
try:
SCREAMING_SNAKE_CASE =np.linalg.inv(lowerCAmelCase_ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
SCREAMING_SNAKE_CASE =np.array([[0, 3], [3, 0], [2, 3]] )
SCREAMING_SNAKE_CASE =np.array([[2, 1], [6, 3]] )
SCREAMING_SNAKE_CASE =schur_complement(snake_case ,snake_case ,snake_case )
SCREAMING_SNAKE_CASE =np.block([[a, b], [b.T, c]] )
SCREAMING_SNAKE_CASE =np.linalg.det(snake_case )
SCREAMING_SNAKE_CASE =np.linalg.det(snake_case )
SCREAMING_SNAKE_CASE =np.linalg.det(snake_case )
self.assertAlmostEqual(snake_case ,det_a * det_s )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
SCREAMING_SNAKE_CASE =np.array([[0, 3], [3, 0], [2, 3]] )
SCREAMING_SNAKE_CASE =np.array([[2, 1], [6, 3]] )
with self.assertRaises(snake_case ):
schur_complement(snake_case ,snake_case ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
SCREAMING_SNAKE_CASE =np.array([[0, 3], [3, 0], [2, 3]] )
SCREAMING_SNAKE_CASE =np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(snake_case ):
schur_complement(snake_case ,snake_case ,snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 334 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCAmelCase ( self : Optional[Any] ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE =mock.Mock()
SCREAMING_SNAKE_CASE =500
SCREAMING_SNAKE_CASE ={}
SCREAMING_SNAKE_CASE =HTTPError
SCREAMING_SNAKE_CASE ={}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head:
SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCAmelCase ( self : Union[str, Any] ):
# This test is for deprecated behavior and can be removed in v5
try:
SCREAMING_SNAKE_CASE =tempfile.mktemp()
with open(snake_case ,'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case )
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case )
finally:
os.remove(snake_case )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' ,'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCAmelCase ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class a_ ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def _lowerCAmelCase ( cls : List[Any] ):
SCREAMING_SNAKE_CASE =TOKEN
HfFolder.save_token(snake_case )
@classmethod
def _lowerCAmelCase ( cls : Tuple ):
try:
delete_repo(token=cls._token ,repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCAmelCase ( self : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def _lowerCAmelCase ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizer(snake_case )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def _lowerCAmelCase ( self : str ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' )
with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case )
bert_tokenizer.save_pretrained(snake_case )
SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case )
tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' )
SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] )
def _lowerCAmelCase ( self : Optional[Any] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
SCREAMING_SNAKE_CASE =Trie()
SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case ,['AB', 'C'] )
| 334 | 1 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
_lowerCamelCase =logging.get_logger(__name__)
class a_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict ,*snake_case : int ,**snake_case : Dict ):
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' ,snake_case ,)
super().__init__(*snake_case ,**snake_case )
| 334 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase =logging.get_logger(__name__)
_lowerCamelCase =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
_lowerCamelCase =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' )
return sd
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =OrderedDict()
SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
SCREAMING_SNAKE_CASE =key
for name_pair in rename_keys_prefix:
SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] )
SCREAMING_SNAKE_CASE =d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
SCREAMING_SNAKE_CASE ='pretraining'
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024}
else:
raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512}
SCREAMING_SNAKE_CASE ='multichoice'
elif "vqa_advanced" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048}
SCREAMING_SNAKE_CASE ='vqa_advanced'
elif "vqa" in checkpoint_path:
SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129}
SCREAMING_SNAKE_CASE ='vqa'
elif "nlvr" in checkpoint_path:
SCREAMING_SNAKE_CASE ={
'visual_embedding_dim': 1024,
'num_labels': 2,
}
SCREAMING_SNAKE_CASE ='nlvr'
SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ )
# Load State Dict
SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ )
if model_type == "pretraining":
SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ )
elif model_type == "vqa":
SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ )
elif model_type == "nlvr":
SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ )
elif model_type == "multichoice":
SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# Save Checkpoints
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_lowerCamelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
_lowerCamelCase =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 334 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.