code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = inspect.getfile(accelerate.test_utils ) A = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = F'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() A = [sys.executable] + distributed_args execute_subprocess_async(A_ ,env=os.environ.copy() )
74
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} _UpperCamelCase = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } _UpperCamelCase = { '''facebook/esm2_t6_8M_UR50D''': 1024, '''facebook/esm2_t12_35M_UR50D''': 1024, } def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" with open(lowerCAmelCase_ , """r""" ) as f: __UpperCAmelCase : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class _A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase="<eos>" , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = load_vocab_file(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = dict(enumerate(self.all_tokens ) ) __UpperCAmelCase : Tuple = {tok: ind for ind, tok in enumerate(self.all_tokens )} __UpperCAmelCase : Optional[Any] = unk_token __UpperCAmelCase : List[str] = cls_token __UpperCAmelCase : List[str] = pad_token __UpperCAmelCase : int = mask_token __UpperCAmelCase : List[str] = eos_token __UpperCAmelCase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return self._id_to_token.get(__UpperCAmelCase , self.unk_token ) def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return self._token_to_id.get(__UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def __A ( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return text.split() def __A ( self , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __A ( self ) -> List[str]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return self._token_to_id.get(__UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return self._id_to_token.get(__UpperCAmelCase , self.unk_token ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = [self.cls_token_id] __UpperCAmelCase : str = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __UpperCAmelCase : Any = [1] + ([0] * len(__UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(__UpperCAmelCase ) + [1] return mask def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = os.path.join(__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(__UpperCAmelCase , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def __A ( self ) -> List[Any]: '''simple docstring''' return self.get_vocab_size(with_added_tokens=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(__UpperCAmelCase , special_tokens=__UpperCAmelCase )
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import numpy as np import datasets A : Dict = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" A : Dict = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" A : Optional[int] = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Dict = np.array(__lowerCamelCase ) lowerCamelCase__ : List[str] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction lowerCamelCase__ : Tuple = X - np.mean(__lowerCamelCase ) lowerCamelCase__ : Any = np.cov(reference_distribution.T ) try: lowerCamelCase__ : List[str] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: lowerCamelCase__ : Union[str, Any] = np.linalg.pinv(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
184
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowercase__ ( __lowercase : Dict ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = SwinConfig(image_size=192 ) if "base" in model_name: __UpperCamelCase = 6 __UpperCamelCase = 128 __UpperCamelCase = (2, 2, 18, 2) __UpperCamelCase = (4, 8, 16, 32) elif "large" in model_name: __UpperCamelCase = 12 __UpperCamelCase = 192 __UpperCamelCase = (2, 2, 18, 2) __UpperCamelCase = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) __UpperCamelCase = window_size __UpperCamelCase = embed_dim __UpperCamelCase = depths __UpperCamelCase = num_heads return config def lowercase__ ( __lowercase : Union[str, Any] ) -> Dict: """simple docstring""" if "encoder.mask_token" in name: __UpperCamelCase = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: __UpperCamelCase = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: __UpperCamelCase = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __UpperCamelCase = 'layernorm.weight' if name == "encoder.norm.bias": __UpperCamelCase = 'layernorm.bias' if "decoder" in name: pass else: __UpperCamelCase = 'swin.' + name return name def lowercase__ ( __lowercase : Optional[Any] , __lowercase : str ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(lowerCAmelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: __UpperCamelCase = key.split('.' ) __UpperCamelCase = int(key_split[2] ) __UpperCamelCase = int(key_split[4] ) __UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[ dim : dim * 2, : ] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[ :dim ] __UpperCamelCase = val[ dim : dim * 2 ] __UpperCamelCase = val[ -dim: ] else: __UpperCamelCase = val return orig_state_dict def lowercase__ ( __lowercase : Any , __lowercase : Any , __lowercase : Tuple , __lowercase : int ) -> List[Any]: """simple docstring""" __UpperCamelCase = torch.load(lowerCAmelCase_ , map_location='cpu' )['model'] __UpperCamelCase = get_swin_config(lowerCAmelCase_ ) __UpperCamelCase = SwinForMaskedImageModeling(lowerCAmelCase_ ) model.eval() __UpperCamelCase = convert_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = ViTImageProcessor(size={'height': 192, 'width': 192} ) __UpperCamelCase = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) __UpperCamelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ) with torch.no_grad(): __UpperCamelCase = model(**lowerCAmelCase_ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": a__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ : Any =parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
53
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : Dict = 16 __lowerCamelCase : Optional[int] = 32 def A_ ( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> Optional[Any]: UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase : int = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : Union[str, Any] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : List[str] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase : str = 8 else: UpperCamelCase : List[Any] = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase : str = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) UpperCamelCase : Optional[int] = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : List[Any] = mocked_dataloaders # noqa: F811 def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": UpperCamelCase : List[Any] = 2 # Initialize accelerator UpperCamelCase : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : List[Any] = config["lr"] UpperCamelCase : int = int(config["num_epochs"] ) UpperCamelCase : Dict = int(config["seed"] ) UpperCamelCase : Optional[int] = int(config["batch_size"] ) UpperCamelCase : str = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(_lowerCAmelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : List[str] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : str = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : List[str] = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) UpperCamelCase , UpperCamelCase : List[Any] = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate scheduler UpperCamelCase : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase : Optional[int] = model(**lowerCAmelCase_ ) UpperCamelCase : List[str] = outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**lowerCAmelCase_ ) UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) UpperCamelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def A_ ( ) -> Optional[Any]: UpperCamelCase : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCamelCase : List[str] = parser.parse_args() UpperCamelCase : Union[str, Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
52
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE = "ViTImageProcessor" SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ) -> List[Any]: lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) lowercase__ : Dict = kwargs.pop('''feature_extractor''' ) lowercase__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Tuple: if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: lowercase__ : Dict = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if visual_prompt is not None: lowercase__ : str = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: lowercase__ : Any = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if visual_prompt is not None and images is not None: lowercase__ : List[Any] = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase__ : int = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase__ : int = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> int: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCAmelCase( self ) -> Dict: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def _lowerCAmelCase( self ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
198
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (lowerCamelCase_ ): '''simple docstring''' _snake_case : Optional[Any] = '''upernet''' def __init__( self , _UpperCamelCase=None , _UpperCamelCase=5_1_2 , _UpperCamelCase=0.02 , _UpperCamelCase=[1, 2, 3, 6] , _UpperCamelCase=True , _UpperCamelCase=0.4 , _UpperCamelCase=3_8_4 , _UpperCamelCase=2_5_6 , _UpperCamelCase=1 , _UpperCamelCase=False , _UpperCamelCase=2_5_5 , **_UpperCamelCase , ) -> Optional[Any]: super().__init__(**_UpperCamelCase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCAmelCase_ : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = backbone_config.get('model_type' ) UpperCAmelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Optional[int] = config_class.from_dict(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = backbone_config UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[Any] = pool_scales UpperCAmelCase_ : Tuple = use_auxiliary_head UpperCAmelCase_ : Tuple = auxiliary_loss_weight UpperCAmelCase_ : int = auxiliary_in_channels UpperCAmelCase_ : str = auxiliary_channels UpperCAmelCase_ : str = auxiliary_num_convs UpperCAmelCase_ : Union[str, Any] = auxiliary_concat_input UpperCAmelCase_ : Any = loss_ignore_index def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.backbone_config.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
29
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase : Any = logging.get_logger(__name__) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[Any]: return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[Any]: __snake_case: Any = to_pil_image(lowerCAmelCase_) __snake_case , __snake_case: Any = pil_image.size __snake_case: Tuple = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="""dict""" , config=lowerCAmelCase_) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case: List[Any] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __snake_case: str = [idx for idx, word in enumerate(lowerCAmelCase_) if not word.strip()] __snake_case: Optional[int] = [word for idx, word in enumerate(lowerCAmelCase_) if idx not in irrelevant_indices] __snake_case: Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_) if idx not in irrelevant_indices] __snake_case: List[Any] = [coord for idx, coord in enumerate(lowerCAmelCase_) if idx not in irrelevant_indices] __snake_case: Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_) if idx not in irrelevant_indices] __snake_case: Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case: List[str] = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): __snake_case: str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_) # finally, normalize the bounding boxes __snake_case: Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)) assert len(lowerCAmelCase_) == len(lowerCAmelCase_), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""pixel_values"""] def __init__( self : int , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : float = 1 / 255 , A : bool = True , A : Union[float, Iterable[float]] = None , A : Union[float, Iterable[float]] = None , A : bool = True , A : Optional[str] = None , A : Optional[str] = "" , **A : Any , ): super().__init__(**A ) __snake_case: Any = size if size is not None else {"""height""": 224, """width""": 224} __snake_case: Optional[Any] = get_size_dict(A ) __snake_case: str = do_resize __snake_case: Optional[int] = size __snake_case: Optional[Any] = resample __snake_case: List[str] = do_rescale __snake_case: List[str] = rescale_value __snake_case: Dict = do_normalize __snake_case: Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case: Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD __snake_case: List[Any] = apply_ocr __snake_case: Optional[int] = ocr_lang __snake_case: int = tesseract_config def UpperCAmelCase__ ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): __snake_case: Union[str, Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __snake_case: Dict = (size["""height"""], size["""width"""]) return resize(A , size=A , resample=A , data_format=A , **A ) def UpperCAmelCase__ ( self : Tuple , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[int] , ): return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase__ ( self : Any , A : np.ndarray , A : Union[float, Iterable[float]] , A : Union[float, Iterable[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase__ ( self : Optional[int] , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : str=None , A : bool = None , A : float = None , A : bool = None , A : Union[float, Iterable[float]] = None , A : Union[float, Iterable[float]] = None , A : bool = None , A : Optional[str] = None , A : Optional[str] = None , A : Optional[Union[str, TensorType]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Optional[Any] , ): __snake_case: List[Any] = do_resize if do_resize is not None else self.do_resize __snake_case: Dict = size if size is not None else self.size __snake_case: List[str] = get_size_dict(A ) __snake_case: List[Any] = resample if resample is not None else self.resample __snake_case: Dict = do_rescale if do_rescale is not None else self.do_rescale __snake_case: str = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case: List[str] = image_mean if image_mean is not None else self.image_mean __snake_case: List[str] = image_std if image_std is not None else self.image_std __snake_case: Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case: str = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case: int = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case: Tuple = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. __snake_case: str = [to_numpy_array(A ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) __snake_case: Union[str, Any] = [] __snake_case: Dict = [] for image in images: __snake_case , __snake_case: Tuple = apply_tesseract(A , A , A ) words_batch.append(A ) boxes_batch.append(A ) if do_resize: __snake_case: int = [self.resize(image=A , size=A , resample=A ) for image in images] if do_rescale: __snake_case: Optional[int] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: __snake_case: Optional[Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] __snake_case: str = [to_channel_dimension_format(A , A ) for image in images] __snake_case: Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=A ) if apply_ocr: __snake_case: str = words_batch __snake_case: Tuple = boxes_batch return data
111
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(__UpperCAmelCase ) ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : List[str] = [sequences] lowerCAmelCase__ : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__UpperCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=ZeroShotClassificationArgumentHandler() ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : int = args_parser super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) if self.entailment_id == -1: logger.warning( """Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=TruncationStrategy.ONLY_FIRST ,**__UpperCAmelCase ) -> Any: lowerCAmelCase__ : List[Any] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowerCAmelCase__ : Optional[Any] = self.tokenizer.eos_token try: lowerCAmelCase__ : Dict = self.tokenizer( __UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,) except Exception as e: if "too short" in str(__UpperCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCAmelCase__ : str = self.tokenizer( __UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=TruncationStrategy.DO_NOT_TRUNCATE ,) else: raise e return inputs def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> str: if kwargs.get("""multi_class""" ,__UpperCAmelCase ) is not None: lowerCAmelCase__ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowerCAmelCase__ : str = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : Union[str, Any] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowerCAmelCase__ : Union[str, Any] = kwargs["""hypothesis_template"""] lowerCAmelCase__ : Dict = {} if "multi_label" in kwargs: lowerCAmelCase__ : List[str] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ,) -> List[Any]: if len(__UpperCAmelCase ) == 0: pass elif len(__UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs: lowerCAmelCase__ : Union[str, Any] = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="This example is {}." ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self._args_parser(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__UpperCAmelCase ,__UpperCAmelCase ) ): lowerCAmelCase__ : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__UpperCAmelCase ) - 1, **model_input, } def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = inputs["""candidate_label"""] lowerCAmelCase__ : Union[str, Any] = inputs["""sequence"""] lowerCAmelCase__ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} lowerCAmelCase__ : Dict = self.model(**__UpperCAmelCase ) lowerCAmelCase__ : int = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> int: lowerCAmelCase__ : List[str] = [outputs["""candidate_label"""] for outputs in model_outputs] lowerCAmelCase__ : str = [outputs["""sequence"""] for outputs in model_outputs] lowerCAmelCase__ : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowerCAmelCase__ : List[str] = logits.shape[0] lowerCAmelCase__ : List[Any] = len(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = N // n lowerCAmelCase__ : Any = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__UpperCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCAmelCase__ : Tuple = self.entailment_id lowerCAmelCase__ : Union[str, Any] = -1 if entailment_id == 0 else 0 lowerCAmelCase__ : Dict = reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCAmelCase__ : Union[str, Any] = np.exp(__UpperCAmelCase ) / np.exp(__UpperCAmelCase ).sum(-1 ,keepdims=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCAmelCase__ : Any = reshaped_outputs[..., self.entailment_id] lowerCAmelCase__ : Optional[Any] = np.exp(__UpperCAmelCase ) / np.exp(__UpperCAmelCase ).sum(-1 ,keepdims=__UpperCAmelCase ) lowerCAmelCase__ : str = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple ): return int((input_a, input_a).count(1 ) != 0 ) def a_ ( ): assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
284
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( lowerCamelCase_ , unittest.TestCase ): __lowerCAmelCase : Any = GPTSanJapaneseTokenizer __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Optional[Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def __lowerCamelCase ( self :List[str] ): super().setUp() # fmt: off snake_case__ : Tuple = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on snake_case__ : str = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 snake_case__ : str = {'''unk_token''': '''<unk>'''} snake_case__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file ,'''w''' ) as emoji_writer: emoji_writer.write(json.dumps(__lowercase ) ) def __lowerCamelCase ( self :Dict ,**__lowercase :List[str] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[str] ): snake_case__ : Any = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' snake_case__ : Any = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __lowerCamelCase ( self :List[str] ,__lowercase :Tuple ): snake_case__ , snake_case__ : Dict = self.get_input_output_texts(__lowercase ) snake_case__ : Union[str, Any] = tokenizer.encode(__lowercase ,add_special_tokens=__lowercase ) snake_case__ : int = tokenizer.decode(__lowercase ,clean_up_tokenization_spaces=__lowercase ) return text, ids def __lowerCamelCase ( self :List[Any] ): pass # TODO add if relevant def __lowerCamelCase ( self :str ): pass # TODO add if relevant def __lowerCamelCase ( self :Any ): pass # TODO add if relevant def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.get_tokenizer() # Testing tokenization snake_case__ : List[str] = '''こんにちは、世界。 こんばんは、㔺界。''' snake_case__ : List[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] snake_case__ : List[Any] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : str = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) # Testing conversion to ids with special tokens snake_case__ : Dict = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] snake_case__ : str = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) def __lowerCamelCase ( self :int ): snake_case__ : List[str] = self.get_tokenizer() # Testing tokenization snake_case__ : List[str] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' snake_case__ : List[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' snake_case__ : int = tokenizer.encode(__lowercase ) snake_case__ : List[Any] = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization snake_case__ : List[str] = '''こんにちは、世界。''' snake_case__ : str = '''こんばんは、㔺界。😀''' snake_case__ : Any = '''こんにちは、世界。こんばんは、世界。😀''' snake_case__ : List[str] = tokenizer.encode(prefix_text + input_text ) snake_case__ : Optional[int] = tokenizer.encode('''''' ,prefix_text=prefix_text + input_text ) snake_case__ : str = tokenizer.encode(__lowercase ,prefix_text=__lowercase ) snake_case__ : Optional[int] = tokenizer.decode(__lowercase ) snake_case__ : Any = tokenizer.decode(__lowercase ) snake_case__ : Tuple = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization snake_case__ : Any = '''こんにちは、世界。''' snake_case__ : Tuple = '''こんばんは、㔺界。😀''' snake_case__ : Dict = len(tokenizer.encode(__lowercase ) ) - 2 snake_case__ : List[Any] = len(tokenizer.encode(__lowercase ) ) - 2 snake_case__ : Optional[int] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : List[str] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : List[Any] = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer('''''' ,prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer(__lowercase ,prefix_text=__lowercase ).token_type_ids self.assertListEqual(__lowercase ,__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) snake_case__ : Tuple = tokenizer.encode('''あンいワ''' ) snake_case__ : str = tokenizer.encode('''''' ,prefix_text='''あンいワ''' ) snake_case__ : List[str] = tokenizer.encode('''いワ''' ,prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(__lowercase ) ,tokenizer.decode(__lowercase ) ) self.assertEqual(tokenizer.decode(__lowercase ) ,tokenizer.decode(__lowercase ) ) self.assertNotEqual(__lowercase ,__lowercase ) self.assertNotEqual(__lowercase ,__lowercase ) self.assertEqual(x_token_a[1] ,x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] ,x_token_a[3] ) # SEG token @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) snake_case__ : List[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] snake_case__ : List[Any] = tokenizer(__lowercase ,padding=__lowercase ) snake_case__ : Tuple = tokenizer.batch_encode_plus(__lowercase ,padding=__lowercase ) # fmt: off snake_case__ : List[Any] = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] snake_case__ : Union[str, Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[int] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids ,__lowercase ) self.assertListEqual(x_token.token_type_ids ,__lowercase ) self.assertListEqual(x_token.attention_mask ,__lowercase ) self.assertListEqual(x_token_a.input_ids ,__lowercase ) self.assertListEqual(x_token_a.token_type_ids ,__lowercase ) self.assertListEqual(x_token_a.attention_mask ,__lowercase ) def __lowerCamelCase ( self :List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __lowerCamelCase ( self :Tuple ): # tokenizer has no padding token pass
230
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: with self.assertRaises(A_ ): A = pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: with self.assertRaises(A_ ): A = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A = pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: A = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: A = pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): A = pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _SCREAMING_SNAKE_CASE ( self : int ) -> str: import PIL.Image A = PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=A_ ) as mock_cast_to_python_objects: A = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) A , A = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,A_ ) self.assertFalse(kwargs['optimize_list_casting'] ) def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[Any] ): A = pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) A = pa.ipc.open_stream(lowerCAmelCase_ ) A = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( snake_case__ : Dict , snake_case__ : Union[str, Any] ): A = pa.BufferOutputStream() A = pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_ , schema=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ): A = pa.BufferOutputStream() A = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_ , features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata A = pa.BufferReader(output.getvalue() ) A = pa.ipc.open_stream(lowerCAmelCase_ ) A = f.read_all() A = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def _snake_case ( snake_case__ : Union[str, Any] ): A = pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ , hash_salt='split_name' , check_duplicates=lowerCAmelCase_ , ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) A , A = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case ( snake_case__ : Optional[int] ): A = pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ , hash_salt='split_name' , check_duplicates=lowerCAmelCase_ , ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) A , A = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case ( snake_case__ : Tuple ): A = pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ , hash_salt='split_name' , check_duplicates=lowerCAmelCase_ , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : List[Any] ): A = pa.BufferOutputStream() A = pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_ , schema=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): A = pa.BufferOutputStream() A = pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_ , schema=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( snake_case__ : int , snake_case__ : Any ): A = pa.BufferOutputStream() A = pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_ , schema=lowerCAmelCase_ , writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ): with tempfile.TemporaryDirectory() as tmp_dir: A = {'col_1': pa.string(), 'col_2': pa.intaa()} A = os.path.join(lowerCAmelCase_ , 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_ , schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_ , metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_ , 1 ) def _snake_case ( snake_case__ : List[str] ): if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _snake_case ( snake_case__ : List[str] , snake_case__ : Any ): if isinstance(lst[0] , lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0] , lowerCAmelCase_ ) else: A = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): A = pa.array(TypedSequence(lowerCAmelCase_ , optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( snake_case__ : Tuple , snake_case__ : str , snake_case__ : int ): A = pa.array(OptimizedTypedSequence(lowerCAmelCase_ , col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications A = copy.deepcopy(lowerCAmelCase_ ) A = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_ , lowerCAmelCase_ ) A = pa.array(OptimizedTypedSequence(lowerCAmelCase_ , col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def _snake_case ( snake_case__ : Dict , snake_case__ : List[Any] ): A = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _snake_case ( snake_case__ : Any ): A = 'mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def _snake_case ( ): A = pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) A , A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 A = pa.BufferReader(output.getvalue() ) A = pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict ): import PIL.Image A = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowerCAmelCase_ , format='png' ) A = pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_ , features=Features({'image': Image()} ) , embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() A = pa.BufferReader(output.getvalue() ) A = pq.read_table(lowerCAmelCase_ ) A = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _snake_case ( ): A = pa.schema([pa.field('col_1' , pa.string() , nullable=lowerCAmelCase_ )] ) A = pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
74
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] _UpperCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] _UpperCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): _UpperCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) A : Tuple = "\\n Text data.\n Second line of data." A : Any = "file" @pytest.fixture(scope="session" ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[str] = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") lowerCamelCase__ : Any = bytes(lowerCAmelCase_ , "utf-8" ) with zstd.open(lowerCAmelCase_ , "wb" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture def lowercase_ ( _A : Optional[int] ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase_ ) , "w" ) as f: f.write(lowerCAmelCase_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowercase_ ( _A : Optional[int] , _A : str , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} lowerCamelCase__ : str = input_paths[compression_format] lowerCamelCase__ : List[Any] = tmp_path / "cache" lowerCamelCase__ : int = DownloadConfig(cache_dir=lowerCAmelCase_ , extract_compressed_file=lowerCAmelCase_ ) lowerCamelCase__ : List[Any] = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ ) with open(lowerCAmelCase_ ) as f: lowerCamelCase__ : Any = f.read() with open(lowerCAmelCase_ ) as f: lowerCamelCase__ : Tuple = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowercase_ ( _A : str , _A : Optional[Any] , _A : int , _A : Tuple , _A : Tuple ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = "custom_cache" lowerCamelCase__ : int = "custom_extracted_dir" lowerCamelCase__ : int = tmp_path / "custom_extracted_path" if default_extracted: lowerCamelCase__ : Any = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , lowerCAmelCase_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase_ ) ) lowerCamelCase__ : str = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCamelCase__ : Dict = xz_file lowerCamelCase__ : Union[str, Any] = ( DownloadConfig(extract_compressed_file=lowerCAmelCase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase_ ) ) lowerCamelCase__ : Tuple = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ ) assert Path(lowerCAmelCase_ ).parent.parts[-2:] == expected def lowercase_ ( _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : int = str(Path(lowerCAmelCase_ ).resolve() ) assert cached_path(lowerCAmelCase_ ) == text_file # relative path lowerCamelCase__ : Union[str, Any] = str(Path(lowerCAmelCase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase_ ) == text_file def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : Dict = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCAmelCase_ ): cached_path(lowerCAmelCase_ ) # relative path lowerCamelCase__ : Dict = "./__missing_file__.txt" with pytest.raises(lowerCAmelCase_ ): cached_path(lowerCAmelCase_ ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[int] = get_from_cache(F"tmp://{tmpfs_file}" ) with open(lowerCAmelCase_ ) as f: lowerCamelCase__ : int = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase_ ) def lowercase_ ( ): """simple docstring""" with pytest.raises(lowerCAmelCase_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase_ ) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase_ ): http_get("https://huggingface.co" , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase_ ) def lowercase_ ( _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase_ ): ftp_get("ftp://huggingface.co" , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase_ ) def lowercase_ ( _A : Dict ): """simple docstring""" lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase_ ): fsspec_get("s3://huggingface.co" , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): fsspec_head("s3://huggingface.co" )
184
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case ( unittest.TestCase ): """simple docstring""" @property def _lowerCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.dummy_uncond_unet __UpperCamelCase = ScoreSdeVeScheduler() __UpperCamelCase = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__A ).images __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__A , return_dict=__A )[ 0 ] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : int ): __UpperCamelCase = 'google/ncsnpp-church-256' __UpperCamelCase = UNetaDModel.from_pretrained(__A ) __UpperCamelCase = ScoreSdeVeScheduler.from_pretrained(__A ) __UpperCamelCase = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=__A ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __UpperCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
53
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __lowerCamelCase : Optional[int] = logging.get_logger(__name__) class A__ ( lowerCamelCase_ ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
52
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a: List[Any] = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Any: warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __lowerCAmelCase , ) super().__init__(args=__lowerCAmelCase , **__lowerCAmelCase )
198
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
import random def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = num - 1 UpperCAmelCase_ : Tuple = 0 while s % 2 == 0: UpperCAmelCase_ : int = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase_ : List[str] = random.randrange(2 , num - 1 ) UpperCAmelCase_ : int = pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if v != 1: UpperCAmelCase_ : Union[str, Any] = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase_ : Optional[Any] = i + 1 UpperCAmelCase_ : Optional[int] = (v**2) % num return True def lowercase__ ( __snake_case : str ): '''simple docstring''' if num < 2: return False UpperCAmelCase_ : str = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase_ ) def lowercase__ ( __snake_case : int = 1_024 ): '''simple docstring''' while True: UpperCAmelCase_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase_ ): return num if __name__ == "__main__": __UpperCAmelCase = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class __snake_case ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = """xlm""" lowerCAmelCase__ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : Optional[Any] , A : Optional[Any]=30_145 , A : Optional[int]=2_048 , A : List[Any]=12 , A : List[str]=16 , A : Dict=0.1 , A : int=0.1 , A : Union[str, Any]=True , A : Optional[int]=False , A : Any=False , A : Tuple=False , A : Union[str, Any]=1 , A : Any=True , A : Tuple=512 , A : Dict=2_048**-0.5 , A : Union[str, Any]=1E-12 , A : List[Any]=0.02 , A : List[str]=0 , A : int=1 , A : Optional[Any]=2 , A : Optional[int]=3 , A : Union[str, Any]=5 , A : List[str]=True , A : Union[str, Any]="first" , A : Optional[int]=True , A : int=None , A : List[Any]=True , A : str=0.1 , A : List[Any]=5 , A : Optional[Any]=5 , A : Optional[Any]=0 , A : List[Any]=0 , A : List[str]=2 , A : Optional[Any]=0 , **A : Any , ): __snake_case: int = vocab_size __snake_case: Optional[int] = emb_dim __snake_case: str = n_layers __snake_case: Union[str, Any] = n_heads __snake_case: int = dropout __snake_case: Optional[Any] = attention_dropout __snake_case: Tuple = gelu_activation __snake_case: str = sinusoidal_embeddings __snake_case: List[Any] = causal __snake_case: Union[str, Any] = asm __snake_case: Optional[Any] = n_langs __snake_case: Union[str, Any] = use_lang_emb __snake_case: Optional[Any] = layer_norm_eps __snake_case: Dict = bos_index __snake_case: Optional[int] = eos_index __snake_case: Optional[int] = pad_index __snake_case: List[str] = unk_index __snake_case: List[str] = mask_index __snake_case: Any = is_encoder __snake_case: Tuple = max_position_embeddings __snake_case: Optional[int] = embed_init_std __snake_case: Any = init_std __snake_case: Dict = summary_type __snake_case: Tuple = summary_use_proj __snake_case: int = summary_activation __snake_case: Union[str, Any] = summary_proj_to_labels __snake_case: Tuple = summary_first_dropout __snake_case: Optional[Any] = start_n_top __snake_case: List[Any] = end_n_top __snake_case: Tuple = mask_token_id __snake_case: int = lang_id if "n_words" in kwargs: __snake_case: Tuple = kwargs["""n_words"""] super().__init__(pad_token_id=A , bos_token_id=A , **A ) class __snake_case ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Dict ): if self.task == "multiple-choice": __snake_case: int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case: Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
111
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase = logging.getLogger(__name__) class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=-1 ) -> Any: # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase__ : Optional[Any] = label_idx def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = mode.value lowerCAmelCase__ : Union[str, Any] = os.path.join(__UpperCAmelCase ,F"""{mode}.txt""" ) lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : Optional[Any] = [] with open(__UpperCAmelCase ,encoding="""utf-8""" ) as f: lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : Union[str, Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=__UpperCAmelCase ,labels=__UpperCAmelCase ) ) guid_index += 1 lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Dict = [] else: lowerCAmelCase__ : int = line.split(""" """ ) words.append(splits[0] ) if len(__UpperCAmelCase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=__UpperCAmelCase ,labels=__UpperCAmelCase ) ) return examples def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(__UpperCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(__UpperCAmelCase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" ,line.split()[0] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if path: with open(__UpperCAmelCase ,"""r""" ) as f: lowerCAmelCase__ : Optional[int] = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def __init__( self ) -> Optional[int]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if path: with open(__UpperCAmelCase ,"""r""" ) as f: lowerCAmelCase__ : Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Any = mode.value lowerCAmelCase__ : Union[str, Any] = os.path.join(__UpperCAmelCase ,F"""{mode}.txt""" ) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Optional[int] = [] with open(__UpperCAmelCase ,encoding="""utf-8""" ) as f: for sentence in parse_incr(__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : List[Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=__UpperCAmelCase ,labels=__UpperCAmelCase ) ) guid_index += 1 return examples def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : List[Any] = 0 for sentence in parse_incr(__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = preds_list[example_id] lowerCAmelCase__ : List[str] = """""" for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(__UpperCAmelCase ) example_id += 1 def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if path: with open(__UpperCAmelCase ,"""r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _UpperCAmelCase ( lowerCamelCase_ ): """simple docstring""" def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = SMALL_MODEL_IDENTIFIER __lowerCAmelCase = 'pt' __lowerCAmelCase = 'tf' def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Tuple ) -> str: __lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCAmelCase_ ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple ) -> Tuple: __lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase_ ) model_tf.save_pretrained(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = 'mock_framework' # Framework provided - return whatever the user provides __lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase_ ) __lowerCAmelCase = FeaturesManager.determine_framework(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase_ ) __lowerCAmelCase = FeaturesManager.determine_framework(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Union[str, Any]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase_ ) __lowerCAmelCase = FeaturesManager.determine_framework(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase_ ) __lowerCAmelCase = FeaturesManager.determine_framework(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = FeaturesManager.determine_framework(lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = MagicMock(return_value=lowerCAmelCase_ ) with patch('transformers.onnx.features.is_tf_available' , lowerCAmelCase_ ): __lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCAmelCase = MagicMock(return_value=lowerCAmelCase_ ) with patch('transformers.onnx.features.is_torch_available' , lowerCAmelCase_ ): __lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCAmelCase = MagicMock(return_value=lowerCAmelCase_ ) __lowerCAmelCase = MagicMock(return_value=lowerCAmelCase_ ) with patch('transformers.onnx.features.is_tf_available' , lowerCAmelCase_ ), patch( 'transformers.onnx.features.is_torch_available' , lowerCAmelCase_ ): __lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCAmelCase = MagicMock(return_value=lowerCAmelCase_ ) __lowerCAmelCase = MagicMock(return_value=lowerCAmelCase_ ) with patch('transformers.onnx.features.is_tf_available' , lowerCAmelCase_ ), patch( 'transformers.onnx.features.is_torch_available' , lowerCAmelCase_ ): with self.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
284
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
import logging import os from .state import PartialState class a ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( __lowercase :Dict ): snake_case__ : Optional[int] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self :int ,__lowercase :Dict ,__lowercase :int ,*__lowercase :str ,**__lowercase :List[str] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) snake_case__ : List[Any] = kwargs.pop('''main_process_only''' ,__lowercase ) snake_case__ : int = kwargs.pop('''in_order''' ,__lowercase ) if self.isEnabledFor(__lowercase ): if self._should_log(__lowercase ): snake_case__ , snake_case__ : Optional[int] = self.process(__lowercase ,__lowercase ) self.logger.log(__lowercase ,__lowercase ,*__lowercase ,**__lowercase ) elif in_order: snake_case__ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: snake_case__ , snake_case__ : Union[str, Any] = self.process(__lowercase ,__lowercase ) self.logger.log(__lowercase ,__lowercase ,*__lowercase ,**__lowercase ) state.wait_for_everyone() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = None ) -> Optional[int]: """simple docstring""" if log_level is None: snake_case__ : List[Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , lowerCAmelCase_ ) snake_case__ : List[Any] = logging.getLogger(lowerCAmelCase_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCAmelCase_ , {} )
230
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def _snake_case ( snake_case__ : List[str] , snake_case__ : int ): A = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) A = DatasetInfosDict.from_directory(lowerCAmelCase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def _snake_case ( snake_case__ : Any , snake_case__ : List[str] ): A = str(lowerCAmelCase_ ) dataset_info.write_to_directory(lowerCAmelCase_ ) A = DatasetInfo.from_directory(lowerCAmelCase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCAmelCase_ , 'dataset_info.json' ) ) def _snake_case ( ): A = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) A = dataset_info._to_yaml_dict() assert sorted(lowerCAmelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) A = yaml.safe_dump(lowerCAmelCase_ ) A = yaml.safe_load(lowerCAmelCase_ ) assert dataset_info_yaml_dict == reloaded def _snake_case ( ): A = DatasetInfo() A = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): A = str(lowerCAmelCase_ ) dataset_infos_dict.write_to_directory(lowerCAmelCase_ ) A = DatasetInfosDict.from_directory(lowerCAmelCase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCAmelCase_ , 'README.md' ) )
74
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : List[Any] = DPRContextEncoderTokenizer class _A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = DPRQuestionEncoderTokenizer _UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _UpperCamelCase = r'''\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ''' @add_start_docstrings(lowerCamelCase_ ) class _A : def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Any: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) elif titles is None or texts is None: __UpperCAmelCase : str = titles if texts is None else texts return super().__call__( __UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = titles if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [titles] __UpperCAmelCase : Optional[int] = texts if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [texts] __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = questions if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [questions] * n_passages assert len(__UpperCAmelCase ) == len( __UpperCAmelCase ), f'There should be as many titles than texts but got {len(__UpperCAmelCase )} titles and {len(__UpperCAmelCase )} texts.' __UpperCAmelCase : Any = super().__call__(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["""input_ids"""] __UpperCAmelCase : Optional[Any] = super().__call__(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["""input_ids"""] __UpperCAmelCase : Tuple = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCAmelCase , __UpperCAmelCase ) ] } if return_attention_mask is not False: __UpperCAmelCase : Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCAmelCase : List[Any] = attention_mask return self.pad(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = 4 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = reader_input["""input_ids"""] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = reader_output[:3] __UpperCAmelCase : int = len(__UpperCAmelCase ) __UpperCAmelCase : str = sorted(range(__UpperCAmelCase ) , reverse=__UpperCAmelCase , key=relevance_logits.__getitem__ ) __UpperCAmelCase : Any = [] for doc_id in sorted_docs: __UpperCAmelCase : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCAmelCase : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCAmelCase : Tuple = sequence_ids.index(self.pad_token_id ) else: __UpperCAmelCase : str = len(__UpperCAmelCase ) __UpperCAmelCase : List[str] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCAmelCase , top_spans=__UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCAmelCase , start_index=__UpperCAmelCase , end_index=__UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = [] for start_index, start_score in enumerate(__UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCAmelCase : Dict = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) __UpperCAmelCase : str = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' __UpperCAmelCase : List[str] = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase_ ) class _A ( lowerCamelCase_ , lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : int = READER_PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = READER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : List[str] = DPRReaderTokenizer
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Any = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Union[str, Any] =logging.get_logger(__name__) a__ : Dict ={ '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="data2vec-text" def __init__( self : int , __A : Dict=3_0_5_2_2 , __A : str=7_6_8 , __A : Any=1_2 , __A : Tuple=1_2 , __A : Optional[int]=3_0_7_2 , __A : List[Any]="gelu" , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : List[str]=5_1_2 , __A : Optional[Any]=2 , __A : Optional[Any]=0.02 , __A : Dict=1e-12 , __A : Optional[int]=1 , __A : Dict=0 , __A : Any=2 , __A : List[str]="absolute" , __A : str=True , __A : int=None , **__A : Union[str, Any] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class snake_case ( lowerCamelCase_ ): """simple docstring""" @property def _lowerCamelCase ( self : str ): if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
53
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Any = """▁""" __lowerCamelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class A__ ( lowerCamelCase_ , unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = BertGenerationTokenizer _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :str = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() UpperCamelCase : Optional[Any] = BertGenerationTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = "<s>" UpperCamelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(A_ ) , 1002 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = BertGenerationTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [285, 46, 10, 170, 382] , ) UpperCamelCase : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase : Dict = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __UpperCamelCase( self ): '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = "Hello World!" UpperCamelCase : List[str] = [1_8536, 2260, 101] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCamelCase : Dict = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @require_torch @slow def __UpperCamelCase( self ): '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence UpperCamelCase : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase : str = " ".join(A_ ) UpperCamelCase : Optional[int] = self.big_tokenizer.encode_plus(A_ , return_tensors="pt" , return_token_type_ids=A_ ) UpperCamelCase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=A_ ) UpperCamelCase : Union[str, Any] = BertGenerationConfig() UpperCamelCase : Any = BertGenerationEncoder(A_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A_ ) model(**A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = {"input_ids": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
52
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __a: str = logging.get_logger(__name__) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase__ : Tuple = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowercase__ : str = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase__ : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase__ : Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = dct.pop(lowerCAmelCase_ ) lowercase__ : Any = val def __UpperCamelCase ( UpperCAmelCase ): if "handwritten" in checkpoint_url: lowercase__ : Optional[int] = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : List[Any] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' lowercase__ : Optional[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=lowerCAmelCase_ ) lowercase__ : Optional[int] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase__ : Dict = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : Optional[int] = 24 lowercase__ : Optional[Any] = 16 lowercase__ : Optional[int] = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : Tuple = False lowercase__ : str = '''relu''' lowercase__ : Any = 1024 lowercase__ : Dict = True lowercase__ : Optional[Any] = False lowercase__ : Union[str, Any] = False # load HuggingFace model lowercase__ : str = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ) lowercase__ : int = TrOCRForCausalLM(lowerCAmelCase_ ) lowercase__ : Optional[int] = VisionEncoderDecoderModel(encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) model.eval() # load state_dict of original model, rename some keys lowercase__ : int = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='''cpu''' , check_hash=lowerCAmelCase_ )['''model'''] lowercase__ : Tuple = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase__ : Dict = state_dict.pop(lowerCAmelCase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: lowercase__ : str = val else: lowercase__ : Union[str, Any] = val # load state dict model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image lowercase__ : Tuple = ViTImageProcessor(size=encoder_config.image_size ) lowercase__ : int = RobertaTokenizer.from_pretrained('''roberta-large''' ) lowercase__ : Tuple = TrOCRProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase__ : List[Any] = processor(images=prepare_img(lowerCAmelCase_ ) , return_tensors='''pt''' ).pixel_values # verify logits lowercase__ : int = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase__ : Any = model(pixel_values=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ) lowercase__ : List[str] = outputs.logits lowercase__ : List[Any] = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: lowercase__ : Tuple = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase__ : List[Any] = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: lowercase__ : Dict = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: lowercase__ : int = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCAmelCase_ , atol=1E-3 ), "First elements of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __a: List[str] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __a: Dict = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
198
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __UpperCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} __UpperCAmelCase = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', 'emoji': True, }, } ] __UpperCAmelCase = 0 for log in Path().glob('*.log'): __UpperCAmelCase = 0 with open(log, 'r') as f: for line in f: __UpperCAmelCase = json.loads(line) if line.get('nodeid', '') != "": __UpperCAmelCase = line['nodeid'] if line.get('duration', None) is not None: __UpperCAmelCase = F'{line["duration"]:.4f}' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __UpperCAmelCase = [] log.unlink() __UpperCAmelCase = '' __UpperCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __UpperCAmelCase = [] __UpperCAmelCase = {} for test in failed_tests: __UpperCAmelCase = test[0].split('::') __UpperCAmelCase = data[0].split('/')[-1] if data[0] not in filesafailed: __UpperCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __UpperCAmelCase = [test[0] for test in failed_table] __UpperCAmelCase = list(set(files)) # Count number of instances in failed_tests __UpperCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __UpperCAmelCase = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __UpperCAmelCase = 'Too many failed tests, please see the full report in the Action results.' __UpperCAmelCase = len(err) + 10 __UpperCAmelCase = message[: 3000 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: __UpperCAmelCase = 'No failed tests! 🤗' print(F'## {message}') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": __UpperCAmelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) __UpperCAmelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) __UpperCAmelCase = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) __UpperCAmelCase = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) __UpperCAmelCase = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __UpperCAmelCase = '' for i, row in enumerate(test_failures): if row[0] != test_class: __UpperCAmelCase = row[0] else: __UpperCAmelCase = '' __UpperCAmelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
29
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=10) -> List[str]: __snake_case: Optional[int] = [] for _ in range(lowerCAmelCase_): lrs.append(scheduler.get_lr()[0]) scheduler.step() return lrs def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=10) -> str: __snake_case: Tuple = [] for step in range(lowerCAmelCase_): lrs.append(scheduler.get_lr()[0]) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: Tuple = os.path.join(lowerCAmelCase_ , """schedule.bin""") torch.save(scheduler.state_dict() , lowerCAmelCase_) __snake_case: List[str] = torch.load(lowerCAmelCase_) scheduler.load_state_dict(lowerCAmelCase_) return lrs @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] , A : List[str] , A : Dict , A : Optional[int] ): self.assertEqual(len(A ) , len(A ) ) for a, b in zip(A , A ): self.assertAlmostEqual(A , A , delta=A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=A ) __snake_case: int = torch.tensor([0.4, 0.2, -0.5] ) __snake_case: int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __snake_case: Tuple = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __snake_case: Dict = criterion(A , A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def UpperCAmelCase__ ( self : str ): __snake_case: str = torch.tensor([0.1, -0.2, -0.1] , requires_grad=A ) __snake_case: List[str] = torch.tensor([0.4, 0.2, -0.5] ) __snake_case: str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __snake_case: Union[str, Any] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=A , weight_decay=0.0 , relative_step=A , scale_parameter=A , warmup_init=A , ) for _ in range(1_000 ): __snake_case: str = criterion(A , A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = nn.Linear(50 , 50 ) if is_torch_available() else None lowerCAmelCase__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCAmelCase__ = 10 def UpperCAmelCase__ ( self : List[Any] , A : int , A : Any , A : str , A : Tuple=None ): self.assertEqual(len(A ) , len(A ) ) for a, b in zip(A , A ): self.assertAlmostEqual(A , A , delta=A , msg=A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __snake_case: List[str] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __snake_case , __snake_case: Any = data __snake_case: int = scheduler_func(self.optimizer , **A ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __snake_case: List[str] = unwrap_schedule(A , self.num_steps ) self.assertListAlmostEqual( A , A , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) __snake_case: int = scheduler_func(self.optimizer , **A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(A ) # wrap to test picklability of the schedule __snake_case: Any = unwrap_and_save_reload_schedule(A , self.num_steps ) self.assertListEqual(A , A , msg=f'''failed for {scheduler_func} in save and reload''' ) class __snake_case : '''simple docstring''' def __init__( self : List[str] , A : Optional[int] ): __snake_case: str = fn def __call__( self : Optional[int] , *A : List[str] , **A : Any ): return self.fn(*A , **A ) @classmethod def UpperCAmelCase__ ( self : Any , A : Optional[int] ): __snake_case: Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
111
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(config.num_hidden_layers ): lowerCAmelCase__ : Optional[Any] = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Optional[int] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Dict = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : str = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : int = dct.pop(lowerCAmelCase_ ) lowerCAmelCase__ : Dict = val @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase_ ) lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Union[str, Any] = False if "vqa" in checkpoint_url: lowerCAmelCase__ : str = True lowerCAmelCase__ : str = 3129 lowerCAmelCase__ : List[Any] = """huggingface/label-files""" lowerCAmelCase__ : Tuple = """vqa2-id2label.json""" lowerCAmelCase__ : int = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Optional[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Dict = idalabel lowerCAmelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Optional[int] = ViltForQuestionAnswering(lowerCAmelCase_ ) elif "nlvr" in checkpoint_url: lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Union[str, Any] = 2 lowerCAmelCase__ : List[Any] = {0: """False""", 1: """True"""} lowerCAmelCase__ : str = {v: k for k, v in config.idalabel.items()} lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : Any = ViltForImagesAndTextClassification(lowerCAmelCase_ ) elif "irtr" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : str = ViltForImageAndTextRetrieval(lowerCAmelCase_ ) elif "mlm_itm" in checkpoint_url: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : str = ViltForMaskedLM(lowerCAmelCase_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""state_dict"""] lowerCAmelCase__ : Optional[Any] = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) if mlm_model or irtr_model: lowerCAmelCase__ : Optional[int] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase_ ) # Define processor lowerCAmelCase__ : Tuple = ViltImageProcessor(size=384 ) lowerCAmelCase__ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCAmelCase__ : Any = ViltProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCAmelCase__ : Dict = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase_ ).raw ) lowerCAmelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase_ ).raw ) lowerCAmelCase__ : Dict = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) lowerCAmelCase__ : Any = processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="""pt""" ) lowerCAmelCase__ : Tuple = processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="""pt""" ) lowerCAmelCase__ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCAmelCase__ : Optional[int] = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCAmelCase_ ).raw ) if mlm_model: lowerCAmelCase__ : int = """a bunch of [MASK] laying on a [MASK].""" else: lowerCAmelCase__ : Any = """How many cats are there?""" lowerCAmelCase__ : str = processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="""pt""" ) lowerCAmelCase__ : List[str] = model(**lowerCAmelCase_ ) # Verify outputs if mlm_model: lowerCAmelCase__ : List[Any] = torch.Size([1, 11, 30522] ) lowerCAmelCase__ : Optional[int] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase_ , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCAmelCase__ : Optional[int] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCAmelCase__ : Tuple = torch.Size([1, 3129] ) lowerCAmelCase__ : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase_ , atol=1e-4 ) # verify vqa prediction equals "2" lowerCAmelCase__ : Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCAmelCase__ : int = torch.Size([1, 2] ) lowerCAmelCase__ : Optional[int] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _snake_case : Any = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = split_dict._to_yaml_list() assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) snake_case__ : int = SplitDict._from_yaml_list(lowerCAmelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ : Dict = None # the split name of split_dict takes over the name of the split info object snake_case__ : Optional[int] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase_ ), SplitInfo(dataset_name='''my_dataset''' )] ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
230
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger() def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Tuple = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": A = timm.create_model('levit_128s' , pretrained=lowerCAmelCase_ ) else: A = timm.create_model('levit_128' , pretrained=lowerCAmelCase_ ) if hidden_sizes == 192: A = timm.create_model('levit_192' , pretrained=lowerCAmelCase_ ) if hidden_sizes == 256: A = timm.create_model('levit_256' , pretrained=lowerCAmelCase_ ) if hidden_sizes == 384: A = timm.create_model('levit_384' , pretrained=lowerCAmelCase_ ) from_model.eval() A = LevitForImageClassificationWithTeacher(lowerCAmelCase_ ).eval() A = OrderedDict() A = from_model.state_dict() A = list(from_model.state_dict().keys() ) A = list(our_model.state_dict().keys() ) print(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for i in range(len(lowerCAmelCase_ ) ): A = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase_ ) A = torch.randn((2, 3, 224, 224) ) A = from_model(lowerCAmelCase_ ) A = our_model(lowerCAmelCase_ ).logits assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ), "The model logits don't match the original one." A = name print(lowerCAmelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) A = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _snake_case ( snake_case__ : str , snake_case__ : List[Any] = None , snake_case__ : Tuple = True ): A = 'imagenet-1k-id2label.json' A = 1000 A = (1, num_labels) A = 'huggingface/label-files' A = num_labels A = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) ) A = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = partial(lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ ) A = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } A = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCAmelCase_ , names_to_config[model_name] , lowerCAmelCase_ , lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) _lowercase = parser.parse_args() _lowercase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
74
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Tuple=18 , __lowerCamelCase : int=30 , __lowerCamelCase : Optional[int]=400 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=True , ): '''simple docstring''' lowerCamelCase__ : List[Any] = size if size is not None else {"height": 18, "width": 18} lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : Dict = image_size lowerCamelCase__ : str = min_resolution lowerCamelCase__ : Any = max_resolution lowerCamelCase__ : List[str] = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : List[str] = apply_ocr def lowerCAmelCase ( self : str ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowercase ( lowerCamelCase_ , unittest.TestCase): """simple docstring""" A__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : str = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "apply_ocr" ) ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowerCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __lowerCamelCase ) self.assertIsInstance(encoding.boxes , __lowerCamelCase ) # Test batched lowerCamelCase__ : List[str] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase__ : int = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase__ : Any = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowerCamelCase__ : Dict = Image.open(ds[0]["file"] ).convert("RGB" ) lowerCamelCase__ : Any = image_processing(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase__ : int = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowerCamelCase__ : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCamelCase ) self.assertListEqual(encoding.boxes , __lowerCamelCase ) # with apply_OCR = False lowerCamelCase__ : Any = LayoutLMvaImageProcessor(apply_ocr=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
184
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' def lowercase__ ( __lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" __UpperCamelCase = [0] * len(lowerCAmelCase_ ) __UpperCamelCase = [] __UpperCamelCase = [1] * len(lowerCAmelCase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase_ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase_ ) while queue: __UpperCamelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCamelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase_ ) print(max(lowerCAmelCase_ ) ) # Adjacency list of Graph a__ : Any ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
53
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
from __future__ import annotations from math import pow, sqrt def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(lowerCAmelCase_ , 2 ) - pow(lowerCAmelCase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowerCAmelCase_ , 2 ) - pow(lowerCAmelCase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowerCAmelCase_ , 2 ) + pow(lowerCAmelCase_ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
52
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a: Optional[int] = logging.get_logger(__name__) __a: Dict = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __a: Union[str, Any] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __a: int = { """ctrl""": 2_56, } __a: List[str] = { """Pregnancy""": 16_86_29, """Christianity""": 76_75, """Explain""": 10_64_23, """Fitness""": 6_34_40, """Saving""": 6_31_63, """Ask""": 2_71_71, """Ass""": 9_59_85, """Joke""": 16_35_09, """Questions""": 4_56_22, """Thoughts""": 4_96_05, """Retail""": 5_23_42, """Feminism""": 16_43_38, """Writing""": 1_19_92, """Atheism""": 19_22_63, """Netflix""": 4_86_16, """Computing""": 3_96_39, """Opinion""": 4_32_13, """Alone""": 4_49_67, """Funny""": 5_89_17, """Gaming""": 4_03_58, """Human""": 40_88, """India""": 13_31, """Joker""": 7_71_38, """Diet""": 3_62_06, """Legal""": 1_18_59, """Norman""": 49_39, """Tip""": 7_26_89, """Weight""": 5_23_43, """Movies""": 4_62_73, """Running""": 2_34_25, """Science""": 20_90, """Horror""": 3_77_93, """Confession""": 6_05_72, """Finance""": 1_22_50, """Politics""": 1_63_60, """Scary""": 19_19_85, """Support""": 1_26_54, """Technologies""": 3_25_16, """Teenage""": 6_61_60, """Event""": 3_27_69, """Learned""": 6_74_60, """Notion""": 18_27_70, """Wikipedia""": 3_75_83, """Books""": 66_65, """Extract""": 7_60_50, """Confessions""": 10_27_01, """Conspiracy""": 7_59_32, """Links""": 6_36_74, """Narcissus""": 15_04_25, """Relationship""": 5_47_66, """Relationships""": 13_47_96, """Reviews""": 4_16_71, """News""": 42_56, """Translation""": 2_68_20, """multilingual""": 12_84_06, } def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[Any] = set() lowercase__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : List[Any] = char lowercase__ : int = set(lowerCAmelCase_ ) return pairs class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = CONTROL_CODES def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="<unk>" , **__lowerCAmelCase ) -> Tuple: super().__init__(unk_token=__lowerCAmelCase , **__lowerCAmelCase ) with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase__ : Tuple = json.load(__lowerCAmelCase ) lowercase__ : Dict = {v: k for k, v in self.encoder.items()} with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase__ : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__ : Union[str, Any] = [tuple(merge.split() ) for merge in merges] lowercase__ : Optional[int] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Dict = {} @property def _lowerCAmelCase( self ) -> Optional[Any]: return len(self.encoder ) def _lowerCAmelCase( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: if token in self.cache: return self.cache[token] lowercase__ : Optional[int] = tuple(__lowerCAmelCase ) lowercase__ : str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase__ : Union[str, Any] = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: lowercase__ : List[Any] = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Optional[int] = bigram lowercase__ : List[str] = [] lowercase__ : Any = 0 while i < len(__lowerCAmelCase ): try: lowercase__ : Optional[int] = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Any = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : Union[str, Any] = tuple(__lowerCAmelCase ) lowercase__ : List[str] = new_word if len(__lowerCAmelCase ) == 1: break else: lowercase__ : Any = get_pairs(__lowerCAmelCase ) lowercase__ : Dict = '''@@ '''.join(__lowerCAmelCase ) lowercase__ : List[str] = word[:-4] lowercase__ : Union[str, Any] = word return word def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : List[Any] = [] lowercase__ : List[Any] = re.findall(r'''\S+\n?''' , __lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return self.decoder.get(__lowerCAmelCase , self.unk_token ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[Any] = ''' '''.join(__lowerCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple: if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Union[str, Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : List[str] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) lowercase__ : int = 0 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ : Any = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
198
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Dict=False ): '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Tuple = len(set_a.intersection(lowerCAmelCase_ ) ) if alternative_union: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) else: UpperCAmelCase_ : Optional[int] = len(set_a.union(lowerCAmelCase_ ) ) return intersection / union if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(lowerCAmelCase_ , (list, tuple) ): UpperCAmelCase_ : Tuple = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / union else: UpperCAmelCase_ : int = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return None if __name__ == "__main__": __UpperCAmelCase = {'a', 'b', 'c', 'd', 'e'} __UpperCAmelCase = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
111
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Optional[Any] = torch.nn.Linear(10 ,10 ) lowerCAmelCase__ : Any = torch.optim.SGD(model.parameters() ,0.1 ) lowerCAmelCase__ : str = Accelerator() lowerCAmelCase__ : Tuple = accelerator.prepare(__UpperCAmelCase ) try: pickle.loads(pickle.dumps(__UpperCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=9_9 , lowerCAmelCase_ : Tuple=1_6 , lowerCAmelCase_ : Dict=3_6 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[str]=6 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=5_1_2 , lowerCAmelCase_ : int=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Dict=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_hidden_groups __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Optional[int] ) -> str: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowercase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> List[str]: __lowerCAmelCase = AlbertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> Dict: __lowerCAmelCase = AlbertForPreTraining(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , sentence_order_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict ) -> Union[str, Any]: __lowerCAmelCase = AlbertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> int: __lowerCAmelCase = AlbertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> List[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = AlbertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = AlbertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = self.num_choices __lowerCAmelCase = AlbertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a_ = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) a_ = True def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]=False ) -> List[Any]: __lowerCAmelCase = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase ( self : int ) -> Dict: __lowerCAmelCase = AlbertModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def lowercase ( self : int ) -> Optional[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AlbertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = AlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) )
284
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = set() snake_case__ : Union[str, Any] = [] def parse_line(__lowerCAmelCase ): for line in fp: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case__ : int = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowerCAmelCase_ ) > 0: snake_case__ : Optional[int] = '''\n'''.join(lowerCAmelCase_ ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(lowerCAmelCase_ ) buffer.clear() continue else: snake_case__ : Any = line.strip() buffer.append(lowerCAmelCase_ ) if from_gh: for filename in os.listdir(lowerCAmelCase_ ): snake_case__ : Optional[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCAmelCase_ ) as fp: parse_line(lowerCAmelCase_ ) else: try: with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCAmelCase_ ) as fp: parse_line(lowerCAmelCase_ ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = set() snake_case__ : int = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for p in os.listdir(lowerCAmelCase_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase_ , lowerCAmelCase_ ) ) return selected_warnings if __name__ == "__main__": def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" return values.split(''',''' ) A__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) A__ = parser.parse_args() A__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A__ = extract_warnings(args.output_dir, args.targets) A__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
230
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''ConvNextFeatureExtractor'''] _UpperCamelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import random def lowercase_ ( _A : str , _A : Optional[Any] , _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : int = a[left_index] lowerCamelCase__ : Any = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: lowerCamelCase__ , lowerCamelCase__ : Tuple = a[i], a[j] i += 1 lowerCamelCase__ , lowerCamelCase__ : Dict = a[i - 1], a[left_index] return i - 1 def lowercase_ ( _A : List[Any] , _A : List[Any] , _A : str ): """simple docstring""" if left < right: lowerCamelCase__ : Union[str, Any] = random.randint(lowerCAmelCase_ , right - 1 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase__ : Optional[int] = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Any = input("Enter numbers separated by a comma:\n" ).strip() lowerCamelCase__ : Any = [int(lowerCAmelCase_ ) for item in user_input.split("," )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
184
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class snake_case ( lowerCamelCase_ ): """simple docstring""" def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = 5 # Realm tok __UpperCamelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(__A , exist_ok=__A ) __UpperCamelCase = os.path.join(__A , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __UpperCamelCase = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(__A , exist_ok=__A ) def _lowerCamelCase ( self : str ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def _lowerCamelCase ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : str ): __UpperCamelCase = RealmConfig(num_block_records=self.num_block_records ) return config def _lowerCamelCase ( self : int ): __UpperCamelCase = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=__A , ) return block_records def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.get_config() __UpperCamelCase = self.get_dummy_retriever() __UpperCamelCase = retriever.tokenizer __UpperCamelCase = np.array([0, 3] , dtype='long' ) __UpperCamelCase = tokenizer(['Test question'] ).input_ids __UpperCamelCase = tokenizer( ['the fourth'] , add_special_tokens=__A , return_token_type_ids=__A , return_attention_mask=__A , ).input_ids __UpperCamelCase = config.reader_seq_len __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = retriever( __A , __A , answer_ids=__A , max_length=__A , return_tensors='np' ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.get_config() __UpperCamelCase = self.get_dummy_retriever() __UpperCamelCase = retriever.tokenizer __UpperCamelCase = np.array([0, 3, 5] , dtype='long' ) __UpperCamelCase = tokenizer(['Test question'] ).input_ids __UpperCamelCase = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=__A , return_token_type_ids=__A , return_attention_mask=__A , ).input_ids __UpperCamelCase = config.reader_seq_len __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = retriever( __A , __A , answer_ids=__A , max_length=__A , return_tensors='np' ) self.assertEqual([False, True, True] , __A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __A ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path __UpperCamelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , b'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: __UpperCamelCase = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) __UpperCamelCase = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , b'This is the first record' )
53
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Dict = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
52
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase = 10 ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or n < 0: raise ValueError('''Invalid input''' ) lowercase__ : Dict = 10**n lowercase__ : int = 2_8433 * (pow(2 , 783_0457 , lowerCAmelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(10) = }')
198
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCamelCase (lowerCamelCase_ ): '''simple docstring''' _snake_case : Optional[int] = '''xmod''' def __init__( self , _UpperCamelCase=3_0_5_2_2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase="absolute" , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=("en_XX",) , _UpperCamelCase=None , **_UpperCamelCase , ) -> int: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : Dict = use_cache UpperCAmelCase_ : Dict = classifier_dropout UpperCAmelCase_ : Any = pre_norm UpperCAmelCase_ : List[Any] = adapter_reduction_factor UpperCAmelCase_ : List[str] = adapter_layer_norm UpperCAmelCase_ : Tuple = adapter_reuse_layer_norm UpperCAmelCase_ : Optional[Any] = ln_before_adapter UpperCAmelCase_ : List[str] = list(_UpperCamelCase ) UpperCAmelCase_ : Any = default_language class lowerCamelCase (lowerCamelCase_ ): '''simple docstring''' @property def __UpperCAmelCase ( self ) -> Dict: if self.task == "multiple-choice": UpperCAmelCase_ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase_ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
29
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
from __future__ import annotations from typing import Any class __snake_case : '''simple docstring''' def __init__( self : str , A : int = 6 ): __snake_case: Tuple = None __snake_case: Union[str, Any] = None self.create_linked_list(A ) def UpperCAmelCase__ ( self : Optional[Any] , A : int ): __snake_case: Tuple = Node() __snake_case: Any = current_node __snake_case: Optional[Any] = current_node __snake_case: str = current_node for _ in range(1 , A ): __snake_case: Dict = Node() __snake_case: int = current_node __snake_case: str = previous_node __snake_case: str = current_node __snake_case: str = self.front __snake_case: Optional[Any] = previous_node def UpperCAmelCase__ ( self : Union[str, Any] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def UpperCAmelCase__ ( self : Dict ): self.check_can_perform_operation() return self.front.data if self.front else None def UpperCAmelCase__ ( self : Union[str, Any] , A : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): __snake_case: Optional[int] = self.rear.next if self.rear: __snake_case: int = data def UpperCAmelCase__ ( self : str ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __snake_case: Union[str, Any] = self.front.data __snake_case: List[Any] = None return data __snake_case: Optional[Any] = self.front __snake_case: int = old_front.next __snake_case: Optional[Any] = old_front.data __snake_case: Any = None return data def UpperCAmelCase__ ( self : Optional[Any] ): if self.is_empty(): raise Exception("""Empty Queue""" ) def UpperCAmelCase__ ( self : List[Any] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __snake_case : '''simple docstring''' def __init__( self : str ): __snake_case: str = None __snake_case: Optional[Any] = None __snake_case: int = None if __name__ == "__main__": import doctest doctest.testmod()
111
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = TapasConfig.from_json_file(lowerCAmelCase_ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ : Union[str, Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ : int = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : List[Any] = True # hparam_utils.py hparams lowerCAmelCase__ : str = 0.66_4694 lowerCAmelCase__ : List[str] = 0.20_7951 lowerCAmelCase__ : List[str] = 0.12_1194 lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Any = False lowerCAmelCase__ : Tuple = 0.035_2513 lowerCAmelCase__ : List[str] = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : int = False # hparam_utils.py hparams lowerCAmelCase__ : Tuple = 36.4519 lowerCAmelCase__ : Any = 0.90_3421 lowerCAmelCase__ : Optional[Any] = 222.088 lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[int] = 0.76_3141 lowerCAmelCase__ : Union[str, Any] = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "TABFACT": lowerCAmelCase__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase_ ) elif task == "MLM": lowerCAmelCase__ : Optional[int] = TapasForMaskedLM(config=lowerCAmelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ : Optional[Any] = TapasModel(config=lowerCAmelCase_ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ : Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase_ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : List[str] = '▁' _snake_case : str = {'vocab_file': 'sentencepiece.bpe.model'} _snake_case : Any = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _snake_case : int = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off _snake_case : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _UpperCAmelCase ( lowerCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = ["""input_ids""", """attention_mask"""] a_ = [] a_ = [] def __init__( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Dict="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Tuple=False , **lowerCAmelCase_ : List[Any] , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase = legacy_behaviour super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) __lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase_ ) } __lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowerCAmelCase = src_lang if src_lang is not None else 'eng_Latn' __lowerCAmelCase = self.lang_code_to_id[self._src_lang] __lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any ) -> List[Any]: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , lowerCAmelCase_ : Optional[int] ) -> Tuple: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase ( self : Dict ) -> List[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase ( self : Tuple ) -> List[str]: return self._src_lang @src_lang.setter def lowercase ( self : Tuple , lowerCAmelCase_ : str ) -> Any: __lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = [1] * len(self.prefix_tokens ) __lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase_ )) + ([0] * len(lowerCAmelCase_ )) + suffix_ones def lowercase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> Optional[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> str: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] , **lowerCAmelCase_ : Optional[Any] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowerCAmelCase = src_lang __lowerCAmelCase = self(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase_ ) __lowerCAmelCase = tgt_lang_id return inputs def lowercase ( self : int ) -> Any: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : Optional[Any] , lowerCAmelCase_ : str ) -> Any: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Any ) -> str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(lowerCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Any ) -> Any: __lowerCAmelCase = ''.join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , ' ' ).strip() return out_string def lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Dict: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str = "eng_Latn" , lowerCAmelCase_ : Optional[List[str]] = None , lowerCAmelCase_ : str = "fra_Latn" , **lowerCAmelCase_ : Dict , ) -> str: __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self : str ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self : List[Any] , lowerCAmelCase_ : int ) -> Optional[int]: __lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCAmelCase = [self.cur_lang_code] __lowerCAmelCase = [self.eos_token_id] def lowercase ( self : str , lowerCAmelCase_ : str ) -> Dict: __lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCAmelCase = [self.cur_lang_code] __lowerCAmelCase = [self.eos_token_id]
284
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
import os from distutils.util import strtobool def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" for e in env_keys: snake_case__ : str = int(os.environ.get(lowerCAmelCase_ , -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> str: """simple docstring""" snake_case__ : List[Any] = os.environ.get(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) return strtobool(lowerCAmelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase="no" ) -> Dict: """simple docstring""" snake_case__ : str = os.environ.get(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) return value
230
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets _lowercase = '''\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n''' _lowercase = '''\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n''' _lowercase = '''\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}''' def _snake_case ( snake_case__ : List[str] , snake_case__ : int , snake_case__ : str , snake_case__ : str , snake_case__ : Any = None , snake_case__ : List[Any] = False , ): if label_map is not None: for old_id, new_id in label_map.items(): A = new_id # turn into Numpy arrays A = np.array(lowerCAmelCase_ ) A = np.array(lowerCAmelCase_ ) if reduce_labels: A = 255 A = label - 1 A = 255 A = label != ignore_index A = np.not_equal(lowerCAmelCase_ , lowerCAmelCase_ ) A = pred_label[mask] A = np.array(lowerCAmelCase_ )[mask] A = pred_label[pred_label == label] A = np.histogram(lowerCAmelCase_ , bins=lowerCAmelCase_ , range=(0, num_labels - 1) )[0] A = np.histogram(lowerCAmelCase_ , bins=lowerCAmelCase_ , range=(0, num_labels - 1) )[0] A = np.histogram(lowerCAmelCase_ , bins=lowerCAmelCase_ , range=(0, num_labels - 1) )[0] A = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _snake_case ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : str , snake_case__ : List[str] = None , snake_case__ : Dict = False , ): A = np.zeros((num_labels,) , dtype=np.floataa ) A = np.zeros((num_labels,) , dtype=np.floataa ) A = np.zeros((num_labels,) , dtype=np.floataa ) A = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowerCAmelCase_ , lowerCAmelCase_ ): A , A , A , A = intersect_and_union( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _snake_case ( snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : int = None , snake_case__ : List[Any] = None , snake_case__ : List[Any] = False , ): A , A , A , A = total_intersect_and_union( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # compute metrics A = {} A = total_area_intersect.sum() / total_area_label.sum() A = total_area_intersect / total_area_union A = total_area_intersect / total_area_label A = np.nanmean(lowerCAmelCase_ ) A = np.nanmean(lowerCAmelCase_ ) A = all_acc A = iou A = acc if nan_to_num is not None: A = {metric: np.nan_to_num(lowerCAmelCase_ , nan=lowerCAmelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) ,reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Tuple ,A_ : Optional[int] ,A_ : int ,A_ : bool ,A_ : Optional[int] = None ,A_ : Optional[Dict[int, int]] = None ,A_ : bool = False ,) -> List[Any]: A = mean_iou( results=A_ ,gt_seg_maps=A_ ,num_labels=A_ ,ignore_index=A_ ,nan_to_num=A_ ,label_map=A_ ,reduce_labels=A_ ,) return iou_result
74
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Union[str, Any] = graph self._normalize_graph(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) __UpperCAmelCase : List[str] = None def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if sources is int: __UpperCAmelCase : List[Any] = [sources] if sinks is int: __UpperCAmelCase : Optional[Any] = [sinks] if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: return __UpperCAmelCase : Dict = sources[0] __UpperCAmelCase : Tuple = sinks[0] # make fake vertex if there are more # than one source or sink if len(__UpperCAmelCase ) > 1 or len(__UpperCAmelCase ) > 1: __UpperCAmelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCAmelCase : Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCAmelCase : List[Any] = max_input_flow __UpperCAmelCase : Any = 0 __UpperCAmelCase : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCAmelCase : str = max_input_flow __UpperCAmelCase : Optional[Any] = size - 1 def __A ( self ) -> List[Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = algorithm(self ) class _A : def __init__( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = flow_network __UpperCAmelCase : int = flow_network.verticesCount __UpperCAmelCase : str = flow_network.sourceIndex __UpperCAmelCase : Tuple = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCAmelCase : Any = flow_network.graph __UpperCAmelCase : List[Any] = False def __A ( self ) -> Optional[Any]: '''simple docstring''' if not self.executed: self._algorithm() __UpperCAmelCase : Union[str, Any] = True def __A ( self ) -> List[Any]: '''simple docstring''' pass class _A ( lowerCamelCase_ ): def __init__( self , __UpperCAmelCase ) -> int: '''simple docstring''' super().__init__(__UpperCAmelCase ) # use this to save your result __UpperCAmelCase : int = -1 def __A ( self ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCamelCase_ ): def __init__( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCAmelCase : int = [[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCAmelCase : Optional[int] = [0] * self.verticies_count __UpperCAmelCase : int = [0] * self.verticies_count def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCAmelCase : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCAmelCase : List[Any] = 0 while i < len(__UpperCAmelCase ): __UpperCAmelCase : List[Any] = vertices_list[i] __UpperCAmelCase : Tuple = self.heights[vertex_index] self.process_vertex(__UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__UpperCAmelCase ) ) __UpperCAmelCase : Optional[Any] = 0 else: i += 1 __UpperCAmelCase : Union[str, Any] = sum(self.preflow[self.source_index] ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__UpperCAmelCase , __UpperCAmelCase ) self.relabel(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : int = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCAmelCase : List[str] = self.heights[to_index] if min_height is not None: __UpperCAmelCase : Union[str, Any] = min_height + 1 if __name__ == "__main__": _UpperCamelCase = [0] _UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _UpperCamelCase = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
def lowercase_ ( _A : str , _A : str ): """simple docstring""" def get_matched_characters(_A : Tuple , _A : Dict ) -> str: lowerCamelCase__ : Any = [] lowerCamelCase__ : Optional[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowerCamelCase__ : List[Any] = int(max(0 , i - limit ) ) lowerCamelCase__ : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCAmelCase_ ) lowerCamelCase__ : str = F"{_stra[0:_stra.index(lowerCAmelCase_ )]} {_stra[_stra.index(lowerCAmelCase_ ) + 1:]}" return "".join(lowerCAmelCase_ ) # matching characters lowerCamelCase__ : Union[str, Any] = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase__ : Optional[int] = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase__ : Any = len(lowerCAmelCase_ ) # transposition lowerCamelCase__ : List[str] = ( len([(ca, ca) for ca, ca in zip(lowerCAmelCase_ , lowerCAmelCase_ ) if ca != ca] ) // 2 ) if not match_count: lowerCamelCase__ : List[Any] = 0.0 else: lowerCamelCase__ : List[Any] = ( 1 / 3 * ( match_count / len(lowerCAmelCase_ ) + match_count / len(lowerCAmelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowerCamelCase__ : List[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
184
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Optional[Any] =logging.get_logger(__name__) a__ : Union[str, Any] ={ '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] ="table-transformer" SCREAMING_SNAKE_CASE_ : Any =["past_key_values"] SCREAMING_SNAKE_CASE_ : List[str] ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , __A : List[Any]=True , __A : Dict=None , __A : Union[str, Any]=3 , __A : Optional[int]=1_0_0 , __A : List[Any]=6 , __A : Dict=2_0_4_8 , __A : int=8 , __A : Tuple=6 , __A : Union[str, Any]=2_0_4_8 , __A : Union[str, Any]=8 , __A : int=0.0 , __A : Dict=0.0 , __A : Tuple=True , __A : int="relu" , __A : Any=2_5_6 , __A : Tuple=0.1 , __A : int=0.0 , __A : List[str]=0.0 , __A : str=0.02 , __A : List[str]=1.0 , __A : Any=False , __A : Tuple="sine" , __A : int="resnet50" , __A : Optional[int]=True , __A : Optional[Any]=False , __A : str=1 , __A : List[Any]=5 , __A : Optional[Any]=2 , __A : int=1 , __A : List[str]=1 , __A : Union[str, Any]=5 , __A : str=2 , __A : int=0.1 , **__A : Dict , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__A , __A ): __UpperCamelCase = backbone_config.get('model_type' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(__A ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None, None, None __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__A , **__A ) @property def _lowerCamelCase ( self : int ): return self.encoder_attention_heads @property def _lowerCamelCase ( self : Any ): return self.d_model class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =version.parse("1.11" ) @property def _lowerCamelCase ( self : Dict ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _lowerCamelCase ( self : Union[str, Any] ): return 1e-5 @property def _lowerCamelCase ( self : Union[str, Any] ): return 1_2
53
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger() @dataclass class A__ : _UpperCAmelCase :Optional[Any] = 4_2 _UpperCAmelCase :Tuple = field(default_factory=lowerCamelCase_ ) _UpperCAmelCase :int = field(default_factory=lowerCamelCase_ ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def __UpperCamelCase( self ): '''simple docstring''' return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A__ : _UpperCAmelCase :Any = 4_2 _UpperCAmelCase :List[Any] = 4_2 _UpperCAmelCase :int = 0 _UpperCAmelCase :Optional[Any] = field(default_factory=lowerCamelCase_ ) _UpperCAmelCase :Optional[Any] = field(default_factory=lowerCamelCase_ ) def __call__( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = Tracker(self.dest )(A_ ).parametrized UpperCamelCase : List[Any] = Tracker(self.src )(A_ ).parametrized UpperCamelCase : Optional[int] = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) UpperCamelCase : List[str] = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F"""Numbers of operations are different. Source module has {len(A_ )} operations while""" F""" destination module has {len(A_ )}.""" ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ) -> str: print(F"""Converting {name}...""" ) with torch.no_grad(): UpperCamelCase : List[str] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ).eval() UpperCamelCase : Union[str, Any] = ResNetForImageClassification(lowerCAmelCase_ ).eval() UpperCamelCase : List[str] = ModuleTransfer(src=lowerCAmelCase_ , dest=lowerCAmelCase_ ) UpperCamelCase : int = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ) , our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." UpperCamelCase : str = F"""resnet{"-".join(name.split("resnet" ) )}""" print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=lowerCAmelCase_ , ) # we can use the convnext one UpperCamelCase : Optional[int] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=lowerCAmelCase_ , ) print(F"""Pushed {checkpoint_name}""" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ) -> List[Any]: UpperCamelCase : Optional[Any] = "imagenet-1k-id2label.json" UpperCamelCase : Dict = 1000 UpperCamelCase : Dict = (1, num_labels) UpperCamelCase : List[Any] = "huggingface/label-files" UpperCamelCase : List[str] = num_labels UpperCamelCase : Tuple = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase : Union[str, Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} UpperCamelCase : Dict = idalabel UpperCamelCase : Tuple = {v: k for k, v in idalabel.items()} UpperCamelCase : List[Any] = partial(lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ ) UpperCamelCase : Any = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(lowerCAmelCase_ , names_to_config[model_name] , lowerCAmelCase_ , lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowerCamelCase : List[str] = parser.parse_args() __lowerCamelCase : int = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
52
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: str = logging.get_logger(__name__) __a: Optional[int] = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "nllb-moe" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __lowerCAmelCase=128112 , __lowerCAmelCase=1024 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=0.0_5 , __lowerCAmelCase=0.0_5 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=1024 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=2 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="float32" , __lowerCAmelCase=False , __lowerCAmelCase=128 , __lowerCAmelCase=64 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase=0.0_0_1 , __lowerCAmelCase=0.0_0_1 , __lowerCAmelCase="all" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=1.0 , __lowerCAmelCase=0.2 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=False , **__lowerCAmelCase , ) -> List[Any]: lowercase__ : Any = vocab_size lowercase__ : int = max_position_embeddings lowercase__ : Dict = d_model lowercase__ : int = encoder_ffn_dim lowercase__ : Dict = encoder_layers lowercase__ : Dict = encoder_attention_heads lowercase__ : Tuple = decoder_ffn_dim lowercase__ : int = decoder_layers lowercase__ : List[Any] = decoder_attention_heads lowercase__ : List[Any] = dropout lowercase__ : Tuple = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : Union[str, Any] = activation_function lowercase__ : List[Any] = init_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : Dict = use_cache lowercase__ : Optional[Any] = encoder_layers lowercase__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : List[str] = router_z_loss_coef lowercase__ : int = router_aux_loss_coef lowercase__ : Tuple = decoder_sparse_step lowercase__ : Union[str, Any] = encoder_sparse_step lowercase__ : Union[str, Any] = num_experts lowercase__ : int = expert_capacity lowercase__ : Optional[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) lowercase__ : Optional[int] = router_dtype lowercase__ : List[str] = router_ignore_padding_tokens lowercase__ : Dict = batch_prioritized_routing lowercase__ : List[Any] = second_expert_policy lowercase__ : Optional[int] = normalize_router_prob_before_dropping lowercase__ : str = moe_eval_capacity_token_fraction lowercase__ : str = moe_token_dropout lowercase__ : Union[str, Any] = output_router_logits super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
198
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCAmelCase = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase : Dict = random.Random() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None) -> int: if rng is None: __snake_case: str = global_rng __snake_case: List[Any] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , A : str , A : List[Any]=7 , A : List[Any]=400 , A : int=2_000 , A : Union[str, Any]=1 , A : str=0.0 , A : Union[str, Any]=16_000 , A : List[Any]=True , A : Tuple=True , ): __snake_case: str = parent __snake_case: int = batch_size __snake_case: Optional[int] = min_seq_length __snake_case: Tuple = max_seq_length __snake_case: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case: List[Any] = feature_size __snake_case: str = padding_value __snake_case: Tuple = sampling_rate __snake_case: List[Any] = return_attention_mask __snake_case: Optional[int] = do_normalize def UpperCAmelCase__ ( self : Any ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : str , A : Optional[Any]=False , A : Union[str, Any]=False ): def _flatten(A : Optional[Any] ): return list(itertools.chain(*A ) ) if equal_length: __snake_case: int = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __snake_case: Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case: str = [np.asarray(A ) for x in speech_inputs] return speech_inputs class __snake_case ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = WavaVecaFeatureExtractor def UpperCAmelCase__ ( self : str ): __snake_case: Any = WavaVecaFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : List[str] , A : str ): self.assertTrue(np.all(np.mean(A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase__ ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus __snake_case: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case: Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: List[str] = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input __snake_case: Any = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values __snake_case: List[Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test batched __snake_case: Tuple = feat_extract(A , return_tensors="""np""" ).input_values __snake_case: Any = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __snake_case: Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case: List[str] = np.asarray(A ) __snake_case: str = feat_extract(A , return_tensors="""np""" ).input_values __snake_case: Tuple = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case: str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: Tuple = ["""longest""", """max_length""", """do_not_pad"""] __snake_case: Optional[int] = [None, 1_600, None] for max_length, padding in zip(A , A ): __snake_case: List[Any] = feat_extract(A , padding=A , max_length=A , return_tensors="""np""" ) __snake_case: str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case: Optional[int] = range(800 , 1_400 , 200 ) __snake_case: Tuple = [floats_list((1, x) )[0] for x in lengths] __snake_case: Any = ["""longest""", """max_length""", """do_not_pad"""] __snake_case: Dict = [None, 1_600, None] for max_length, padding in zip(A , A ): __snake_case: Optional[int] = feat_extract(A , max_length=A , padding=A ) __snake_case: Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case: str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: Dict = feat_extract( A , truncation=A , max_length=1_000 , padding="""max_length""" , return_tensors="""np""" ) __snake_case: List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case: List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: Optional[Any] = feat_extract( A , truncation=A , max_length=1_000 , padding="""longest""" , return_tensors="""np""" ) __snake_case: Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) __snake_case: Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: Optional[int] = feat_extract( A , truncation=A , max_length=2_000 , padding="""longest""" , return_tensors="""np""" ) __snake_case: List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) @require_torch def UpperCAmelCase__ ( self : List[Any] ): import torch __snake_case: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case: Any = np.random.rand(100 ).astype(np.floataa ) __snake_case: List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case: Optional[int] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __snake_case: Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCAmelCase__ ( self : List[Any] ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __snake_case: Any = WavaVecaConfig.from_pretrained(A ) __snake_case: int = WavaVecaFeatureExtractor.from_pretrained(A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
111
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = iter(lowerCAmelCase_ ) while True: lowerCAmelCase__ : List[Any] = tuple(itertools.islice(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not chunk: return yield chunk def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase__ : int = """""" if len(lowerCAmelCase_ ) < 2: return dirty for i in range(len(lowerCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCAmelCase_ ) & 1: clean += "X" return clean def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase__ : Tuple = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCAmelCase_ ) return table def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = generate_table(lowerCAmelCase_ ) lowerCAmelCase__ : Union[str, Any] = prepare_input(lowerCAmelCase_ ) lowerCAmelCase__ : str = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCAmelCase_ , 2 ): lowerCAmelCase__ , lowerCAmelCase__ : Any = divmod(table.index(lowerCAmelCase_ ) , 5 ) lowerCAmelCase__ , lowerCAmelCase__ : str = divmod(table.index(lowerCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = generate_table(lowerCAmelCase_ ) lowerCAmelCase__ : Union[str, Any] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCAmelCase_ , 2 ): lowerCAmelCase__ , lowerCAmelCase__ : str = divmod(table.index(lowerCAmelCase_ ) , 5 ) lowerCAmelCase__ , lowerCAmelCase__ : Any = divmod(table.index(lowerCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : Dict = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCamelCase_ ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Dict , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : List[str] , ) -> List[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : List[str] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ) -> Optional[Any]: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> List[str]: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys \'height\' and \'width\'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ) -> Dict: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ) -> Union[str, Any]: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : Optional[int] , ) -> str: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
284
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A__ = logging.get_logger(__name__) A__ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class a ( lowerCamelCase_ ): __lowerCAmelCase : Tuple = """blip_2_vision_model""" def __init__( self :List[Any] ,__lowercase :List[Any]=1_4_0_8 ,__lowercase :Optional[Any]=6_1_4_4 ,__lowercase :Optional[int]=3_9 ,__lowercase :Optional[int]=1_6 ,__lowercase :Optional[Any]=2_2_4 ,__lowercase :Tuple=1_4 ,__lowercase :Optional[Any]="gelu" ,__lowercase :Union[str, Any]=0.0_0001 ,__lowercase :Dict=0.0 ,__lowercase :Union[str, Any]=1e-1_0 ,__lowercase :int=True ,**__lowercase :str ,): super().__init__(**__lowercase ) snake_case__ : str = hidden_size snake_case__ : Tuple = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = patch_size snake_case__ : Optional[Any] = image_size snake_case__ : Optional[int] = initializer_range snake_case__ : Dict = attention_dropout snake_case__ : int = layer_norm_eps snake_case__ : Tuple = hidden_act snake_case__ : Optional[int] = qkv_bias @classmethod def __lowerCamelCase ( cls :Dict ,__lowercase :Union[str, os.PathLike] ,**__lowercase :str ): cls._set_token_in_kwargs(__lowercase ) snake_case__ , snake_case__ : int = cls.get_config_dict(__lowercase ,**__lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": snake_case__ : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase ,**__lowercase ) class a ( lowerCamelCase_ ): __lowerCAmelCase : str = """blip_2_qformer""" def __init__( self :Any ,__lowercase :Dict=3_0_5_2_2 ,__lowercase :int=7_6_8 ,__lowercase :List[Any]=1_2 ,__lowercase :List[str]=1_2 ,__lowercase :Optional[Any]=3_0_7_2 ,__lowercase :str="gelu" ,__lowercase :Optional[Any]=0.1 ,__lowercase :Union[str, Any]=0.1 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :List[Any]=0.02 ,__lowercase :List[str]=1e-1_2 ,__lowercase :Tuple=0 ,__lowercase :Union[str, Any]="absolute" ,__lowercase :List[Any]=2 ,__lowercase :List[str]=1_4_0_8 ,**__lowercase :Optional[Any] ,): super().__init__(pad_token_id=__lowercase ,**__lowercase ) snake_case__ : Tuple = vocab_size snake_case__ : int = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[int] = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : Any = initializer_range snake_case__ : Optional[int] = layer_norm_eps snake_case__ : int = position_embedding_type snake_case__ : Optional[int] = cross_attention_frequency snake_case__ : Tuple = encoder_hidden_size @classmethod def __lowerCamelCase ( cls :List[Any] ,__lowercase :Union[str, os.PathLike] ,**__lowercase :Dict ): cls._set_token_in_kwargs(__lowercase ) snake_case__ , snake_case__ : Any = cls.get_config_dict(__lowercase ,**__lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": snake_case__ : int = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase ,**__lowercase ) class a ( lowerCamelCase_ ): __lowerCAmelCase : Tuple = """blip-2""" __lowerCAmelCase : Any = True def __init__( self :int ,__lowercase :Dict=None ,__lowercase :Tuple=None ,__lowercase :str=None ,__lowercase :Union[str, Any]=3_2 ,**__lowercase :int ): super().__init__(**__lowercase ) if vision_config is None: snake_case__ : List[Any] = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: snake_case__ : Tuple = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: snake_case__ : str = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) snake_case__ : Any = BlipaVisionConfig(**__lowercase ) snake_case__ : Optional[int] = BlipaQFormerConfig(**__lowercase ) snake_case__ : Tuple = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' snake_case__ : Union[str, Any] = CONFIG_MAPPING[text_model_type](**__lowercase ) snake_case__ : Tuple = self.text_config.tie_word_embeddings snake_case__ : List[str] = self.text_config.is_encoder_decoder snake_case__ : Any = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : Union[str, Any] = 1.0 snake_case__ : int = 0.02 @classmethod def __lowerCamelCase ( cls :Union[str, Any] ,__lowercase :BlipaVisionConfig ,__lowercase :BlipaQFormerConfig ,__lowercase :PretrainedConfig ,**__lowercase :Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**__lowercase ,) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : Union[str, Any] = self.qformer_config.to_dict() snake_case__ : Any = self.text_config.to_dict() snake_case__ : Any = self.__class__.model_type return output
230
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
"""simple docstring""" import baseaa def _snake_case ( snake_case__ : List[str] ): return baseaa.aaaencode(string.encode('utf-8' ) ) def _snake_case ( snake_case__ : int ): return baseaa.aaadecode(lowerCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
74
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( lowerCamelCase_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
def lowercase_ ( _A : List[str] ): """simple docstring""" lowerCamelCase__ : int = 0 lowerCamelCase__ : List[Any] = len(lowerCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase_ ( _A : List[str] ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return arr, 0 lowerCamelCase__ : List[Any] = len(lowerCAmelCase_ ) // 2 lowerCamelCase__ : List[str] = arr[0:mid] lowerCamelCase__ : List[Any] = arr[mid:] lowerCamelCase__ , lowerCamelCase__ : List[Any] = count_inversions_recursive(lowerCAmelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Any = count_inversions_recursive(lowerCAmelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = _count_cross_inversions(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase_ ( _A : str , _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Optional[int] = 0 while i < len(lowerCAmelCase_ ) and j < len(lowerCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCamelCase__ : str = count_inversions_bf(lowerCAmelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , lowerCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCamelCase__ : Union[str, Any] = count_inversions_bf(lowerCAmelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase_ ) # an empty list should also have zero inversions lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Dict = count_inversions_bf(lowerCAmelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase_ ) if __name__ == "__main__": main()
184
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging a__ : Any =logging.get_logger(__name__) class snake_case : """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =42 SCREAMING_SNAKE_CASE_ : Optional[int] =None @staticmethod def _lowerCamelCase ( ): raise NotImplementedError def _lowerCamelCase ( self : Dict , __A : Any , __A : int , __A : str , **__A : Optional[Any] ): raise NotImplementedError def _lowerCamelCase ( self : str , __A : List[Any] ): raise NotImplementedError def _lowerCamelCase ( self : List[Any] ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): return f'''`pip install {cls.pip_package or cls.name}`''' class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int ="optuna" @staticmethod def _lowerCamelCase ( ): return is_optuna_available() def _lowerCamelCase ( self : int , __A : str , __A : int , __A : str , **__A : List[str] ): return run_hp_search_optuna(__A , __A , __A , **__A ) def _lowerCamelCase ( self : str , __A : Optional[int] ): return default_hp_space_optuna(__A ) class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] ="ray" SCREAMING_SNAKE_CASE_ : Optional[int] ="\'ray[tune]\'" @staticmethod def _lowerCamelCase ( ): return is_ray_available() def _lowerCamelCase ( self : int , __A : Union[str, Any] , __A : int , __A : str , **__A : List[str] ): return run_hp_search_ray(__A , __A , __A , **__A ) def _lowerCamelCase ( self : str , __A : int ): return default_hp_space_ray(__A ) class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="sigopt" @staticmethod def _lowerCamelCase ( ): return is_sigopt_available() def _lowerCamelCase ( self : int , __A : Optional[Any] , __A : int , __A : str , **__A : Union[str, Any] ): return run_hp_search_sigopt(__A , __A , __A , **__A ) def _lowerCamelCase ( self : Tuple , __A : List[Any] ): return default_hp_space_sigopt(__A ) class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int ="wandb" @staticmethod def _lowerCamelCase ( ): return is_wandb_available() def _lowerCamelCase ( self : List[Any] , __A : Tuple , __A : int , __A : str , **__A : List[str] ): return run_hp_search_wandb(__A , __A , __A , **__A ) def _lowerCamelCase ( self : Tuple , __A : Any ): return default_hp_space_wandb(__A ) a__ : Tuple ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase__ ( ) -> int: """simple docstring""" __UpperCamelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCAmelCase_ ) > 0: __UpperCamelCase = available_backends[0].name if len(lowerCAmelCase_ ) > 1: logger.info( F'''{len(lowerCAmelCase_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
53
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __lowerCamelCase : Dict = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A_ ( _lowerCAmelCase ) -> str: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: if args.student_type == "roberta": UpperCamelCase : List[Any] = False elif args.student_type == "gpt2": UpperCamelCase : Union[str, Any] = False def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: if args.student_type == "roberta": UpperCamelCase : Dict = False def A_ ( ) -> Union[str, Any]: UpperCamelCase : int = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=lowerCAmelCase_ , choices=["distilbert", "roberta", "gpt2"] , required=lowerCAmelCase_ , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=lowerCAmelCase_ , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=lowerCAmelCase_ , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=lowerCAmelCase_ , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=lowerCAmelCase_ , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=lowerCAmelCase_ , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=lowerCAmelCase_ , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=lowerCAmelCase_ , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=lowerCAmelCase_ , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=lowerCAmelCase_ , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=lowerCAmelCase_ , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=lowerCAmelCase_ , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=lowerCAmelCase_ , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=lowerCAmelCase_ , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only." , ) parser.add_argument("--n_epoch" , type=lowerCAmelCase_ , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=lowerCAmelCase_ , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=lowerCAmelCase_ , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=lowerCAmelCase_ , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=lowerCAmelCase_ , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=lowerCAmelCase_ , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=lowerCAmelCase_ , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=lowerCAmelCase_ , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=lowerCAmelCase_ , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowerCAmelCase_ , default="O1" , help=( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=lowerCAmelCase_ , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=lowerCAmelCase_ , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=lowerCAmelCase_ , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=lowerCAmelCase_ , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=lowerCAmelCase_ , default=4000 , help="Checkpoint interval." ) UpperCamelCase : int = parser.parse_args() sanity_checks(lowerCAmelCase_ ) # ARGS # init_gpu_params(lowerCAmelCase_ ) set_seed(lowerCAmelCase_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(lowerCAmelCase_ ) , lowerCAmelCase_ , indent=4 ) git_log(args.dump_path ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = MODEL_CLASSES[args.student_type] UpperCamelCase , UpperCamelCase , UpperCamelCase : str = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase : Dict = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCamelCase : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase : Dict = tokenizer.all_special_tokens.index(lowerCAmelCase_ ) UpperCamelCase : Tuple = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCamelCase : Any = special_tok_ids UpperCamelCase : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , "rb" ) as fp: UpperCamelCase : List[str] = pickle.load(lowerCAmelCase_ ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , "rb" ) as fp: UpperCamelCase : Optional[Any] = pickle.load(lowerCAmelCase_ ) UpperCamelCase : Union[str, Any] = np.maximum(lowerCAmelCase_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase : Any = 0.0 # do not predict special tokens UpperCamelCase : str = torch.from_numpy(lowerCAmelCase_ ) else: UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[int] = LmSeqsDataset(params=lowerCAmelCase_ , data=lowerCAmelCase_ ) logger.info("Data loader created." ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCamelCase : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCamelCase : int = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCamelCase : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase_ ) else: UpperCamelCase : Tuple = student_model_class(lowerCAmelCase_ ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # UpperCamelCase : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase_ ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase : Union[str, Any] = Distiller( params=lowerCAmelCase_ , dataset=lowerCAmelCase_ , token_probs=lowerCAmelCase_ , student=lowerCAmelCase_ , teacher=lowerCAmelCase_ ) distiller.train() logger.info("Let\'s go get some drinks." ) if __name__ == "__main__": main()
52
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __a: str = logging.getLogger(__name__) @dataclass class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) SCREAMING_SNAKE_CASE = field(default=lowerCamelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) SCREAMING_SNAKE_CASE = field(default=lowerCamelCase_ , metadata={"help": "whether to use adafactor"} ) SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE = field(default=lowerCamelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
198
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] __UpperCAmelCase = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.load(lowerCAmelCase_ , map_location='cpu' ) return sd def lowercase__ ( __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple=rename_keys_prefix ): '''simple docstring''' UpperCAmelCase_ : int = OrderedDict() UpperCAmelCase_ : int = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue UpperCAmelCase_ : str = key for name_pair in rename_keys_prefix: UpperCAmelCase_ : Dict = new_key.replace(name_pair[0] , name_pair[1] ) UpperCAmelCase_ : str = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately UpperCAmelCase_ : Dict = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def lowercase__ ( __snake_case : Optional[Any] , __snake_case : int ): '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: UpperCAmelCase_ : int = 'pretraining' if "vcr" in checkpoint_path: UpperCAmelCase_ : Tuple = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: UpperCAmelCase_ : Optional[int] = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: UpperCAmelCase_ : List[Any] = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: UpperCAmelCase_ : Union[str, Any] = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: UpperCAmelCase_ : Tuple = {'visual_embedding_dim': 512} UpperCAmelCase_ : int = 'multichoice' elif "vqa_advanced" in checkpoint_path: UpperCAmelCase_ : str = {'visual_embedding_dim': 2_048} UpperCAmelCase_ : List[Any] = 'vqa_advanced' elif "vqa" in checkpoint_path: UpperCAmelCase_ : Tuple = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} UpperCAmelCase_ : Union[str, Any] = 'vqa' elif "nlvr" in checkpoint_path: UpperCAmelCase_ : Optional[Any] = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } UpperCAmelCase_ : List[Any] = 'nlvr' UpperCAmelCase_ : Any = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict UpperCAmelCase_ : Dict = load_state_dict(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = get_new_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if model_type == "pretraining": UpperCAmelCase_ : Optional[Any] = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": UpperCAmelCase_ : Tuple = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": UpperCAmelCase_ : int = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": UpperCAmelCase_ : str = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') __UpperCAmelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
29
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
import requests from bsa import BeautifulSoup def A__ ( SCREAMING_SNAKE_CASE__ = "AAPL") -> Any: __snake_case: Optional[int] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' __snake_case: int = BeautifulSoup(requests.get(lowerCAmelCase_).text , """html.parser""") __snake_case: Any = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_).find("""span""").text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
111
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' _lowerCAmelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _snake_case : List[Any] = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' _snake_case : Optional[int] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' _snake_case : int = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase ( self : Tuple ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]="auto" , lowerCAmelCase_ : List[str]=-1 , lowerCAmelCase_ : Union[str, Any]=0.9 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Union[str, Any]=5_0_0 , lowerCAmelCase_ : Union[str, Any]="gpt2-large" , lowerCAmelCase_ : Union[str, Any]=-1 , lowerCAmelCase_ : Optional[Any]=1_0_2_4 , lowerCAmelCase_ : Optional[Any]=2_5 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=2_5 , ) -> int: __lowerCAmelCase = compute_mauve( p_text=lowerCAmelCase_ , q_text=lowerCAmelCase_ , p_features=lowerCAmelCase_ , q_features=lowerCAmelCase_ , p_tokens=lowerCAmelCase_ , q_tokens=lowerCAmelCase_ , num_buckets=lowerCAmelCase_ , pca_max_data=lowerCAmelCase_ , kmeans_explained_var=lowerCAmelCase_ , kmeans_num_redo=lowerCAmelCase_ , kmeans_max_iter=lowerCAmelCase_ , featurize_model_name=lowerCAmelCase_ , device_id=lowerCAmelCase_ , max_text_length=lowerCAmelCase_ , divergence_curve_discretization_size=lowerCAmelCase_ , mauve_scaling_factor=lowerCAmelCase_ , verbose=lowerCAmelCase_ , seed=lowerCAmelCase_ , ) return out
284
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
230
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowercase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _lowercase = {'''facebook/blenderbot-3B''': 1_28} class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: List[Any] = ['''input_ids''', '''attention_mask'''] _lowerCamelCase: str = BlenderbotTokenizer def __init__( self : Tuple ,A_ : Optional[Any]=None ,A_ : List[str]=None ,A_ : Dict=None ,A_ : str="replace" ,A_ : Tuple="<s>" ,A_ : List[Any]="</s>" ,A_ : Any="</s>" ,A_ : Optional[int]="<s>" ,A_ : Tuple="<unk>" ,A_ : Dict="<pad>" ,A_ : List[Any]="<mask>" ,A_ : Dict=False ,A_ : List[Any]=True ,**A_ : int ,) -> List[Any]: super().__init__( A_ ,A_ ,tokenizer_file=A_ ,errors=A_ ,bos_token=A_ ,eos_token=A_ ,sep_token=A_ ,cls_token=A_ ,unk_token=A_ ,pad_token=A_ ,mask_token=A_ ,add_prefix_space=A_ ,trim_offsets=A_ ,**A_ ,) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,A_ ) != add_prefix_space: A = getattr(A_ ,pre_tok_state.pop('type' ) ) A = add_prefix_space A = pre_tok_class(**A_ ) A = add_prefix_space A = 'post_processor' A = getattr(self.backend_tokenizer ,A_ ,A_ ) if tokenizer_component_instance: A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A = tuple(state['sep'] ) if "cls" in state: A = tuple(state['cls'] ) A = False if state.get('add_prefix_space' ,A_ ) != add_prefix_space: A = add_prefix_space A = True if state.get('trim_offsets' ,A_ ) != trim_offsets: A = trim_offsets A = True if changes_to_apply: A = getattr(A_ ,state.pop('type' ) ) A = component_class(**A_ ) setattr(self.backend_tokenizer ,A_ ,A_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[Any] ) -> str: A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else value A = value def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,*A_ : Optional[Any] ,**A_ : List[str] ) -> Optional[int]: A = kwargs.get('is_split_into_words' ,A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : List[Any] ,**A_ : Optional[int] ) -> Tuple: A = kwargs.get('is_split_into_words' ,A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ,A_ : Optional[str] = None ) -> Any: A = self._tokenizer.model.save(A_ ,name=A_ ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[str]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : "Conversation" ) -> int: A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) A = ' '.join(A_ ) A = self.encode(A_ ) if len(A_ ) > self.model_max_length: A = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
74
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _UpperCamelCase = 10 def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" for i in range(lowerCAmelCase_ , lowerCAmelCase_ ): if array[i] == target: return i return -1 def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : str = 0 __UpperCAmelCase : str = len(lowerCAmelCase_ ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCAmelCase : Tuple = (left + right) // 3 + 1 __UpperCAmelCase : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCAmelCase : int = one_third - 1 elif array[two_third] < target: __UpperCAmelCase : List[str] = two_third + 1 else: __UpperCAmelCase : Dict = one_third + 1 __UpperCAmelCase : List[str] = two_third - 1 else: return -1 def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str ): """simple docstring""" if left < right: if right - left < precision: return lin_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 __UpperCAmelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase_ , one_third - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by comma:\n''').strip() _UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _UpperCamelCase = int(input('''Enter the number to be found in the list:\n''').strip()) _UpperCamelCase = ite_ternary_search(collection, target) _UpperCamelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print('''Not found''')
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_) class _lowercase ( lowerCamelCase_): """simple docstring""" A__ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"text": Value("string")}) A__ = Features({"summary": Value("string")}) A__ = "text" A__ = "summary" @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
184
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' import math def lowercase__ ( __lowercase : Any , __lowercase : List[str] ) -> Dict: """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCAmelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
53
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
from __future__ import annotations import numpy as np def A_ ( _lowerCAmelCase ) -> Union[str, Any]: return np.maximum(0 , lowerCAmelCase_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
52
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' import math import os import sys def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : int = '''''' try: with open(lowerCAmelCase_ , '''rb''' ) as binary_file: lowercase__ : List[Any] = binary_file.read() for dat in data: lowercase__ : Union[str, Any] = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lexicon.pop(lowerCAmelCase_ ) lowercase__ : Any = last_match_id if math.loga(lowerCAmelCase_ ).is_integer(): for curr_key in lexicon: lowercase__ : Tuple = '''0''' + lexicon[curr_key] lowercase__ : Any = bin(lowerCAmelCase_ )[2:] def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Dict = {'''0''': '''0''', '''1''': '''1'''} lowercase__ , lowercase__ : Any = '''''', '''''' lowercase__ : Optional[Any] = len(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) index += 1 lowercase__ : Optional[int] = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase__ : str = lexicon[curr_string] result += last_match_id return result def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[Any] = os.path.getsize(lowerCAmelCase_ ) lowercase__ : Dict = bin(lowerCAmelCase_ )[2:] lowercase__ : Tuple = len(lowerCAmelCase_ ) return "0" * (length_length - 1) + file_length_binary + compressed def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[Any] = 8 try: with open(lowerCAmelCase_ , '''wb''' ) as opened_file: lowercase__ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCAmelCase_ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = read_file_binary(lowerCAmelCase_ ) lowercase__ : Any = compress_data(lowerCAmelCase_ ) lowercase__ : int = add_file_length(lowerCAmelCase_ , lowerCAmelCase_ ) write_file_binary(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
198
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' _snake_case : Any = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _snake_case : List[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _snake_case : Optional[Any] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _snake_case : Optional[int] = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _snake_case : List[str] = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _snake_case : Tuple = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class lowerCamelCase : '''simple docstring''' _snake_case : Union[str, Any] = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _snake_case : int = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _snake_case : int = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _snake_case : Union[str, Any] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _snake_case : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _snake_case : Tuple = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _snake_case : Tuple = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _snake_case : Any = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _snake_case : Union[str, Any] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _snake_case : int = field(default=lowerCamelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _snake_case : Optional[int] = field(default=lowerCamelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _snake_case : Any = field(default=lowerCamelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _snake_case : str = field( default=lowerCamelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowercase__ ( __snake_case : str , __snake_case : List[Any] , __snake_case : int ): '''simple docstring''' logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , F"{split}_results.json" ) ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() check_output_dir(lowerCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : str = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ), F"({config.__class__.__name__}) doesn\'t have a `{p}` attribute" setattr(lowerCAmelCase_ , lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCAmelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase_ : str = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase_ : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCAmelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase_ : int = SeqaSeqDataset # Get datasets UpperCAmelCase_ : Any = ( dataset_class( lowerCAmelCase_ , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) UpperCAmelCase_ : str = ( dataset_class( lowerCAmelCase_ , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase_ : Any = ( dataset_class( lowerCAmelCase_ , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase_ : Optional[int] = ( build_compute_metrics_fn(data_args.task , lowerCAmelCase_ ) if training_args.predict_with_generate else None ) UpperCAmelCase_ : Any = SeqaSeqTrainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , data_args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , data_collator=SeqaSeqDataCollator( lowerCAmelCase_ , lowerCAmelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , ) UpperCAmelCase_ : str = {} # Training if training_args.do_train: logger.info('*** Train ***' ) UpperCAmelCase_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase_ : Tuple = train_result.metrics UpperCAmelCase_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , lowerCAmelCase_ , training_args.output_dir ) all_metrics.update(lowerCAmelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase_ : Tuple = trainer.evaluate(metric_key_prefix='val' ) UpperCAmelCase_ : int = data_args.n_val UpperCAmelCase_ : Dict = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , lowerCAmelCase_ , training_args.output_dir ) all_metrics.update(lowerCAmelCase_ ) if training_args.do_predict: logger.info('*** Predict ***' ) UpperCAmelCase_ : Optional[Any] = trainer.predict(test_dataset=lowerCAmelCase_ , metric_key_prefix='test' ) UpperCAmelCase_ : Optional[Any] = test_output.metrics UpperCAmelCase_ : Union[str, Any] = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase_ : Dict = round(metrics['test_loss'] , 4 ) handle_metrics('test' , lowerCAmelCase_ , training_args.output_dir ) all_metrics.update(lowerCAmelCase_ ) if training_args.predict_with_generate: UpperCAmelCase_ : List[Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = lmap(str.strip , lowerCAmelCase_ ) write_txt_file(lowerCAmelCase_ , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(lowerCAmelCase_ , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' main() if __name__ == "__main__": main()
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __UpperCAmelCase : List[str] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __UpperCAmelCase : str = "https://storage.googleapis.com/cvdf-datasets/mnist/" def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case: List[Any] = numpy.dtype(numpy.uintaa).newbyteorder(""">""") return numpy.frombuffer(bytestream.read(4) , dtype=lowerCAmelCase_)[0] @deprecated(lowerCAmelCase_ , """Please use tf.data to implement this functionality.""") def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: print("""Extracting""" , f.name) with gzip.GzipFile(fileobj=lowerCAmelCase_) as bytestream: __snake_case: List[Any] = _readaa(lowerCAmelCase_) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name)) __snake_case: Any = _readaa(lowerCAmelCase_) __snake_case: Dict = _readaa(lowerCAmelCase_) __snake_case: int = _readaa(lowerCAmelCase_) __snake_case: List[Any] = bytestream.read(rows * cols * num_images) __snake_case: List[Any] = numpy.frombuffer(lowerCAmelCase_ , dtype=numpy.uinta) __snake_case: List[str] = data.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1) return data @deprecated(lowerCAmelCase_ , """Please use tf.one_hot on tensors.""") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: __snake_case: Tuple = labels_dense.shape[0] __snake_case: int = numpy.arange(lowerCAmelCase_) * num_classes __snake_case: List[Any] = numpy.zeros((num_labels, num_classes)) __snake_case: int = 1 return labels_one_hot @deprecated(lowerCAmelCase_ , """Please use tf.data to implement this functionality.""") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=10) -> List[str]: print("""Extracting""" , f.name) with gzip.GzipFile(fileobj=lowerCAmelCase_) as bytestream: __snake_case: Tuple = _readaa(lowerCAmelCase_) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name)) __snake_case: Tuple = _readaa(lowerCAmelCase_) __snake_case: Union[str, Any] = bytestream.read(lowerCAmelCase_) __snake_case: Any = numpy.frombuffer(lowerCAmelCase_ , dtype=numpy.uinta) if one_hot: return _dense_to_one_hot(lowerCAmelCase_ , lowerCAmelCase_) return labels class __snake_case : '''simple docstring''' @deprecated( A , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Union[str, Any] , A : int , A : Union[str, Any] , A : Any=False , A : Optional[int]=False , A : Tuple=dtypes.floataa , A : List[Any]=True , A : Optional[int]=None , ): __snake_case , __snake_case: Union[str, Any] = random_seed.get_seed(A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __snake_case: Tuple = dtypes.as_dtype(A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: __snake_case: List[Any] = 10_000 __snake_case: Tuple = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __snake_case: List[str] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __snake_case: Any = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __snake_case: str = images.astype(numpy.floataa ) __snake_case: Dict = numpy.multiply(A , 1.0 / 255.0 ) __snake_case: Tuple = images __snake_case: Optional[Any] = labels __snake_case: Dict = 0 __snake_case: str = 0 @property def UpperCAmelCase__ ( self : str ): return self._images @property def UpperCAmelCase__ ( self : str ): return self._labels @property def UpperCAmelCase__ ( self : Tuple ): return self._num_examples @property def UpperCAmelCase__ ( self : Dict ): return self._epochs_completed def UpperCAmelCase__ ( self : Union[str, Any] , A : int , A : Tuple=False , A : Tuple=True ): if fake_data: __snake_case: Tuple = [1] * 784 __snake_case: str = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A )], [fake_label for _ in range(A )], ) __snake_case: Tuple = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __snake_case: str = numpy.arange(self._num_examples ) numpy.random.shuffle(A ) __snake_case: Dict = self.images[perma] __snake_case: Dict = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __snake_case: Tuple = self._num_examples - start __snake_case: Union[str, Any] = self._images[start : self._num_examples] __snake_case: int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __snake_case: Any = numpy.arange(self._num_examples ) numpy.random.shuffle(A ) __snake_case: Optional[int] = self.images[perm] __snake_case: List[str] = self.labels[perm] # Start next epoch __snake_case: Union[str, Any] = 0 __snake_case: List[str] = batch_size - rest_num_examples __snake_case: int = self._index_in_epoch __snake_case: Optional[int] = self._images[start:end] __snake_case: Any = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __snake_case: List[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCAmelCase_ , """Please write your own downloading logic.""") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Tuple: if not gfile.Exists(lowerCAmelCase_): gfile.MakeDirs(lowerCAmelCase_) __snake_case: Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_) if not gfile.Exists(lowerCAmelCase_): urllib.request.urlretrieve(lowerCAmelCase_ , lowerCAmelCase_) # noqa: S310 with gfile.GFile(lowerCAmelCase_) as f: __snake_case: Union[str, Any] = f.size() print("""Successfully downloaded""" , lowerCAmelCase_ , lowerCAmelCase_ , """bytes.""") return filepath @deprecated( lowerCAmelCase_ , """Please use alternatives such as:""" """ tensorflow_datasets.load(\'mnist\')""") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=dtypes.floataa , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=5000 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=DEFAULT_SOURCE_URL , ) -> str: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCAmelCase_ , one_hot=lowerCAmelCase_ , dtype=lowerCAmelCase_ , seed=lowerCAmelCase_) __snake_case: str = fake() __snake_case: Any = fake() __snake_case: Tuple = fake() return _Datasets(train=lowerCAmelCase_ , validation=lowerCAmelCase_ , test=lowerCAmelCase_) if not source_url: # empty string check __snake_case: Any = DEFAULT_SOURCE_URL __snake_case: List[str] = """train-images-idx3-ubyte.gz""" __snake_case: int = """train-labels-idx1-ubyte.gz""" __snake_case: Any = """t10k-images-idx3-ubyte.gz""" __snake_case: Optional[Any] = """t10k-labels-idx1-ubyte.gz""" __snake_case: Any = _maybe_download( lowerCAmelCase_ , lowerCAmelCase_ , source_url + train_images_file) with gfile.Open(lowerCAmelCase_ , """rb""") as f: __snake_case: Optional[int] = _extract_images(lowerCAmelCase_) __snake_case: List[str] = _maybe_download( lowerCAmelCase_ , lowerCAmelCase_ , source_url + train_labels_file) with gfile.Open(lowerCAmelCase_ , """rb""") as f: __snake_case: int = _extract_labels(lowerCAmelCase_ , one_hot=lowerCAmelCase_) __snake_case: List[Any] = _maybe_download( lowerCAmelCase_ , lowerCAmelCase_ , source_url + test_images_file) with gfile.Open(lowerCAmelCase_ , """rb""") as f: __snake_case: Optional[Any] = _extract_images(lowerCAmelCase_) __snake_case: str = _maybe_download( lowerCAmelCase_ , lowerCAmelCase_ , source_url + test_labels_file) with gfile.Open(lowerCAmelCase_ , """rb""") as f: __snake_case: Tuple = _extract_labels(lowerCAmelCase_ , one_hot=lowerCAmelCase_) if not 0 <= validation_size <= len(lowerCAmelCase_): __snake_case: Tuple = ( """Validation size should be between 0 and """ F'''{len(lowerCAmelCase_)}. Received: {validation_size}.''' ) raise ValueError(lowerCAmelCase_) __snake_case: Union[str, Any] = train_images[:validation_size] __snake_case: List[str] = train_labels[:validation_size] __snake_case: str = train_images[validation_size:] __snake_case: str = train_labels[validation_size:] __snake_case: Union[str, Any] = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} __snake_case: Tuple = _DataSet(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) __snake_case: Union[str, Any] = _DataSet(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) __snake_case: Optional[Any] = _DataSet(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) return _Datasets(train=lowerCAmelCase_ , validation=lowerCAmelCase_ , test=lowerCAmelCase_)
111
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 3 ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(lowerCAmelCase_ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) lowerCAmelCase__ : str = QuantumRegister(lowerCAmelCase_ , """qr""" ) lowerCAmelCase__ : Tuple = ClassicalRegister(lowerCAmelCase_ , """cr""" ) lowerCAmelCase__ : str = QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ : int = number_of_qubits for i in range(lowerCAmelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCAmelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase_ , lowerCAmelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCAmelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCAmelCase_ , lowerCAmelCase_ ) # simulate with 10000 shots lowerCAmelCase__ : Dict = Aer.get_backend("""qasm_simulator""" ) lowerCAmelCase__ : Tuple = execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=10000 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case : Any = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a ( lowerCamelCase_ , unittest.TestCase ): __lowerCAmelCase : List[Any] = TextToVideoSDPipeline __lowerCAmelCase : Optional[int] = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowerCAmelCase : Tuple = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def __lowerCamelCase ( self :Tuple ): torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) snake_case__ : Tuple = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=__lowercase ,set_alpha_to_one=__lowercase ,) torch.manual_seed(0 ) snake_case__ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) snake_case__ : str = CLIPTextModel(__lowercase ) snake_case__ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[Any] ,__lowercase :int=0 ): if str(__lowercase ).startswith('''mps''' ): snake_case__ : Optional[Any] = torch.manual_seed(__lowercase ) else: snake_case__ : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case__ : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ : Tuple = self.get_dummy_components() snake_case__ : List[str] = TextToVideoSDPipeline(**__lowercase ) snake_case__ : Any = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Tuple = self.get_dummy_inputs(__lowercase ) snake_case__ : List[Any] = '''np''' snake_case__ : int = sd_pipe(**__lowercase ).frames snake_case__ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) snake_case__ : Tuple = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self :Tuple ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def __lowerCamelCase ( self :List[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __lowerCamelCase ( self :List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __lowerCamelCase ( self :str ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def __lowerCamelCase ( self :Any ): pass def __lowerCamelCase ( self :List[str] ): return super().test_progress_bar() @slow @skip_mps class a ( unittest.TestCase ): def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) snake_case__ : Dict = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) snake_case__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case__ : Optional[Any] = pipe.to('''cuda''' ) snake_case__ : List[Any] = '''Spiderman is surfing''' snake_case__ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ : Optional[Any] = pipe(__lowercase ,generator=__lowercase ,num_inference_steps=2_5 ,output_type='''pt''' ).frames snake_case__ : List[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) snake_case__ : Tuple = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) snake_case__ : Union[str, Any] = pipe.to('''cuda''' ) snake_case__ : str = '''Spiderman is surfing''' snake_case__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ : str = pipe(__lowercase ,generator=__lowercase ,num_inference_steps=2 ,output_type='''pt''' ).frames snake_case__ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
230
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowercase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') _lowercase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _snake_case ( snake_case__ : List[Any] ): with open(lowerCAmelCase_ , 'rb' ) as f: A = Image.open(lowerCAmelCase_ ) return im.convert('RGB' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Optional[int] = field( default=lowerCamelCase_ , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) _lowerCamelCase: List[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase: Optional[int] = field(default=lowerCamelCase_ , metadata={'''help''': '''A folder containing the training data.'''} ) _lowerCamelCase: Optional[Any] = field(default=lowerCamelCase_ , metadata={'''help''': '''A folder containing the validation data.'''} ) _lowerCamelCase: Optional[Any] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _lowerCamelCase: Optional[Any] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase: int = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: List[str] = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _lowerCamelCase: Optional[int] = field( default=lowerCamelCase_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCamelCase_ )} , ) _lowerCamelCase: List[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase: Optional[int] = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) _lowerCamelCase: List[str] = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowerCamelCase: List[Any] = field(default=lowerCamelCase_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowerCamelCase: Tuple = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowerCamelCase: List[Any] = field( default=lowerCamelCase_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _snake_case ( snake_case__ : int ): A = torch.stack([example['pixel_values'] for example in examples] ) A = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _snake_case ( ): A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: A = {} if data_args.train_dir is not None: A = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: A = os.path.join(data_args.validation_dir , '**' ) A = load_dataset( 'imagefolder' , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. A = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: A = dataset['train'].train_test_split(data_args.train_val_split ) A = split['train'] A = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A = dataset['train'].features['labels'].names A , A = {}, {} for i, label in enumerate(lowerCAmelCase_ ): A = str(lowerCAmelCase_ ) A = label # Load the accuracy metric from the datasets package A = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case__ : List[str] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) A = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A = image_processor.size['shortest_edge'] else: A = (image_processor.size['height'], image_processor.size['width']) A = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) A = Compose( [ RandomResizedCrop(lowerCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A = Compose( [ Resize(lowerCAmelCase_ ), CenterCrop(lowerCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(snake_case__ : Any ): A = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(snake_case__ : int ): A = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: A = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: A = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase_ ) # Initalize our trainer A = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A = trainer.evaluate() trainer.log_metrics('eval' , lowerCAmelCase_ ) trainer.save_metrics('eval' , lowerCAmelCase_ ) # Write model card and (optionally) push to hub A = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) if __name__ == "__main__": main()
74
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Any = CamembertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : str = False if not self.vocab_file else True def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : List[Any] = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A : Any = logging.get_logger(__name__) def lowercase_ ( _A : List[str] , _A : Optional[Any]=False ): """simple docstring""" lowerCamelCase__ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase__ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase_ ( _A : Union[str, Any] , _A : Tuple , _A : int=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase__ : int = "" else: lowerCamelCase__ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCamelCase__ : str = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : str = in_proj_bias[: config.hidden_size] lowerCamelCase__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase_ ( _A : Optional[int] , _A : int , _A : List[str] ): """simple docstring""" lowerCamelCase__ : List[Any] = dct.pop(lowerCAmelCase_ ) lowerCamelCase__ : Optional[int] = val def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : Dict = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def lowercase_ ( _A : List[str] , _A : int ): """simple docstring""" lowerCamelCase__ : Tuple = ViTConfig() lowerCamelCase__ : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCamelCase__ : str = True lowerCamelCase__ : Dict = int(vit_name[-12:-10] ) lowerCamelCase__ : Dict = int(vit_name[-9:-6] ) else: lowerCamelCase__ : List[str] = 1000 lowerCamelCase__ : List[str] = "huggingface/label-files" lowerCamelCase__ : Optional[int] = "imagenet-1k-id2label.json" lowerCamelCase__ : str = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : List[str] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCamelCase__ : int = idalabel lowerCamelCase__ : int = {v: k for k, v in idalabel.items()} lowerCamelCase__ : int = int(vit_name[-6:-4] ) lowerCamelCase__ : Union[str, Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): lowerCamelCase__ : Union[str, Any] = 192 lowerCamelCase__ : Optional[int] = 768 lowerCamelCase__ : str = 12 lowerCamelCase__ : List[Any] = 3 elif vit_name[9:].startswith("small" ): lowerCamelCase__ : str = 384 lowerCamelCase__ : Optional[Any] = 1536 lowerCamelCase__ : Any = 12 lowerCamelCase__ : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): lowerCamelCase__ : Dict = 768 lowerCamelCase__ : str = 2304 lowerCamelCase__ : List[Any] = 8 lowerCamelCase__ : int = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): lowerCamelCase__ : Union[str, Any] = 1024 lowerCamelCase__ : Any = 4096 lowerCamelCase__ : Union[str, Any] = 24 lowerCamelCase__ : List[str] = 16 elif vit_name[4:].startswith("huge" ): lowerCamelCase__ : Optional[Any] = 1280 lowerCamelCase__ : Tuple = 5120 lowerCamelCase__ : int = 32 lowerCamelCase__ : List[Any] = 16 # load original model from timm lowerCamelCase__ : Optional[Any] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase__ : int = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) lowerCamelCase__ : str = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase__ : Optional[int] = ViTModel(lowerCAmelCase_ ).eval() else: lowerCamelCase__ : str = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCamelCase__ : Any = DeiTImageProcessor(size=config.image_size ) else: lowerCamelCase__ : Tuple = ViTImageProcessor(size=config.image_size ) lowerCamelCase__ : Dict = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__ : Any = encoding["pixel_values"] lowerCamelCase__ : str = model(lowerCAmelCase_ ) if base_model: lowerCamelCase__ : Optional[int] = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_ , outputs.pooler_output , atol=1E-3 ) else: lowerCamelCase__ : Dict = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A : Tuple = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
184
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' def lowercase__ ( __lowercase : Dict , __lowercase : Tuple , __lowercase : int , __lowercase : Union[str, Any] ) -> Any: """simple docstring""" __UpperCamelCase , __UpperCamelCase = len(lowerCAmelCase_ ), len(grid[0] ) if ( min(lowerCAmelCase_ , lowerCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __UpperCamelCase = 0 count += depth_first_search(lowerCAmelCase_ , row + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , row - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , col + 1 , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , col - 1 , lowerCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
53
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(A_ ): UpperCamelCase : str = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) UpperCamelCase : List[str] = FlaxAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(A_ ): UpperCamelCase : int = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) UpperCamelCase : Union[str, Any] = FlaxAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase : Any = AutoTokenizer.from_pretrained(A_ ) UpperCamelCase : List[str] = FlaxBertModel.from_pretrained(A_ ) UpperCamelCase : Optional[Any] = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**A_ ): return model(**A_ ) eval(**A_ ).block_until_ready() @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase : List[str] = AutoTokenizer.from_pretrained(A_ ) UpperCamelCase : str = FlaxRobertaModel.from_pretrained(A_ ) UpperCamelCase : int = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**A_ ): return model(**A_ ) eval(**A_ ).block_until_ready() def __UpperCamelCase( self ): '''simple docstring''' with self.assertRaisesRegex( A_ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCamelCase : str = FlaxAutoModel.from_pretrained("bert-base" ) def __UpperCamelCase( self ): '''simple docstring''' with self.assertRaisesRegex( A_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCamelCase : List[str] = FlaxAutoModel.from_pretrained(A_ , revision="aaaaaa" ) def __UpperCamelCase( self ): '''simple docstring''' with self.assertRaisesRegex( A_ , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): UpperCamelCase : int = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __UpperCamelCase( self ): '''simple docstring''' with self.assertRaisesRegex(A_ , "Use `from_pt=True` to load this model" ): UpperCamelCase : Union[str, Any] = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
52
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __a: List[str] = pytest.mark.integration __a: List[Any] = {"""comet"""} __a: str = importlib.util.find_spec("""fairseq""") is not None __a: List[str] = {"""code_eval"""} __a: List[Any] = os.name == """nt""" __a: Any = {"""bertscore""", """frugalscore""", """perplexity"""} __a: Union[str, Any] = importlib.util.find_spec("""transformers""") is not None def __UpperCamelCase ( UpperCAmelCase ): @wraps(lowerCAmelCase_ ) def wrapper(self , UpperCAmelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __UpperCamelCase ( UpperCAmelCase ): @wraps(lowerCAmelCase_ ) def wrapper(self , UpperCAmelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __UpperCamelCase ( UpperCAmelCase ): @wraps(lowerCAmelCase_ ) def wrapper(self , UpperCAmelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __UpperCamelCase ( ): lowercase__ : List[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @local class UpperCAmelCase ( parameterized.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: lowercase__ : int = '''[...]''' lowercase__ : Tuple = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path ) lowercase__ : Union[str, Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=__lowerCAmelCase ) # check parameters lowercase__ : Union[str, Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__lowerCAmelCase , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase__ : List[Any] = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: lowercase__ : int = '''[...]''' lowercase__ : Union[str, Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase__ : List[Any] = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__lowerCAmelCase ): yield else: yield @contextmanager def _lowerCAmelCase( self ) -> Union[str, Any]: def load_local_metric(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): return load_metric(os.path.join('''metrics''' , __lowerCAmelCase ) , *__lowerCAmelCase , **__lowerCAmelCase ) with patch('''datasets.load_metric''' ) as mock_load_metric: lowercase__ : Optional[Any] = load_local_metric yield @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase ) -> Optional[Any]: def wrapper(__lowerCAmelCase ): lowercase__ : Optional[int] = contextmanager(__lowerCAmelCase ) lowercase__ : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def __UpperCamelCase ( UpperCAmelCase ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: lowercase__ : Any = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def __UpperCamelCase ( UpperCAmelCase ): import torch def bert_cos_score_idf(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCAmelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: lowercase__ : Dict = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def __UpperCamelCase ( UpperCAmelCase ): def load_from_checkpoint(UpperCAmelCase ): class UpperCAmelCase : '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: assert len(__lowerCAmelCase ) == 2 lowercase__ : int = [0.1_9, 0.9_2] return scores, sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: lowercase__ : Union[str, Any] = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: lowercase__ : Union[str, Any] = load_from_checkpoint yield def __UpperCamelCase ( ): lowercase__ : Optional[Any] = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) lowercase__ : List[Any] = '''ERROR''' lowercase__ : List[str] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCAmelCase_ , match=re.escape(lowerCAmelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCAmelCase_ )
198
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
import math import flax.linen as nn import jax.numpy as jnp def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Dict = 1 , __snake_case : List[Any] = 1 , __snake_case : Optional[int] = 1.0E4 , __snake_case : Union[str, Any] = False , __snake_case : Tuple = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" UpperCAmelCase_ : int = float(embedding_dim // 2 ) UpperCAmelCase_ : str = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase_ : List[Any] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase_ , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase_ : Optional[Any] = jnp.expand_dims(lowerCAmelCase_ , 1 ) * jnp.expand_dims(lowerCAmelCase_ , 0 ) # scale embeddings UpperCAmelCase_ : Tuple = scale * emb if flip_sin_to_cos: UpperCAmelCase_ : str = jnp.concatenate([jnp.cos(lowerCAmelCase_ ), jnp.sin(lowerCAmelCase_ )] , axis=1 ) else: UpperCAmelCase_ : Tuple = jnp.concatenate([jnp.sin(lowerCAmelCase_ ), jnp.cos(lowerCAmelCase_ )] , axis=1 ) UpperCAmelCase_ : Tuple = jnp.reshape(lowerCAmelCase_ , [jnp.shape(lowerCAmelCase_ )[0], embedding_dim] ) return signal class lowerCamelCase (nn.Module ): '''simple docstring''' _snake_case : List[str] = 3_2 _snake_case : Optional[Any] = jnp.floataa @nn.compact def __call__( self , _UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_UpperCamelCase ) UpperCAmelCase_ : List[str] = nn.silu(_UpperCamelCase ) UpperCAmelCase_ : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_UpperCamelCase ) return temb class lowerCamelCase (nn.Module ): '''simple docstring''' _snake_case : int = 3_2 _snake_case : Tuple = False _snake_case : str = 1 @nn.compact def __call__( self , _UpperCamelCase ) -> List[str]: return get_sinusoidal_embeddings( _UpperCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
29
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : int = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __snake_case : '''simple docstring''' def __init__( self : Optional[Any] , A : int=None , **A : Dict ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __snake_case: Dict = model __snake_case: Union[str, Any] = kwargs.get("""model_save_dir""" , A ) __snake_case: str = kwargs.get("""latest_model_name""" , A ) def __call__( self : Tuple , **A : str ): __snake_case: Union[str, Any] = {k: np.array(A ) for k, v in kwargs.items()} return self.model.run(A , A ) @staticmethod def UpperCAmelCase__ ( A : Union[str, Path] , A : Any=None , A : str=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __snake_case: Tuple = """CPUExecutionProvider""" return ort.InferenceSession(A , providers=[provider] , sess_options=A ) def UpperCAmelCase__ ( self : str , A : Union[str, Path] , A : Optional[str] = None , **A : Optional[Any] ): __snake_case: int = file_name if file_name is not None else ONNX_WEIGHTS_NAME __snake_case: Any = self.model_save_dir.joinpath(self.latest_model_name ) __snake_case: Optional[Any] = Path(A ).joinpath(A ) try: shutil.copyfile(A , A ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __snake_case: Optional[int] = self.model_save_dir.joinpath(A ) if src_path.exists(): __snake_case: Optional[int] = Path(A ).joinpath(A ) try: shutil.copyfile(A , A ) except shutil.SameFileError: pass def UpperCAmelCase__ ( self : Optional[Any] , A : Union[str, os.PathLike] , **A : Union[str, Any] , ): if os.path.isfile(A ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(A , exist_ok=A ) # saving model weights/files self._save_pretrained(A , **A ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , A : Union[str, Path] , A : Optional[Union[bool, str, None]] = None , A : Optional[Union[str, None]] = None , A : bool = False , A : Optional[str] = None , A : Optional[str] = None , A : Optional[str] = None , A : Optional["ort.SessionOptions"] = None , **A : Optional[Any] , ): __snake_case: int = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(A ): __snake_case: str = OnnxRuntimeModel.load_model( os.path.join(A , A ) , provider=A , sess_options=A ) __snake_case: str = Path(A ) # load model from hub else: # download model __snake_case: List[str] = hf_hub_download( repo_id=A , filename=A , use_auth_token=A , revision=A , cache_dir=A , force_download=A , ) __snake_case: str = Path(A ).parent __snake_case: Union[str, Any] = Path(A ).name __snake_case: Optional[int] = OnnxRuntimeModel.load_model(A , provider=A , sess_options=A ) return cls(model=A , **A ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , A : Union[str, Path] , A : bool = True , A : Optional[str] = None , A : Optional[str] = None , **A : Optional[Any] , ): __snake_case: Union[str, Any] = None if len(str(A ).split("""@""" ) ) == 2: __snake_case , __snake_case: int = model_id.split("""@""" ) return cls._from_pretrained( model_id=A , revision=A , cache_dir=A , force_download=A , use_auth_token=A , **A , )
111
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=7 ,__UpperCAmelCase=3 ,__UpperCAmelCase=30 ,__UpperCAmelCase=400 ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase=[0.5, 0.5, 0.5] ,__UpperCAmelCase=[0.5, 0.5, 0.5] ,__UpperCAmelCase=True ,__UpperCAmelCase=1 / 255 ,__UpperCAmelCase=True ,) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ : Any = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : List[Any] = num_channels lowerCAmelCase__ : Dict = min_resolution lowerCAmelCase__ : Optional[int] = max_resolution lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Union[str, Any] = size lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Union[str, Any] = image_mean lowerCAmelCase__ : Optional[int] = image_std lowerCAmelCase__ : List[str] = do_rescale lowerCAmelCase__ : Dict = rescale_factor lowerCAmelCase__ : Any = do_pad def UpperCAmelCase_ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> List[str]: if not batched: lowerCAmelCase__ : int = image_inputs[0] if isinstance(__UpperCAmelCase ,Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = image.size else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase__ : Union[str, Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase__ : List[str] = self.size["""shortest_edge"""] lowerCAmelCase__ : Dict = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase__ : Dict = self.size["""shortest_edge"""] lowerCAmelCase__ : Tuple = self.size["""shortest_edge"""] else: lowerCAmelCase__ : Dict = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : Optional[int] = max(__UpperCAmelCase ,key=lambda __UpperCAmelCase : item[0] )[0] lowerCAmelCase__ : Tuple = max(__UpperCAmelCase ,key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Union[str, Any] = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""size""" ) ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict: pass def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ,batched=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : Union[str, Any] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ,batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self ) -> int: # Initialize image_processing lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : Union[str, Any] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ,batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processings lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase__ : Dict = self.image_processing_class(do_resize=__UpperCAmelCase ,do_normalize=__UpperCAmelCase ,do_rescale=__UpperCAmelCase ) # create random PyTorch tensors lowerCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCAmelCase__ : List[Any] = image_processing_a.pad(__UpperCAmelCase ,return_tensors="""pt""" ) lowerCAmelCase__ : List[Any] = image_processing_a(__UpperCAmelCase ,return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] ,encoded_images["""pixel_values"""] ,atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self ) -> Any: # prepare image and target lowerCAmelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f: lowerCAmelCase__ : Optional[Any] = json.loads(f.read() ) lowerCAmelCase__ : Union[str, Any] = {"""image_id""": 3_9769, """annotations""": target} # encode them lowerCAmelCase__ : Dict = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowerCAmelCase__ : Dict = image_processing(images=__UpperCAmelCase ,annotations=__UpperCAmelCase ,return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Union[str, Any] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,__UpperCAmelCase ) ) # verify boxes lowerCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,__UpperCAmelCase ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : int = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,__UpperCAmelCase ) ) # verify is_crowd lowerCAmelCase__ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,__UpperCAmelCase ) ) # verify class_labels lowerCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,__UpperCAmelCase ) ) # verify orig_size lowerCAmelCase__ : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,__UpperCAmelCase ) ) # verify size lowerCAmelCase__ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,__UpperCAmelCase ) ) @slow def UpperCAmelCase_ ( self ) -> List[Any]: # prepare image, target and masks_path lowerCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f: lowerCAmelCase__ : Dict = json.loads(f.read() ) lowerCAmelCase__ : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} lowerCAmelCase__ : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase__ : Optional[Any] = YolosImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase__ : Optional[Any] = image_processing(images=__UpperCAmelCase ,annotations=__UpperCAmelCase ,masks_path=__UpperCAmelCase ,return_tensors="""pt""" ) # verify pixel values lowerCAmelCase__ : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : str = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,__UpperCAmelCase ) ) # verify boxes lowerCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,__UpperCAmelCase ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,__UpperCAmelCase ) ) # verify is_crowd lowerCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,__UpperCAmelCase ) ) # verify class_labels lowerCAmelCase__ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,__UpperCAmelCase ) ) # verify masks lowerCAmelCase__ : int = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,__UpperCAmelCase ) # verify orig_size lowerCAmelCase__ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,__UpperCAmelCase ) ) # verify size lowerCAmelCase__ : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,__UpperCAmelCase ) )
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _snake_case : List[str] = logging.getLogger(__name__) _snake_case : List[Any] = tf.data.AUTOTUNE def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config', type=lowerCAmelCase_, default='roberta-base', help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!', ) parser.add_argument( '--tokenizer', type=lowerCAmelCase_, default='unigram-tokenizer-wikitext', help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.', ) parser.add_argument( '--per_replica_batch_size', type=lowerCAmelCase_, default=8, help='Batch size per TPU core.', ) parser.add_argument( '--no_tpu', action='store_true', help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.', ) parser.add_argument( '--tpu_name', type=lowerCAmelCase_, help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.', default='local', ) parser.add_argument( '--tpu_zone', type=lowerCAmelCase_, help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.', ) parser.add_argument( '--gcp_project', type=lowerCAmelCase_, help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16', action='store_true', help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.', ) parser.add_argument( '--train_dataset', type=lowerCAmelCase_, help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.', ) parser.add_argument( '--shuffle_buffer_size', type=lowerCAmelCase_, default=2**18, help='Size of the shuffle buffer (in samples)', ) parser.add_argument( '--eval_dataset', type=lowerCAmelCase_, help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.', ) parser.add_argument( '--num_epochs', type=lowerCAmelCase_, default=1, help='Number of epochs to train for.', ) parser.add_argument( '--learning_rate', type=lowerCAmelCase_, default=1E-4, help='Learning rate to use for training.', ) parser.add_argument( '--weight_decay_rate', type=lowerCAmelCase_, default=1E-3, help='Weight decay rate to use for training.', ) parser.add_argument( '--max_length', type=lowerCAmelCase_, default=512, help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py', ) parser.add_argument( '--mlm_probability', type=lowerCAmelCase_, default=0.15, help='Fraction of tokens to mask during training.', ) parser.add_argument('--output_dir', type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id', type=lowerCAmelCase_, help='Model ID to upload to on the Hugging Face Hub.' ) __lowerCAmelCase = parser.parse_args() return args def a_ ( lowerCAmelCase_ : Any ): try: if args.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(lowerCAmelCase_ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase_ ) return tpu def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = 0 for file in file_list: __lowerCAmelCase = file.split('/' )[-1] __lowerCAmelCase = re.search(R'-\d+-(\d+)\.tfrecord', lowerCAmelCase_ ).group(1 ) __lowerCAmelCase = int(lowerCAmelCase_ ) num_samples += sample_count return num_samples def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : int=None ): __lowerCAmelCase = count_samples(lowerCAmelCase_ ) __lowerCAmelCase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase_ ) if shuffle: __lowerCAmelCase = dataset.shuffle(len(lowerCAmelCase_ ) ) __lowerCAmelCase = tf.data.TFRecordDataset(lowerCAmelCase_, num_parallel_reads=lowerCAmelCase_ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowerCAmelCase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase_ ) ) __lowerCAmelCase = dataset.map(lowerCAmelCase_, num_parallel_calls=lowerCAmelCase_ ) if shuffle: assert shuffle_buffer_size is not None __lowerCAmelCase = dataset.shuffle(args.shuffle_buffer_size ) __lowerCAmelCase = dataset.batch(lowerCAmelCase_, drop_remainder=lowerCAmelCase_ ) __lowerCAmelCase = dataset.map(lowerCAmelCase_, num_parallel_calls=lowerCAmelCase_ ) __lowerCAmelCase = dataset.prefetch(lowerCAmelCase_ ) return dataset def a_ ( lowerCAmelCase_ : str ): if not args.no_tpu: __lowerCAmelCase = initialize_tpu(lowerCAmelCase_ ) __lowerCAmelCase = tf.distribute.TPUStrategy(lowerCAmelCase_ ) else: __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer ) __lowerCAmelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = tf.io.gfile.glob(os.path.join(args.train_dataset, '*.tfrecord' ) ) if not training_records: raise ValueError(F"""No .tfrecord files found in {args.train_dataset}.""" ) __lowerCAmelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset, '*.tfrecord' ) ) if not eval_records: raise ValueError(F"""No .tfrecord files found in {args.eval_dataset}.""" ) __lowerCAmelCase = count_samples(lowerCAmelCase_ ) __lowerCAmelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowerCAmelCase = steps_per_epoch * args.num_epochs with strategy.scope(): __lowerCAmelCase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowerCAmelCase , __lowerCAmelCase = create_optimizer( num_train_steps=lowerCAmelCase_, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase_, metrics=['accuracy'] ) def decode_fn(lowerCAmelCase_ : List[str] ): __lowerCAmelCase = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase_, lowerCAmelCase_ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowerCAmelCase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase_, mlm_probability=args.mlm_probability, mlm=lowerCAmelCase_, return_tensors='tf' ) def mask_with_collator(lowerCAmelCase_ : Union[str, Any] ): # TF really needs an isin() function __lowerCAmelCase = ( ~tf.cast(batch['attention_mask'], tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) __lowerCAmelCase , __lowerCAmelCase = data_collator.tf_mask_tokens( batch['input_ids'], vocab_size=len(lowerCAmelCase_ ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=lowerCAmelCase_, ) return batch __lowerCAmelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync __lowerCAmelCase = prepare_dataset( lowerCAmelCase_, decode_fn=lowerCAmelCase_, mask_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_, shuffle=lowerCAmelCase_, shuffle_buffer_size=args.shuffle_buffer_size, ) __lowerCAmelCase = prepare_dataset( lowerCAmelCase_, decode_fn=lowerCAmelCase_, mask_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_, shuffle=lowerCAmelCase_, ) __lowerCAmelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=lowerCAmelCase_ ) ) model.fit( lowerCAmelCase_, validation_data=lowerCAmelCase_, epochs=args.num_epochs, callbacks=lowerCAmelCase_, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _snake_case : Any = parse_args() main(args)
284
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True snake_case__ : List[Any] = 4 snake_case__ : Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ : List[str] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
230
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class a : """simple docstring""" def __init__( self: Optional[int] , UpperCamelCase: Optional[Any] , ): """simple docstring""" A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = False A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = """gelu""" A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.02 A__ = 3 A__ = 4 A__ = None def UpperCamelCase ( self: Any ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: List[str] ): """simple docstring""" A__ = TFDistilBertModel(config=UpperCamelCase ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(UpperCamelCase ) A__ = [input_ids, input_mask] A__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Any ): """simple docstring""" A__ = TFDistilBertForMaskedLM(config=UpperCamelCase ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: int , UpperCamelCase: str , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: int , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = TFDistilBertForQuestionAnswering(config=UpperCamelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: Dict ): """simple docstring""" A__ = self.num_labels A__ = TFDistilBertForSequenceClassification(UpperCamelCase ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] ): """simple docstring""" A__ = self.num_choices A__ = TFDistilBertForMultipleChoice(UpperCamelCase ) A__ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: str , UpperCamelCase: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" A__ = self.num_labels A__ = TFDistilBertForTokenClassification(UpperCamelCase ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: int ): """simple docstring""" A__ = TFDistilBertModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , dim=37 ) def UpperCamelCase ( self: Tuple ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A__ = TFDistilBertModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_tf class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self: Any ): """simple docstring""" A__ = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(UpperCamelCase )[0] A__ = [1, 6, 7_68] self.assertEqual(output.shape , UpperCamelCase ) A__ = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase , atol=1e-4 )
335
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" A__ = get_activation("""swish""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""silu""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = get_activation("""mish""" ) self.assertIsInstance(UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""gelu""" ) self.assertIsInstance(UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
335
1